JP2011249162A - Method for manufacturing superconducting wire rod - Google Patents

Method for manufacturing superconducting wire rod Download PDF

Info

Publication number
JP2011249162A
JP2011249162A JP2010121749A JP2010121749A JP2011249162A JP 2011249162 A JP2011249162 A JP 2011249162A JP 2010121749 A JP2010121749 A JP 2010121749A JP 2010121749 A JP2010121749 A JP 2010121749A JP 2011249162 A JP2011249162 A JP 2011249162A
Authority
JP
Japan
Prior art keywords
layer
critical current
oxide superconducting
surface roughness
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010121749A
Other languages
Japanese (ja)
Inventor
Naonori Nakamura
直識 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010121749A priority Critical patent/JP2011249162A/en
Publication of JP2011249162A publication Critical patent/JP2011249162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of differently manufacturing superconducting wire rods of different critical current values.SOLUTION: When differently manufacturing a plurality of superconducting wire rods of different critical current values, in which an intermediate layer by an ion beam assist evaporation method, a cap layer, and an oxide superconducting layer are provided on a substrate, the oxide superconducting layer is formed in the same thickness, the maximum value exists among values of surface roughness Ra at which a critical current value obtained in the oxide superconducting layer of the same thickness in accordance with the value of surface roughness Ra of a substrate surface indicates an upper limit value, a range exists where an oxide superconducting layer indicating a critical current value lower than the upper limit value of the critical current value can be obtained in accordance with the value of surface roughness Ra larger than the maximum value, and within the range, a relation that critical current density falls more as the value of the surface roughness Ra becomes large is used, and a plurality of superconducting rods of different critical current values are differently manufactured according to the surface roughness Ra of the substrate.

Description

本発明は、臨界電流値の異なる超電導線材を作り分けることができる製造方法に関する。   The present invention relates to a manufacturing method capable of separately making superconducting wires having different critical current values.

近年になって発見されたRE−123系酸化物超電導体(REBaCu7−X:REは希土類元素)は、液体窒素温度以上で超電導性を示すことから実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体として用いることが強く要望されている。中でも、Y系酸化物超電導体(YBaCu7−X)を用いた超電導線材は、外部磁界に対して強く、強磁界内でも高い電流密度を維持することができるため、超電導コイル用導体としての利用、あるいは電力供給用ケーブルとしての利用の他、超電導線材への通電時に発生するおそれのある故障電流の遮断を目的とした超電導限流器用の導体としての研究開発も進められている。
これらの開発用途において電力供給用超電導線材、磁気コイル用超電導線材はできる限り高電流対応の超電導線材が必要である反面、超電導限流器用の超電導線材は規格に合った臨界電流特性をある程度制御した超電導線材が必要となる。
このため、従来では、臨界電流値(Ic)または臨界電流密度(Jc)の異なる超電導線材を作製するためには、超電導層の膜厚を変えることで製造するようにしていた。
The RE-123 oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element) discovered in recent years exhibits superconductivity at a liquid nitrogen temperature or higher, and is therefore an extremely promising material for practical use. There is a strong demand for processing this into a wire and using it as a conductor for power supply. Among them, a superconducting wire using a Y-based oxide superconductor (YBa 2 Cu 3 O 7-X ) is strong against an external magnetic field and can maintain a high current density even in a strong magnetic field. In addition to its use as a conductor or as a power supply cable, research and development as a conductor for superconducting fault current limiters is also underway for the purpose of blocking fault currents that may occur when energizing a superconducting wire. .
In these development applications, superconducting wire for power supply and superconducting wire for magnetic coil need superconducting wire for high current as much as possible, but superconducting wire for superconducting fault current limiter has controlled the critical current characteristics to some extent. Superconducting wire is required.
For this reason, conventionally, in order to produce superconducting wires having different critical current values (Ic) or critical current densities (Jc), the superconducting layers are manufactured by changing the film thickness.

ここで、この種のRE−123系酸化物超電導線材の一構造例として、図7に示す如くテープ状の金属基材100上に、ベッド層101を介してIBAD(Ion-Beam-Assisted Deposition)法によって成膜された中間層102と、その上に成膜されたキャップ層103と、酸化物超電導層104とを積層形成した酸化物超電導線材Cが知られている(例えば、特許文献1参照)。
前記構造においてキャップ層103の結晶面内配向性が高い方が、更にその上に成膜される酸化物超電導層104も高い結晶配向性となり、この酸化物超電導層104の結晶面内配向性が高くなる程、臨界電流値等の超電導特性が優れた酸化物超電導線材Cを得ることができる。
Here, as one structural example of this type of RE-123 oxide superconducting wire, an IBAD (Ion-Beam-Assisted Deposition) is formed on a tape-shaped metal substrate 100 with a bed layer 101 as shown in FIG. An oxide superconducting wire C in which an intermediate layer 102 formed by a method, a cap layer 103 formed thereon, and an oxide superconducting layer 104 are stacked is known (see, for example, Patent Document 1). ).
In the above structure, the higher the in-plane orientation of the cap layer 103, the higher the oxide superconducting layer 104 formed thereon, and the higher the in-plane orientation of the oxide superconducting layer 104. The higher the value, the higher the oxide superconducting wire C having excellent superconducting properties such as the critical current value.

以下、IBAD法により形成される中間層102と超電導線材Cの特性の関連性について説明する。
図8に示すように、IBAD法に用いる中間層形成装置は、ベッド層101を備えた金属基材100をその長手方向に走行するための走行系と、その表面が金属基材100の表面に対して斜めに向いて対峙されたターゲット201と、ターゲット201にイオンを照射するスパッタビーム照射装置202と、金属基材100の表面に対して斜め方向からイオン(希ガスイオンと酸素イオンの混合イオン)を照射するイオン源203とを有しており、これら各部は真空容器(図示せず)内に配置されている。
この中間層形成装置によって金属基材100のベッド層101上に中間層102を形成するには、真空容器の内部を減圧雰囲気とし、スパッタビーム照射装置202及びイオン源203を作動させる。これにより、スパッタビーム照射装置202からターゲット201にイオンが照射され、ターゲット201の構成粒子が叩き出されるか蒸発されてベッド層101上に堆積する。これと同時に、イオン源203から、希ガスイオンと酸素イオンとの混合イオンを放射し、金属基材100の表面(ベッド層101)に対して所定の入射角度(θ)で照射する。
このように、ベッド層101の表面に、ターゲット201の構成粒子を堆積させつつ、所定の入射角度でイオン照射を行うことにより、形成されるスパッタ膜の特定の結晶軸がイオンの入射方向に固定され、結晶のc軸が金属基板の表面に対して垂直方向に配向するとともに、a軸及びb軸が面内において一定方向に配向する。このため、IBAD法によってベッド層101上に形成された中間層102は、高い面内配向度を有する。
Hereinafter, the relationship between the characteristics of the intermediate layer 102 formed by the IBAD method and the superconducting wire C will be described.
As shown in FIG. 8, the intermediate layer forming apparatus used for the IBAD method includes a traveling system for traveling the metal substrate 100 provided with the bed layer 101 in the longitudinal direction, and the surface thereof on the surface of the metal substrate 100. A target 201 facing diagonally, a sputtering beam irradiation device 202 that irradiates the target 201 with ions, and ions (mixed ions of rare gas ions and oxygen ions) obliquely with respect to the surface of the metal substrate 100. ) And an ion source 203 for irradiating these components, and these components are arranged in a vacuum container (not shown).
In order to form the intermediate layer 102 on the bed layer 101 of the metal substrate 100 by this intermediate layer forming apparatus, the inside of the vacuum container is set to a reduced pressure atmosphere, and the sputter beam irradiation apparatus 202 and the ion source 203 are operated. As a result, the target 201 is irradiated with ions from the sputtering beam irradiation apparatus 202, and the constituent particles of the target 201 are knocked out or evaporated to be deposited on the bed layer 101. At the same time, mixed ions of rare gas ions and oxygen ions are radiated from the ion source 203 and irradiated to the surface (bed layer 101) of the metal substrate 100 at a predetermined incident angle (θ).
In this way, by irradiating ions at a predetermined incident angle while depositing the constituent particles of the target 201 on the surface of the bed layer 101, the specific crystal axis of the formed sputtered film is fixed in the ion incident direction. Then, the c-axis of the crystal is oriented in a direction perpendicular to the surface of the metal substrate, and the a-axis and the b-axis are oriented in a certain direction in the plane. For this reason, the intermediate layer 102 formed on the bed layer 101 by the IBAD method has a high degree of in-plane orientation.

一方、キャップ層103は、このように面内結晶軸が配向した中間層102表面に成膜されることによってエピタキシャル成長し、その後、横方向に粒成長して、結晶粒が面内方向に自己配向し得る材料、例えばCeOによって構成される。キャップ層103は、このように自己配向していることにより、中間層102よりも更に高い面内配向度を得ることができる。従って、ベッド層101上に、このような中間層102及びキャップ層103を介して酸化物超電導層104を成膜すると、面内配向度の高いキャップ層103の結晶配向に整合するように酸化物超電導層104がエピタキシャル成長するため、面内配向性に優れ、臨界電流密度の大きな超電導特性の優れた酸化物超電導層104を得ることができる。 On the other hand, the cap layer 103 is epitaxially grown by being formed on the surface of the intermediate layer 102 in which the in-plane crystal axes are oriented as described above, and then grows laterally, so that the crystal grains are self-oriented in the in-plane direction. Composed of a possible material, for example CeO 2 . Since the cap layer 103 is self-orientated in this manner, a higher in-plane orientation degree than that of the intermediate layer 102 can be obtained. Therefore, when the oxide superconducting layer 104 is formed on the bed layer 101 via the intermediate layer 102 and the cap layer 103, the oxide is aligned with the crystal orientation of the cap layer 103 having a high degree of in-plane orientation. Since the superconducting layer 104 is epitaxially grown, it is possible to obtain the oxide superconducting layer 104 having excellent in-plane orientation and high superconducting characteristics with a large critical current density.

特開2004−71359号公報JP 2004-71359 A 特開2007−280710号公報JP 2007-280710 A 特開2009−16257号公報JP 2009-16257 A 特開2006−27958号公報JP 2006-27958 A

前記構造の酸化物超電導線材Cにおいて、ベッド層101と中間層102及びキャップ層103は、酸化物超電導層104の結晶配向性を整え、成膜時の加熱処理に伴う元素の不要拡散を抑制するとともに、基材100と酸化物超電導層104の中間の膨張係数を有して熱ストレスを緩和するなどの複合的な効果を得るための層であって、これらの層を順序に積層することで始めて単結晶に近い結晶配向性であって、超電導特性の優れた酸化物超電導層104を得ることができる。   In the oxide superconducting wire C having the above structure, the bed layer 101, the intermediate layer 102, and the cap layer 103 adjust the crystal orientation of the oxide superconducting layer 104 and suppress unnecessary diffusion of elements accompanying heat treatment during film formation. At the same time, it is a layer for obtaining a composite effect such as having an expansion coefficient intermediate between the base material 100 and the oxide superconducting layer 104 to alleviate thermal stress, and by laminating these layers in order. For the first time, it is possible to obtain an oxide superconducting layer 104 having crystal orientation close to a single crystal and excellent in superconducting characteristics.

また、上述のような単結晶に近い結晶配向性のキャップ層103と酸化物超電導層104を成長させる必要があるため、成膜の土台となる基材100の表面は凹凸の少ない平滑な面とする必要がある。
酸化物超電導導体の基材表面の凹凸を小さくするための技術として、従来、電解研磨により基材の表面粗さRaを9nm以下、具体的には3nm以下に研磨する方法(特許文献2参照)、超電導層に接する中間層の表面粗さを電解研磨法、酸を用いた化学研磨法、圧延ロールを用いた鏡面転写法などにより20nm以下とする方法(特許文献3参照)、基板表面をCMP(Chemical Mechanical Polishing)法により表面粗さRa20nm以下、例えば2.5nmにすることで臨界電流密度の優れた超電導層を生成しようとする方法(特許文献4)が知られている。
Further, since it is necessary to grow the cap layer 103 having a crystal orientation close to a single crystal as described above and the oxide superconducting layer 104, the surface of the base material 100 serving as a base for film formation is a smooth surface with few irregularities. There is a need to.
As a technique for reducing the unevenness on the surface of the base material of the oxide superconducting conductor, conventionally, a method of polishing the surface roughness Ra of the base material to 9 nm or less, specifically 3 nm or less by electrolytic polishing (see Patent Document 2). The surface roughness of the intermediate layer in contact with the superconducting layer is reduced to 20 nm or less by an electrolytic polishing method, a chemical polishing method using an acid, a mirror transfer method using a rolling roll (see Patent Document 3), and the substrate surface is subjected to CMP. There is known a method (Patent Document 4) for generating a superconducting layer having an excellent critical current density by setting the surface roughness Ra to 20 nm or less, for example, 2.5 nm by a (Chemical Mechanical Polishing) method.

しかし、これらの従来技術では、基材表面の凹凸を小さくすると、即ち、基材表面の凹凸を特定の微細な表面粗さに加工すると、臨界電流密度の高い酸化物超電導層を生成できることを開示しているに過ぎない。
従って、酸化物超電導線材Cについて、前述の超電導限流器用途などのように規格に合った臨界電流特性をある程度制御した超電導線材とするためには、即ち、臨界電流値(Ic)の異なる複数の超電導線材を作製するためには、超電導電流を流す主体である酸化物超電導層の膜厚を変更することで対応するのが一般的な手段とされている。
However, these prior arts disclose that an oxide superconducting layer having a high critical current density can be produced by reducing the unevenness of the substrate surface, that is, processing the unevenness of the substrate surface to a specific fine surface roughness. I'm just doing it.
Therefore, for the oxide superconducting wire C, in order to obtain a superconducting wire in which the critical current characteristics conforming to the standard are controlled to some extent as in the above-described superconducting current limiter application, a plurality of different critical current values (Ic) are used. In order to produce this superconducting wire, it is a common means to change the film thickness of the oxide superconducting layer, which is the main body through which the superconducting current flows.

しかし、低臨界電流値の酸化物超電導線材を製造することを考慮すると、酸化物超電導層104を薄く形成する必要がある。しかし、酸化物超電導層104の膜厚を薄くすることは、均一な超電導特性の酸化物超電導層104を生成できなくなるおそれを伴っている。即ち、超電導線材は長尺のものであっても、長手方向に均一な超電導特性が要求されるので、膜厚の薄い酸化物超電導層104を超電導線材の全長に渡り均一な超電導特性を発揮できるように薄いまま均一成膜することは容易ではない問題があった。   However, in consideration of manufacturing an oxide superconducting wire having a low critical current value, the oxide superconducting layer 104 needs to be formed thin. However, reducing the thickness of the oxide superconducting layer 104 involves the possibility that the oxide superconducting layer 104 having uniform superconducting characteristics cannot be generated. That is, even if the superconducting wire is long, uniform superconducting properties are required in the longitudinal direction, so that the thin oxide superconducting layer 104 can exhibit uniform superconducting properties over the entire length of the superconducting wire. Thus, there is a problem that it is not easy to form a uniform film while being thin.

このような背景に基づき本発明者らが研究したところ、IBAD法に基づき基材上に形成した中間層とその上に形成したキャップ層と酸化物超電導層からなる積層構造の超電導導体について、基材表面の凹凸の大小と酸化物超電導層が示す超電導特性との間に明確な相関関係が存在することを見出した。
即ち、IBAD法に基づき基材上に形成した中間層とその上に形成したキャップ層と酸化物超電導層からなる積層構造の超電導導体の開発により、実用に供し得る400A級のIc値を有する酸化物超電導導体を安定的に製造できるようになったが、これらの酸化物超電導導体の開発が進むにつれて、超電導限流器などのような実用用途に応じた超電導機器の研究も進められ、これらの研究の進展に基づき、段階的なIc値を示す超電導線材をできるだけ簡便に作り分けしようとする課題が生じ、この課題に鑑み本願発明に到達した。
Based on such a background, the present inventors have studied a superconducting conductor having a laminated structure composed of an intermediate layer formed on a substrate based on the IBAD method, a cap layer formed thereon, and an oxide superconducting layer. It was found that there is a clear correlation between the size of the irregularities on the surface of the material and the superconducting properties exhibited by the oxide superconducting layer.
That is, by developing a superconducting conductor having a laminated structure comprising an intermediate layer formed on a substrate based on the IBAD method, a cap layer formed thereon and an oxide superconducting layer, an oxidation having an Ic value of 400 A class that can be put to practical use. However, as the development of these oxide superconductors has progressed, research on superconducting devices suitable for practical applications such as superconducting current limiters has been promoted. Based on the progress of research, there has been a problem of making a superconducting wire showing a gradual Ic value as easily as possible. In view of this problem, the present invention has been reached.

本発明は、このような従来の実情に鑑みてなされたものであり、電力供給用超電導線材、超電導コイル用超電導線材などのようにできる限り高電流対応の超電導線材と、超電導限流器用途などのように臨界電流特性を規格に合わせてある程度制御した超電導線材とを確実かつ容易に製造し分けることができる製造方法の提供を目的とする。
また、本発明は、高電流対応の超電導線材と臨界電流特性をある程度制御した超電導線材とが作り分けられ、それらが個々の超電導機器に備えられた超電導設備の提供を目的とする。
The present invention has been made in view of such conventional circumstances, such as a superconducting wire for power supply, a superconducting wire for a superconducting coil, and a superconducting wire for a high current as much as possible, and a superconducting fault current limiter application. Thus, an object of the present invention is to provide a manufacturing method capable of reliably and easily manufacturing and separating a superconducting wire whose critical current characteristics are controlled to some extent according to the standards.
Another object of the present invention is to provide a superconducting facility in which a superconducting wire corresponding to a high current and a superconducting wire whose critical current characteristics are controlled to some extent are made separately, and they are provided in each superconducting device.

本発明は、上記課題を解決するために以下の構成を有する。
本発明は、基材上に、イオンビームアシスト蒸着法により結晶配向性が整えられてなる中間層と、該中間層の結晶配向性の影響を受けて結晶配向性が整えられたキャップ層と、該キャップ層の結晶配向性の影響を受けて結晶配向性が整えられた酸化物超電導層とが少なくとも設けられてなる超電導線材であって、酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けるに際し、臨界電流値が異なるいずれの超電導線材を製造する場合であっても、酸化物超電導層は同一厚さに形成するとともに、基材表面の表面粗さRaの値に応じて同一厚さの酸化物超電導層において得られる臨界電流値が上限値を示す表面粗さRaの値の内、最大値が存在し、この最大値よりも大きな表面粗さRaの範囲であって、この範囲の表面粗さRaの値に応じて先の臨界電流値の上限値よりも低い臨界電流値を示す酸化物超電導層が得られる範囲が存在し、この低い臨界電流値を示す範囲において、表面粗さRaの値が大きくなる程、臨界電流値が比例して低下する関係を利用し、臨界電流値が比例関係を示す範囲において基材の表面粗さRaを選定仕分けることにより、酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けることを特徴とする。
The present invention has the following configuration in order to solve the above problems.
The present invention provides an intermediate layer on which a crystal orientation is adjusted by an ion beam assisted deposition method on a substrate, a cap layer whose crystal orientation is adjusted under the influence of the crystal orientation of the intermediate layer, A superconducting wire comprising at least an oxide superconducting layer whose crystal orientation is adjusted under the influence of the crystal orientation of the cap layer, wherein a plurality of superconducting conductors having different critical current values exhibited by the oxide superconducting layer are provided. When manufacturing and separating the wires, the oxide superconducting layer is formed with the same thickness and the surface roughness Ra of the base material surface, regardless of whether the superconducting wires having different critical current values are manufactured. There is a maximum value among the values of the surface roughness Ra where the critical current value obtained in the oxide superconducting layer of the same thickness has an upper limit value, and the surface roughness Ra is larger than this maximum value. , Surface roughness in this range There exists a range in which an oxide superconducting layer having a critical current value lower than the upper limit value of the previous critical current value can be obtained according to the value of a, and in this range showing the low critical current value, the value of the surface roughness Ra By utilizing the relationship that the critical current value decreases proportionally as the value increases, the surface roughness Ra of the base material is selected and sorted within the range in which the critical current value exhibits the proportional relationship, thereby the critical current exhibited by the oxide superconducting layer. A plurality of superconducting wires having different values are manufactured and separated.

本発明は、基材上に、ベッド層を介して中間層を形成することができる。
本発明は、基材上に、拡散防止層とベッド層を介して中間層を形成することができる。
本発明は、基材表面の表面粗さRaの値に応じて同一厚さの酸化物超電導層において得られる臨界電流値が上限値を示す範囲を2nm以上7nm未満の範囲とすることができる。
In the present invention, an intermediate layer can be formed on a substrate via a bed layer.
In the present invention, an intermediate layer can be formed on a substrate via a diffusion prevention layer and a bed layer.
In the present invention, the range in which the critical current value obtained in the oxide superconducting layer having the same thickness according to the value of the surface roughness Ra of the substrate surface shows the upper limit value can be set to a range of 2 nm or more and less than 7 nm.

本発明は、Ni合金の基材とAlの拡散防止層とYのベッド層とMgOの中間層とRE−123系酸化物超電導層(REBaCu7−X:REは希土類元素)として超電導線材を製造するに際し、基材表面の表面粗さRaを2nm以上、7nm以下の範囲として臨界電流値Ic:400A級の超電導線材を製造する工程と、基材表面の表面粗さRaを7nm超、8nm以下の範囲として臨界電流値Ic:300A級の超電導線材を製造する工程と、基材表面の表面粗さRaを8nm超、8.6nm以下の範囲として臨界電流値Ic:200A級の超電導線材を製造する工程と、基材表面の表面粗さRaを8.6nm超、9nm以下の範囲として臨界電流値Ic:100A級の超電導線材を製造する工程の内、複数を組み合わせて酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けることを特徴とする。 The present invention relates to a Ni alloy base material, an Al 2 O 3 diffusion prevention layer, a Y 2 O 3 bed layer, an MgO intermediate layer, a RE-123 oxide superconducting layer (REBa 2 Cu 3 O 7-X : When manufacturing a superconducting wire as RE (rare earth element), a step of manufacturing a superconducting wire having a critical current value Ic: 400A class with a surface roughness Ra of the substrate surface in the range of 2 nm to 7 nm, A process for producing a superconducting wire having a surface roughness Ra of more than 7 nm and not more than 8 nm and a critical current value Ic: 300A class, and a critical current having a surface roughness Ra of the substrate surface exceeding 8 nm and not more than 8.6 nm. Value Ic: Among the steps of manufacturing a 200A class superconducting wire, and manufacturing the critical current value Ic: 100A class superconducting wire with the surface roughness Ra of the base material surface in the range of more than 8.6 nm and 9 nm or less, Multiple Critical current value indicated oxide superconductor layer to match observed and wherein the separating manufactures different superconducting wires.

本発明の超電導線材の製造方法によれば、基材の表面粗さRaに応じた臨界電流値の最大値を示す領域よりも大きな表面粗さRaの値に応じて低い臨界電流値を示す範囲が存在し、この低い臨界電流値を示す範囲において、表面粗さRaの値が大きくなる程、臨界電流値が比例して低下する関係を利用し、基材の表面粗さRaを選定仕分けることにより、酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けることができる。これにより、酸化物超電導層の厚さを薄くしなくとも、規格値の小さい臨界電流値の酸化物超電導線材を作り分けることができる。
本発明では、酸化物超電導層の厚さは均一としても、基材の表面粗さRaの調整のみで、規格値の小さい臨界電流値の酸化物超電導線材を段階的に作り分けることができるので、超電導線材の作り分けが従来よりも容易に実現できる。
According to the method for producing a superconducting wire of the present invention, a range showing a low critical current value according to a value of a surface roughness Ra larger than a region showing a maximum value of the critical current value according to the surface roughness Ra of the substrate. In the range where the low critical current value is present, the surface roughness Ra of the substrate is selected and sorted using the relationship that the critical current value decreases in proportion as the value of the surface roughness Ra increases. Thus, a plurality of superconducting wires having different critical current values exhibited by the oxide superconducting layer can be manufactured and separated. Thereby, an oxide superconducting wire having a small standard value and a critical current value can be formed without reducing the thickness of the oxide superconducting layer.
In the present invention, even if the thickness of the oxide superconducting layer is uniform, only by adjusting the surface roughness Ra of the base material, it is possible to produce oxide superconducting wires having a small standard value in a stepwise manner. The superconducting wire can be made more easily than before.

また、具体例の1つとして、基材の表面粗さRaを2nm以上、7nm以下として400A級の酸化物超電導線材を得ることができ、基材の表面粗さRaを7nm超、8nm以下として300A級の酸化物超電導線材を得ることができ、基材の表面粗さRaを8nm超、8.6nm以下として200A級の酸化物超電導線材を得ることができ、基材の表面粗さRaを8.6nm超、以上9nm以下として100A級の酸化物超電導線材を得ることができる。   Further, as one specific example, a 400A-class oxide superconducting wire can be obtained by setting the surface roughness Ra of the substrate to 2 nm or more and 7 nm or less, and the surface roughness Ra of the substrate is set to more than 7 nm or less than 8 nm. A 300A-class oxide superconducting wire can be obtained, and a 200A-class oxide superconducting wire can be obtained by setting the surface roughness Ra of the substrate to more than 8 nm and not more than 8.6 nm. An oxide superconducting wire of 100A class can be obtained when the thickness is more than 8.6 nm and not less than 9 nm.

本発明に係る超電導線材の一例を示す概略構成図。The schematic block diagram which shows an example of the superconducting wire which concerns on this invention. 本発明に係る超電導線材の他の例を示す概略構成図。The schematic block diagram which shows the other example of the superconducting wire which concerns on this invention. 同超電導線材を製造するための成膜装置の一例を示す概略構成図。The schematic block diagram which shows an example of the film-forming apparatus for manufacturing the superconducting wire. 同超電導線材を製造する際に使用するイオンガンの一例を示す概略構成図。The schematic block diagram which shows an example of the ion gun used when manufacturing the superconducting wire. 本発明に係る製造方法により得られる酸化物超電導層において基材表面の粗さと臨界電流値の相関関係を示す説明図。Explanatory drawing which shows the correlation of the roughness of a base-material surface, and a critical current value in the oxide superconducting layer obtained by the manufacturing method which concerns on this invention. 実施例により製造された酸化物超電導層において基材表面の粗さと臨界電流値の相関関係を示す説明図。Explanatory drawing which shows the correlation of the roughness of a base-material surface, and a critical current value in the oxide superconducting layer manufactured by the Example. 従来の方法により得られた超電導線材の一例を示す概略構成図。The schematic block diagram which shows an example of the superconducting wire obtained by the conventional method. IBAD法により成膜する場合の基材とイオンガン及びターゲットの配置関係の一例を示す構成図。The block diagram which shows an example of the arrangement | positioning relationship of the base material in the case of forming into a film by IBAD method, an ion gun, and a target.

以下、本発明に係る超電導線材の実施形態について図面に基づいて説明する。
図1と図2は、本発明に係る超電導線材の一例を模式的に示す概略斜視図である。
図1に示す超電導線材Aは、テープ状の基材10Aの上に、拡散防止層11、ベッド層12、中間層15、キャップ層16、酸化物超電導層17及び安定化層18をこの順に積層し構成され、図2に示す超電導線材Bはテープ状の基材10Bの上に、拡散防止層11、ベッド層12、中間層15、キャップ層16、酸化物超電導層17及び安定化層18をこの順に積層し構成されている。この実施形態の超電導線材Aと超電導線材Bにおいて異なる点は、超電導線材Aが超電導線材Bよりも高い臨界電流値Ic(または臨界電流密度Jc)とされている点であり、超電導線材Aに適用されている基材10Aの表面粗さRaが超電導線材Bに適用されている基材10Bの表面粗さRaよりも小さい点にある。基材10Aと基材10Bの表面粗さRaの具体例については後に詳述する。
Hereinafter, embodiments of a superconducting wire according to the present invention will be described with reference to the drawings.
1 and 2 are schematic perspective views schematically showing an example of a superconducting wire according to the present invention.
The superconducting wire A shown in FIG. 1 has a diffusion prevention layer 11, a bed layer 12, an intermediate layer 15, a cap layer 16, an oxide superconducting layer 17 and a stabilization layer 18 laminated in this order on a tape-like substrate 10A. The superconducting wire B shown in FIG. 2 has a diffusion preventing layer 11, a bed layer 12, an intermediate layer 15, a cap layer 16, an oxide superconducting layer 17 and a stabilizing layer 18 on a tape-like base material 10B. They are stacked in this order. The difference between the superconducting wire A and the superconducting wire B of this embodiment is that the superconducting wire A has a higher critical current value Ic (or critical current density Jc) than the superconducting wire B, and is applied to the superconducting wire A. The surface roughness Ra of the base material 10A is smaller than the surface roughness Ra of the base material 10B applied to the superconducting wire B. Specific examples of the surface roughness Ra of the base material 10A and the base material 10B will be described in detail later.

超電導線材A、Bに適用できる基材10A、10Bは、通常の超電導線材の基材として使用することができ、高強度であれば良く、長尺のケーブルとするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。例えば、銀、白金、ステンレス鋼、銅、ハステロイ等のニッケル合金等の各種金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材11の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmの範囲とすることができる。   The base materials 10A and 10B that can be applied to the superconducting wires A and B can be used as a base material for ordinary superconducting wires, and need only have high strength, and may be in the form of a tape to make a long cable. Preferably, those made of a heat resistant metal are preferred. For example, various metal materials such as silver, platinum, stainless steel, copper, nickel alloys such as Hastelloy, or ceramics arranged on these various metal materials can be used. Among various heat resistant metals, nickel alloys are preferable. Especially, if it is a commercial item, Hastelloy (trade name made by US Haynes Co., Ltd.) is suitable. Any type can be used. What is necessary is just to adjust the thickness of the base material 11 suitably according to the objective, and it can usually be set as the range of 10-500 micrometers.

基材10Aと基材10Bが異なるのは表面粗さRaの値である。基材10Aの表面粗さRaの値は2nm以上、7nm以下の範囲のいずれかの値に形成され、基材10Bの表面粗さRaの値は7nm超、9nm以下の範囲でいずれかの値に形成されている。
また、基材10Aと基材10Bの表面粗さRaの値の選定については後に詳述する。
The difference between the base material 10A and the base material 10B is the value of the surface roughness Ra. The value of the surface roughness Ra of the substrate 10A is formed in any value in the range of 2 nm or more and 7 nm or less, and the value of the surface roughness Ra of the substrate 10B is any value in the range of more than 7 nm or less than 9 nm. Is formed.
The selection of the value of the surface roughness Ra of the base material 10A and the base material 10B will be described in detail later.

拡散防止層11は、基材11の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、その厚さは例えば10〜400nmである。
拡散防止層12の厚さが10nm未満となると、基材10の構成元素の拡散を十分に防止できなくなる虞がある。一方、拡散防止層11の厚さが400nmを超えると、拡散防止層11の内部応力が増大し、これにより、他の層を含めて全体が基材10から剥離しやすくなる虞がある。また、拡散防止層11の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すればよい。
The diffusion prevention layer 11 is formed for the purpose of preventing the diffusion of the constituent elements of the base material 11, and silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or consists GZO (Gd 2 Zr 2 O 7 ) or the like, a thickness of 10~400nm example.
When the thickness of the diffusion preventing layer 12 is less than 10 nm, there is a possibility that the diffusion of the constituent elements of the substrate 10 cannot be sufficiently prevented. On the other hand, when the thickness of the diffusion preventing layer 11 exceeds 400 nm, the internal stress of the diffusion preventing layer 11 increases, and there is a possibility that the whole including the other layers is easily peeled off from the base material 10. Further, since the crystallinity of the diffusion preventing layer 11 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.

ベッド層12は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層12は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1−x)で示されるものが例示できる。より具体的には、Er、CeO、Dy、Er、Eu、Ho、La等を例示することができる。このベッド層12は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜100nmである。 The bed layer 12 has high heat resistance and is intended to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon. Such a bed layer 12 is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and is represented by a composition formula (α 1 O 2 ) 2x2 O 3 ) (1-x). It can be illustrated. More specifically, Er 2 O 3, CeO 2 , Dy 2 O 3, Er 2 O 3, Eu 2 O 3, Ho 2 O 3, can be exemplified La 2 O 3 and the like. The bed layer 12 is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 100 nm, for example.

中間層15は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層16の結晶配向性を制御するために2軸配向する物質から選択される。中間層15の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この中間層15をIBAD法により良好な結晶配向性(例えば結晶配向度15゜以下)で成膜するならば、その上に形成するキャップ層16の結晶配向性を良好な値(例えば結晶配向度5゜前後)とすることができ、これによりキャップ層16の上に成膜する酸化物超電導層17の結晶配向性を良好なものとして優れた超電導特性を発揮できる酸化物超電導層17を得るようにすることができる。
The intermediate layer 15 may have either a single layer structure or a multilayer structure, and is selected from materials biaxially oriented in order to control the crystal orientation of the cap layer 16 laminated thereon. Specifically, preferred materials for the intermediate layer 15 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
If the intermediate layer 15 is formed with a good crystal orientation (for example, a crystal orientation of 15 ° or less) by the IBAD method, the crystal orientation of the cap layer 16 formed thereon has a good value (for example, the crystal orientation). Thus, the oxide superconducting layer 17 capable of exhibiting excellent superconducting characteristics can be obtained with the crystal orientation of the oxide superconducting layer 17 formed on the cap layer 16 being good. Can be.

中間層15の厚さは、目的に応じて適宜調整すれば良いが、通常は、5〜300nmの範囲とすることができる。
中間層15は、イオンビームアシスト蒸着法(以下、IBAD法と略記する)で積層する。このIBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層17やキャップ層16の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、先にも説明した如く蒸着時に、下地の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層15は、IBAD法における結晶配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
The thickness of the intermediate layer 15 may be appropriately adjusted according to the purpose, but can usually be in the range of 5 to 300 nm.
The intermediate layer 15 is laminated by an ion beam assisted deposition method (hereinafter abbreviated as IBAD method). The metal oxide layer formed by this IBAD method is preferable in that it has a high crystal orientation and a high effect of controlling the crystal orientation of the oxide superconducting layer 17 and the cap layer 16. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to the underlying vapor deposition surface during vapor deposition as described above. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 15 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) reduces the value of ΔΦ (FWHM: full width at half maximum), which is an index representing the degree of crystal orientation in the IBAD method. This is particularly preferable because it can be performed.

図3に示す如く中間層15を製造する場合のイオンビームアシストスパッタ装置20は、テープ状の基材などが配置される成膜領域21に面するようにターゲット22が配置され、このターゲット22に対して斜め方向に対向するようにスパッタイオンソース源23が配置されるとともに、成膜領域21の法線に対し所定の角度で(例えば45゜など)斜め方向から対向するようにアシストイオンソース源25を配置し構成される。
この例のイオンビームアシストスパッタ装置20は、真空チャンバに収容される形態で設けられる成膜装置であり、テープ状の基材27が対向配置された第1のロール28と第2のロール29とに複数回往復巻回されて成膜領域21を往復走行される構造などを例示することができる。
この実施形態において適用されるイオンソース源23、25は、容器30の内部に、引出電極31とフィラメント32とArガス等の導入管33とを備えて構成され、容器30の先端からイオンをビーム状に平行に照射できる装置である。
As shown in FIG. 3, the ion beam assisted sputtering apparatus 20 in the case of manufacturing the intermediate layer 15 has a target 22 disposed so as to face a film formation region 21 where a tape-like substrate or the like is disposed. The sputter ion source source 23 is disposed so as to face the diagonal direction with respect to the assist ion source source so as to face the normal line of the film forming region 21 at a predetermined angle (for example, 45 °) from the diagonal direction. 25 is arranged and configured.
The ion beam assisted sputtering apparatus 20 of this example is a film forming apparatus provided in a form accommodated in a vacuum chamber, and includes a first roll 28 and a second roll 29 on which a tape-like base material 27 is disposed oppositely. A structure in which the film is reciprocally wound a plurality of times and reciprocated in the film formation region 21 can be exemplified.
The ion source sources 23 and 25 applied in this embodiment are configured to include an extraction electrode 31, a filament 32, and an introduction tube 33 for Ar gas or the like inside the container 30, and emit ions from the tip of the container 30. This device can irradiate in parallel.

実施形態で用いる真空チャンバは、外部と成膜空間とを仕切る容器であり、気密性を有するとともに、内部が高真空状態とされるため耐圧性を有するものとされる。この真空チャンバには、真空チャンバ内にキャリアガス及び反応ガスを導入するガス供給手段と、真空チャンバ内のガスを排気する排気手段が接続されているが、図3ではこれら供給手段と排気手段を略し、各装置の配置関係のみを示している。
ここで用いるターゲット12とは、前述した材料の中間層15を形成する場合に見合った組成のターゲットとすることができる。
図3に示す構造のイオンビームアシストスパッタ装置20を用いることでIBAD法を実現し、目的の中間層15を成膜することができる。
The vacuum chamber used in the embodiment is a container that partitions the outside and the film formation space, has airtightness, and has pressure resistance because the inside is in a high vacuum state. The vacuum chamber is connected to a gas supply means for introducing a carrier gas and a reactive gas into the vacuum chamber, and an exhaust means for exhausting the gas in the vacuum chamber. In FIG. For brevity, only the arrangement relationship of each device is shown.
The target 12 used here can be a target having a composition suitable for forming the intermediate layer 15 of the above-described material.
By using the ion beam assisted sputtering apparatus 20 having the structure shown in FIG. 3, the IBAD method can be realized, and the target intermediate layer 15 can be formed.

キャップ層16は、前記中間層15の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記金属酸化物層からなる中間層15よりも高い面内配向度が得られる。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer 16 is formed through a process of epitaxial growth on the surface of the intermediate layer 15, and then grain growth (overgrowth) in the lateral direction (plane direction), and crystal grains are selectively grown in the in-plane direction. The ones made are preferred. Such a cap layer has a higher in-plane orientation degree than the intermediate layer 15 made of the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

このCeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが望ましい。PLD法によるCeO層の成膜条件としては、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
CeO層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲、より好ましくは100〜5000nmの範囲とすることができる。
The CeO 2 layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is desirable to use the PLD method from the viewpoint of obtaining a high film formation rate. The film formation conditions for the CeO 2 layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
The film thickness of the CeO 2 layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so that it can be in the range of 50 to 5000 nm, more preferably in the range of 100 to 5000 nm.

酸化物超電導層17は公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層17として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示することができる。
酸化物超電導層17は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることが好ましい。
The oxide superconducting layer 17 may be a known one, and specifically, a material made of REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd) is exemplified. it can. Examples of the oxide superconducting layer 17 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 17 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, the PLD (pulse laser deposition) method, the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method) or the CVD method may be used. preferable.

ここで前述のように、良好な配向性を有するキャップ層16上に酸化物超電導層17を形成すると、このキャップ層16上に積層される酸化物超電導層17もキャップ層16の配向性に整合するように結晶化する。よって前記キャップ層16上に形成された酸化物超電導層17は、結晶配向性に乱れが殆どなく、この酸化物超電導層17を構成する結晶粒の1つ1つにおいては、金属基材11の厚さ方向に電気を流しにくいc軸が配向し、金属基材11の長さ方向にa軸どうしあるいはb軸どうしが配向している。従って得られた酸化物超電導層17は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、金属基材2の長さ方向に電気を流し易くなり、十分に高い臨界電流密度が得られる。
酸化物超電導層17の上に積層されている安定化層18はAgなどの良電導性かつ酸化物超電導層17と接触抵抗が低くなじみの良い金属材料からなる層として形成され、必要に応じて更にCuなどの良電導性金属材料の層を複合した積層構造としても良い。なお、安定化層18をAgから構成する理由として、酸化物超電導体に酸素をドープするアニール工程においてドープした酸素を酸化物超電導体から逃避し難くする性質を有する点を挙げることができる。
Here, as described above, when the oxide superconducting layer 17 is formed on the cap layer 16 having a good orientation, the oxide superconducting layer 17 laminated on the cap layer 16 also matches the orientation of the cap layer 16. Crystallize as follows. Therefore, the oxide superconducting layer 17 formed on the cap layer 16 has almost no disorder in the crystal orientation, and in each of the crystal grains constituting the oxide superconducting layer 17, The c-axis that hardly allows electricity to flow in the thickness direction is oriented, and the a-axis or the b-axis is oriented in the length direction of the metal substrate 11. Therefore, the obtained oxide superconducting layer 17 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary, so that it is easy to flow electricity in the length direction of the metal base 2. A sufficiently high critical current density is obtained.
The stabilization layer 18 laminated on the oxide superconducting layer 17 is formed as a layer made of a metal material having good conductivity, such as Ag, and a low contact resistance with the oxide superconducting layer 17. Furthermore, it is good also as a laminated structure which combined the layer of highly conductive metal materials, such as Cu. The reason why the stabilization layer 18 is made of Ag is that it has the property of making it difficult for the doped oxygen to escape from the oxide superconductor in the annealing step of doping the oxide superconductor with oxygen.

<基材の表面粗さRaについて>
次に、基材10A、10Bの表面粗さRaの調節により酸化物超電導線材Aと酸化物超電導線材Bを作り分ける場合について説明する。
酸化物超電導線材Aは超電導コイル用ケーブル、超電導送電用ケーブルなどに適用されるもので臨界電流値が酸化物超電導線材Bよりも高い必要がある。また、酸化物超電導線材Bは超電導限流器などの用途に供され、酸化物超電導線材Aの臨界電流値よりも低い臨界電流値で良い。また、適用される超電導限流器の規格や要求に応じ、酸化物超電導線材Aの臨界電流値よりも低い臨界電流値の範囲であっても、規格に応じた数段階の臨界電流値のいずれかの値とされることが好ましい。例えば、一例として、酸化物超電導線材Aの臨界電流値が400A級である必要があるのに対し、超電導線材Bの臨界電流値は300A級、200A級、100A級のいずれかが要求される。
なおここで、級の表示は該当する規格電流値の値を最低補償できる値を示すものとする。例えば、400A級とは、400Aを基準として、±15%の範囲(340A〜460A)の臨界電流値Icを得られる超電導線材であり、300A級とは、300Aを基準として、±15%の範囲(255A〜345A)の臨界電流値Icを得られる超電導線材であり、200A級とは、200Aを基準として、±15%の範囲(170A〜230A)の臨界電流値Icを得られる超電導線材であり、100A級とは、100Aを基準として、±15%の範囲(85A〜115A)の臨界電流値Icを得られる超電導線材であることを意味する。
<About the surface roughness Ra of the substrate>
Next, a case where the oxide superconducting wire A and the oxide superconducting wire B are separately formed by adjusting the surface roughness Ra of the base materials 10A and 10B will be described.
The oxide superconducting wire A is applied to a superconducting coil cable, a superconducting power transmission cable, and the like, and needs to have a higher critical current value than the oxide superconducting wire B. The oxide superconducting wire B is used for applications such as a superconducting current limiting device, and may have a critical current value lower than the critical current value of the oxide superconducting wire A. Also, depending on the standards and requirements of the superconducting fault current limiter to be applied, even if the critical current value is lower than the critical current value of the oxide superconducting wire A, any of several stages of critical current values according to the standard can be obtained. It is preferable to be set to such a value. For example, as an example, the critical current value of the oxide superconducting wire A needs to be 400 A class, while the critical current value of the superconducting wire B is required to be 300 A class, 200 A class, or 100 A class.
Here, the display of the class indicates a value that can at least compensate the value of the corresponding standard current value. For example, the 400A class is a superconducting wire that can obtain a critical current value Ic in a range of ± 15% (340A to 460A) with 400A as a reference, and the 300A class is a range of ± 15% with 300A as a reference. (255A to 345A) is a superconducting wire that can obtain a critical current value Ic, and the 200A class is a superconducting wire that can obtain a critical current value Ic in a range of ± 15% (170A to 230A) with reference to 200A. , 100A class means a superconducting wire that can obtain a critical current value Ic in a range of ± 15% (85A to 115A) with 100A as a reference.

酸化物超電導線材A、Bにおいて、図1、図2に示す積層構造を採用すると、基材10A、10Bの表面粗さRaの大小に対応して、酸化物超電導線材A、Bが示す臨界電流値が一定の割合で変動する。本実施形態では、この変動割合が一定である現象を利用し、400A級、300A級、200A級、100A級に区分けして酸化物超電導線材を作り分けることとする。
そのためには、基材の表面粗さRaのみを2nm〜10nmの間で変更して作り分けた酸化物超電導線材を試作し、これらの試作された酸化物超電導線材から得られる臨界電流値を計測し、その計測結果から、表面粗さRaの値との相関関係を把握し、その関係に応じて400A級、300A級、200A級、100A級の超電導線材を作り分けることにする。例えば、表面粗さを2nm〜9nmの範囲内で特定値に定めた基材を複数種類用意する。これらの基材を利用して以下のように酸化物超電導線材を試作する。
In the oxide superconducting wires A and B, when the laminated structure shown in FIGS. 1 and 2 is adopted, the critical currents indicated by the oxide superconducting wires A and B correspond to the surface roughness Ra of the base materials 10A and 10B. The value fluctuates at a constant rate. In the present embodiment, the oxide superconducting wire is made by dividing into 400A class, 300A class, 200A class, and 100A class using the phenomenon that the fluctuation ratio is constant.
For that purpose, we made prototype oxide superconducting wires made by changing only the surface roughness Ra of the substrate between 2 nm and 10 nm, and measured the critical current value obtained from these prototype oxide superconducting wires. Then, from the measurement result, the correlation with the value of the surface roughness Ra is grasped, and 400A class, 300A class, 200A class, and 100A class superconducting wires are made according to the relationship. For example, a plurality of types of base materials whose surface roughness is set to a specific value within a range of 2 nm to 9 nm are prepared. An oxide superconducting wire is prototyped using these substrates as follows.

基材の表面粗さRaを制御する方法としては、基材表面を研磨加工により研磨する際、アルミナ(Al)粒子の粒径として平均粒径3μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを9nmとすることができ、アルミナ(Al)粒子の粒径として平均粒径2.5μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを8.6nmとすることができ、アルミナ(Al)粒子の粒径として平均粒径2.0μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを7.9nmとすることができ、アルミナ(Al)粒子の粒径として平均粒径1.5μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを7.4nmとすることができ、アルミナ(Al)粒子の粒径として平均粒径1μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを7nmとすることができる。
また、基材表面を研磨加工により研磨する際、ダイヤモンド砥粒の粒径として平均粒径2μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを6.5nmとすることができ、ダイヤモンド砥粒の粒径として平均粒径1.5μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを4.9nmとすることができ、ダイヤモンド砥粒の粒径として平均粒径1μmの研磨粒子を用いて研磨することにより、基材の表面粗さRaを3.4nmとすることができ、ダイヤモンド砥粒の平均粒径を0.5μmとすることにより基材の表面粗さを2nmとすることができる。
As a method for controlling the surface roughness Ra of the substrate, when the substrate surface is polished by polishing, polishing is performed using abrasive particles having an average particle diameter of 3 μm as the particle diameter of alumina (Al 2 O 3 ) particles. The surface roughness Ra of the substrate can be set to 9 nm, and the surface of the substrate is polished by using abrasive particles having an average particle size of 2.5 μm as the particle size of alumina (Al 2 O 3 ) particles. The roughness Ra can be 8.6 nm, and the surface roughness Ra of the base material is reduced by polishing with abrasive particles having an average particle diameter of 2.0 μm as the particle diameter of alumina (Al 2 O 3 ) particles. The surface roughness Ra of the substrate can be 7.4 nm by polishing with abrasive particles having an average particle diameter of 1.5 μm as the particle diameter of alumina (Al 2 O 3 ) particles. it is possible to, alumina (Al 2 O ) By polishing with abrasive particles having an average particle diameter of 1μm as size of the particles, the surface roughness Ra of the base material can be 7 nm.
In addition, when the surface of the substrate is polished by polishing, the surface roughness Ra of the substrate is set to 6.5 nm by polishing using abrasive particles having an average particle diameter of 2 μm as the particle diameter of the diamond abrasive grains. The surface roughness Ra of the substrate can be set to 4.9 nm by polishing with abrasive particles having an average particle size of 1.5 μm as the particle size of the diamond abrasive particles. By polishing with abrasive particles having an average particle diameter of 1 μm, the surface roughness Ra of the substrate can be 3.4 nm, and by setting the average particle diameter of the diamond abrasive grains to 0.5 μm, The surface roughness can be 2 nm.

なお、基材の表面粗さRa以外の条件は全ての超電導線材で同一として試作試験する。即ち、Ni合金(商品名ハステロイ)の基材を用いてその基材の表面粗さRaを変更する以外は、形成する拡散防止層11、ベッド層12、中間層15、キャップ層16、酸化物超電導層17及び安定化層18を試作する超電導線材どうしにおいて同一条件として試作する。
例えば、試作用の超電導線材を製造する場合、上述の各表面粗さRaとした複数の基材上に形成する拡散防止層11としてイオンビームスパッタ法により厚さ150nmのAl層を形成し、ベッド層12としてイオンビームスパッタ法により厚さ30nmのY層を形成し、中間層15としてIBAD法により厚さ10nmのMgO層を形成し、パルスレーザ蒸着法により厚さ500nmのCeO層を形成し、パルスレーザ蒸着法により厚さ1μmのGdBaCu7−x層を形成し、安定化層として厚さ10μmのAg層を形成し、酸素アニールを500℃で10時間行い、炉冷した後、酸化物超電導線材を取り出す方法とする。
In addition, conditions other than the surface roughness Ra of the base material are prototyped and tested for all the superconducting wires. That is, the diffusion preventing layer 11, the bed layer 12, the intermediate layer 15, the cap layer 16, and the oxide are formed except that the surface roughness Ra of the substrate is changed using a Ni alloy (trade name Hastelloy) substrate. The superconducting wire 17 for making the superconducting layer 17 and the stabilizing layer 18 is made as a trial under the same conditions.
For example, when a prototype superconducting wire is manufactured, an Al 2 O 3 layer having a thickness of 150 nm is formed by ion beam sputtering as the diffusion prevention layer 11 formed on the plurality of substrates having the above-described surface roughness Ra. Then, a Y 2 O 3 layer having a thickness of 30 nm is formed as the bed layer 12 by an ion beam sputtering method, a MgO layer having a thickness of 10 nm is formed as the intermediate layer 15 by an IBAD method, and a 500 nm thickness is formed by a pulse laser deposition method. A CeO 2 layer is formed, a Gd 2 Ba 2 Cu 3 O 7-x layer having a thickness of 1 μm is formed by a pulse laser deposition method, an Ag layer having a thickness of 10 μm is formed as a stabilization layer, and oxygen annealing is performed at 500 ° C. For 10 hours, after furnace cooling, the oxide superconducting wire is taken out.

次に、これら複数の試作超電導線材を液体窒素に浸漬して超電導特性を測定する。
そして、横軸に表面粗さRaの値、縦軸にJc値の測定結果をプロットした図5に示す相関図を得る。この相関図の関係を得ることにより、図5から相関関係を読み取り、基材の表面粗さRaの値を選定すると、400A級、300A級、200A級、100A級のいずれの酸化物超電導線材が得られるのか判明するので、必要な特性に応じて基材の表面粗さRaのみを調整することで、その後の各層の生成は同一材料同一厚さの条件でもって目的の臨界電流値の酸化物超電導線材を得られる。
なお、図5に示すように基材表面粗さRaが2nm以上7nm未満の範囲では臨界電流値が400A級を確保でき、その後、表面粗さRaの値が7nm〜9nmの範囲で増加する毎に臨界電流値が徐々に比例的に減少して300A級、200A級、100A級の酸化物超電導線材が得られることは、本実施形態の酸化物超電導線材において、IBAD法を用いて形成した2軸配向層としての薄い中間層15を備えていて、この中間層15が基材表面の表面粗さRaの影響を受けるため、この影響に応じて最終的に得られる酸化物超電導線材の臨界電流値に影響するためである。この事情から、IBAD法に基づく2軸配向の薄い中間層15を有していない他の積層構造の酸化物超電導線材では得られない作用効果である。
図5に示す如くIBAD法により形成した中間層15を備え、基材の表面粗さを制御した超電導線材Aに、Bにあっては、表面粗さRa2〜7nmの範囲に臨界電流値Ic(あるいは臨界電流密度Jc)の上限値が存在し、この上限値を示す表面粗さRa2〜7nmの範囲の最大値(7nm近傍)が存在し、ここから表面粗さRaが増加するにつれて臨界電流値Ic(あるいは臨界電流密度Jc)が比例的に減少する領域(表面粗さRa7〜9nmの範囲)が存在する。
Next, the superconducting characteristics are measured by immersing the plurality of prototype superconducting wires in liquid nitrogen.
Then, a correlation diagram shown in FIG. 5 is obtained in which the horizontal axis represents the value of the surface roughness Ra and the vertical axis represents the measurement result of the Jc value. When the correlation is read from FIG. 5 and the value of the surface roughness Ra of the substrate is selected by obtaining the relationship of this correlation diagram, any oxide superconducting wire of 400A class, 300A class, 200A class, or 100A class is obtained. Since it can be determined that it can be obtained, by adjusting only the surface roughness Ra of the substrate according to the required characteristics, the subsequent generation of each layer is performed under the conditions of the same material and the same thickness, and the oxide having the target critical current value Superconducting wire can be obtained.
As shown in FIG. 5, when the substrate surface roughness Ra is in the range of 2 nm or more and less than 7 nm, the critical current value can be secured to 400 A class, and thereafter the surface roughness Ra value increases in the range of 7 nm to 9 nm. The critical current value gradually decreases proportionally to obtain 300A-class, 200A-class, and 100A-class oxide superconducting wire. This is because the oxide superconducting wire of this embodiment is formed using the IBAD method. Since the thin intermediate layer 15 is provided as an axial alignment layer, and the intermediate layer 15 is affected by the surface roughness Ra of the substrate surface, the critical current of the oxide superconducting wire finally obtained according to this influence This is because it affects the value. From this situation, this is an operational effect that cannot be obtained with an oxide superconducting wire having another laminated structure that does not have the biaxially oriented thin intermediate layer 15 based on the IBAD method.
As shown in FIG. 5, the superconducting wire A having the intermediate layer 15 formed by the IBAD method and controlling the surface roughness of the substrate has a critical current value Ic (in the range of surface roughness Ra of 2 to 7 nm in B. Alternatively, there is an upper limit value of the critical current density Jc), and there is a maximum value (near 7 nm) in the range of the surface roughness Ra 2 to 7 nm indicating the upper limit value, and the critical current value increases as the surface roughness Ra increases from here. There is a region where Ic (or critical current density Jc) decreases proportionally (range of surface roughness Ra of 7 to 9 nm).

例えば、IBAD法の中間層を適用していない他の構造の超電導線材の場合は、基材の表面粗さRaに超電導線材の臨界電流値が単純に比例関係を示すか否かは不明であり、臨界電流値Ic(あるいは臨界電流密度Jc)が比例的に減少するようになる変曲点が存在する否か不明である。
IBAD法による中間層15であるならば、基材の表面粗さRaに敏感に反応し、基材の表面粗さRaのみを変更して他の層は全て同等条件で製造するならば、表面粗さRaの値に連動して確実に400A級、300A級、200A級、100A級のいずれかの酸化物超電導線材を得ることができる。
例えば、基材10Aの表面粗さRaを4nmの範囲として酸化物超電導線材Aを製造し、基材10Bの表面粗さRaを8.5nmとして酸化物超電導線材Bを製造するならば、400A級の酸化物超電導線材Aと200A級の酸化物超電導線材Bを確実に製造することができる。また、基材10Bの表面粗さRaを7.5nmとして酸化物超電導線材Bを製造するならば、300A級の酸化物超電導線材Bを製造することができ、基材10Bの表面粗さRaを8.5nmとして酸化物超電導線材Bを製造するならば、200A級の酸化物超電導線材Bを製造することができ、基材10Bの表面粗さRaを9nmとして酸化物超電導線材Bを製造するならば、100A級の酸化物超電導線材Bを製造することができる。
For example, in the case of a superconducting wire having another structure to which the intermediate layer of the IBAD method is not applied, it is unclear whether the critical current value of the superconducting wire simply has a proportional relationship with the surface roughness Ra of the base material. It is unclear whether there is an inflection point at which the critical current value Ic (or critical current density Jc) decreases proportionally.
If it is the intermediate layer 15 by the IBAD method, it reacts sensitively to the surface roughness Ra of the substrate, and only the surface roughness Ra of the substrate is changed, and all the other layers are manufactured under the same conditions. An oxide superconducting wire of any of 400A class, 300A class, 200A class, and 100A class can be reliably obtained in conjunction with the value of roughness Ra.
For example, if the oxide superconducting wire A is manufactured with the surface roughness Ra of the substrate 10A in the range of 4 nm, and the oxide superconducting wire B is manufactured with the surface roughness Ra of the substrate 10B of 8.5 nm, the 400A class The oxide superconducting wire A and the 200A-class oxide superconducting wire B can be reliably produced. Further, if the oxide superconducting wire B is manufactured by setting the surface roughness Ra of the base material 10B to 7.5 nm, the 300A-class oxide superconducting wire B can be manufactured, and the surface roughness Ra of the base material 10B can be reduced. If the oxide superconducting wire B is manufactured at 8.5 nm, a 200A-class oxide superconducting wire B can be manufactured. If the surface roughness Ra of the base material 10B is 9 nm, the oxide superconducting wire B is manufactured. For example, a 100A-class oxide superconducting wire B can be manufactured.

本実施形態において得られた酸化物超電導線材Aは例えば高臨界電流値が要求される超電導コイル用導体あるいは送電用超電導導体などに利用されるとともに、酸化物超電導線材Bは超電導限流器用超電導導体などのように酸化物超電導線材Aよりも低い臨界電流値で適用可能な用途に適用される。
従来では臨界電流値が低い酸化物超電導線材を製造する場合、酸化物超電導層の膜厚を薄くする方法が採用されていたが、これでは薄い超電導層となって長尺の超電導線材の場合に長さ方向で均一な超電導特性を得られないおそれがあったが、本実施形態の如く基材の表面粗さRaを調整するのみで同一厚さの酸化物超電導層を備えていても臨界電流値の異なる酸化物超電導線材を作り分けることができるので、規格や要求に合わせた臨界電流値の抑制された酸化物超電導線材を確実かつ容易に製造することができる効果がある。
The oxide superconducting wire A obtained in the present embodiment is used, for example, as a superconducting coil conductor or a power transmitting superconducting conductor that requires a high critical current value, and the oxide superconducting wire B is a superconducting conductor for a superconducting current limiter. It is applied to applications that can be applied at a critical current value lower than that of the oxide superconducting wire A.
Conventionally, when manufacturing an oxide superconducting wire with a low critical current value, a method of reducing the thickness of the oxide superconducting layer has been adopted, but in this case, a thin superconducting layer becomes a long superconducting wire. Although there was a possibility that uniform superconducting characteristics could not be obtained in the length direction, the critical current was maintained even if the oxide superconducting layer having the same thickness was provided by adjusting the surface roughness Ra of the substrate as in this embodiment. Since oxide superconducting wires having different values can be made separately, there is an effect that an oxide superconducting wire whose critical current value is suppressed according to the standard and requirements can be reliably and easily manufactured.

以上、本発明に係る超電導線材の実施形態について説明したが、実施形態において、超電導線材を構成する各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。   As mentioned above, although embodiment of the superconducting wire which concerns on this invention was described, in the embodiment, each part which comprises a superconducting wire is an example, Comprising: It can change suitably in the range which does not deviate from the range of this invention.

以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
幅10mm、長さ30mのテープ状のハステロイ276(米国ヘインズ社商品名)基材を複数用意し、これら基材の表面粗さRaを9nm、8.6nm、7.9nm、7.4nm、7nm、6.5nm、4.9nm、3.4nm、2nmに研磨した。表面粗さRaを9nmに研磨するにはアルミナの平均粒径3μmの砥粒を用い、8.6nmに研磨するにはアルミナの平均粒径2.5μmの砥粒を用い、7.9nmに研磨するにはアルミナの平均粒径2.0μmの砥粒を用い、7.4nmに研磨するにはアルミナの平均粒径1.5μmの砥粒を用い、7nmに研磨するにはアルミナの平均粒径1μmの砥粒を用い、6.5nmに研磨するには平均粒径2μmのダイヤモンド砥粒を用い、4.9nmに研磨するには平均粒径1.5μmのダイヤモンド砥粒を用い、3.4nmに研磨するには平均粒径1μmのダイヤモンド砥粒を用い、2nmに研磨するには平均粒径0.5μmのダイヤモンド砥粒を用いた。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
A plurality of tape-shaped Hastelloy 276 (trade name of US Haynes Co., Ltd.) having a width of 10 mm and a length of 30 m are prepared, and the surface roughness Ra of these substrates is 9 nm, 8.6 nm, 7.9 nm, 7.4 nm, 7 nm. , 6.5 nm, 4.9 nm, 3.4 nm, and 2 nm. To polish the surface roughness Ra to 9 nm, use abrasive grains having an average particle diameter of 3 μm alumina. To polish to 8.6 nm, use abrasive grains having an average grain diameter of alumina of 2.5 μm to polish to 7.9 nm. To grind to 7.4 nm, use abrasive grains with an average particle diameter of alumina of 1.5 μm to polish to 7.4 nm, and to grind to 7 nm, average grain diameter of alumina Using 1 μm abrasive grains, diamond abrasive grains having an average particle diameter of 2 μm are used for polishing to 6.5 nm, and diamond abrasive grains having an average particle diameter of 1.5 μm are used for polishing to 4.9 nm. The diamond abrasive grains having an average particle diameter of 1 μm were used for polishing, and the diamond abrasive grains having an average particle diameter of 0.5 μm were used for polishing to 2 nm.

各表面粗さRaの基材を用いてこれらの基材上に以下の層を積層し、酸素アニールを施して酸化物超電導線材を得た。
基材上にイオンビームスパッタ法により厚さ150nmのAlの拡散防止層を形成し、イオンビームスパッタ法により厚さ30nmのYのベッド層を形成し、IBAD法により厚さ10nmのMgOの中間層を形成し、パルスレーザ蒸着法により厚さ500nmのCeOのキャップ層を形成し、パルスレーザ蒸着法により厚さ1μmのGdBaCu7−xなる組成の酸化物超電導層を形成し、厚さ10μmのAgの安定化層を形成し、酸素アニールを500℃で10時間行い、炉冷した後、酸化物超電導線材を得た。
The following layers were laminated on these substrates using the substrates having the surface roughness Ra, and oxygen annealing was performed to obtain oxide superconducting wires.
A 150 nm thick Al 2 O 3 diffusion prevention layer is formed on the substrate by ion beam sputtering, a 30 nm thick Y 2 O 3 bed layer is formed by ion beam sputtering, and the thickness is measured by IBAD. An intermediate layer of 10 nm MgO is formed, a cap layer of CeO 2 having a thickness of 500 nm is formed by pulse laser deposition, and a composition of Gd 2 Ba 2 Cu 3 O 7-x having a thickness of 1 μm is formed by pulse laser deposition. An oxide superconducting layer was formed, an Ag stabilizing layer having a thickness of 10 μm was formed, oxygen annealing was performed at 500 ° C. for 10 hours, and furnace cooling was performed to obtain an oxide superconducting wire.

各酸化物超電導線材について、液体窒素により冷却し、Ic測定を行った。両端の電圧が1μV/cmとなった時の電流値をIcとした。その結果を図6に示す。
図6に示す結果から、図5に示す相関関係と同等の相関関係を得ることができ、図6に示す結果から、臨界電流値400A級の酸化物超電導線材を得るためには基材の表面粗さRaを2nm以上、7nm以下の範囲とすると実現可能であり、臨界電流値300A級の酸化物超電導線材を得るためには基材の表面粗さRaを7nm超、8nm以下の範囲とすると実現可能であり、臨界電流値200A級の酸化物超電導線材を得るためには基材の表面粗さRaを8nm超、8.6nm以下の範囲とすると実現可能であり、臨界電流値100A級の酸化物超電導線材を得るためには基材の表面粗さRaを8.6nm超、9nm以下の範囲とすると実現可能であることが分かる。
Each oxide superconducting wire was cooled with liquid nitrogen and subjected to Ic measurement. The current value when the voltage at both ends became 1 μV / cm 2 was defined as Ic. The result is shown in FIG.
From the results shown in FIG. 6, a correlation equivalent to the correlation shown in FIG. 5 can be obtained. From the results shown in FIG. 6, in order to obtain an oxide superconducting wire having a critical current value of 400 A, the surface of the substrate It can be realized when the roughness Ra is in the range of 2 nm or more and 7 nm or less, and in order to obtain an oxide superconducting wire having a critical current value of 300 A, the surface roughness Ra of the substrate is in the range of more than 7 nm and 8 nm or less. In order to obtain an oxide superconducting wire having a critical current value of 200 A class, it is feasible if the surface roughness Ra of the base material is in the range of more than 8 nm and 8.6 nm or less. It can be seen that the oxide superconducting wire can be obtained by setting the surface roughness Ra of the substrate to a range of more than 8.6 nm and not more than 9 nm.

本発明は、電力供給用超電導導体、超電導コイルなどに適用される超電導線材と超電導限流器などに適用される臨界電流値を抑制した酸化物超電導線材を作り分けすることができる技術として利用することができる。   INDUSTRIAL APPLICABILITY The present invention is used as a technique capable of separately making a superconducting wire applied to a superconducting conductor for power supply, a superconducting coil, and the like, and an oxide superconducting wire that suppresses a critical current value applied to a superconducting fault current limiter. be able to.

A、B…超電導線材、10A、10B…基材、11…拡散防止層、12…ベッド層、15…中間層、16…キャップ層、17…酸化物超電導層、18…安定化層。   A, B ... superconducting wire, 10A, 10B ... base material, 11 ... diffusion preventing layer, 12 ... bed layer, 15 ... intermediate layer, 16 ... cap layer, 17 ... oxide superconducting layer, 18 ... stabilization layer.

Claims (5)

基材上に、イオンビームアシスト蒸着法により結晶配向性が整えられてなる中間層と、該中間層の結晶配向性の影響を受けて結晶配向性が整えられたキャップ層と、該キャップ層の結晶配向性の影響を受けて結晶配向性が整えられた酸化物超電導層とが少なくとも設けられてなる超電導線材であって、酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けるに際し、
臨界電流値が異なるいずれの超電導線材を製造する場合であっても、酸化物超電導層は同一厚さに形成するとともに、
基材表面の表面粗さRaの値に応じて同一厚さの酸化物超電導層において得られる臨界電流値が上限値を示す表面粗さRaの値の内、最大値が存在し、この最大値よりも大きな表面粗さRaの範囲であって、この範囲の表面粗さRaの値に応じて先の臨界電流値の上限値よりも低い臨界電流値を示す酸化物超電導層が得られる範囲が存在し、この低い臨界電流値を示す範囲において、表面粗さRaの値が大きくなる程、臨界電流値が比例して低下する関係を利用し、臨界電流値が比例関係を示す範囲において基材の表面粗さRaを選定仕分けることにより、酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けることを特徴とする酸化物超電導線材の製造方法。
On the base material, an intermediate layer in which the crystal orientation is adjusted by an ion beam assisted deposition method, a cap layer in which the crystal orientation is adjusted under the influence of the crystal orientation of the intermediate layer, and the cap layer A superconducting wire comprising at least an oxide superconducting layer whose crystal orientation is arranged under the influence of crystal orientation, and producing a plurality of superconducting wires having different critical current values exhibited by the oxide superconducting layer. When dividing,
Even when producing any superconducting wire with different critical current values, the oxide superconducting layer is formed to the same thickness,
There is a maximum value among the values of the surface roughness Ra where the critical current value obtained in the oxide superconducting layer having the same thickness according to the value of the surface roughness Ra of the substrate surface has an upper limit value. And a range in which an oxide superconducting layer having a critical current value lower than the upper limit value of the previous critical current value according to the value of the surface roughness Ra in this range is obtained. In the range where the low critical current value is present and the surface roughness Ra is increased, the critical current value is proportionally decreased. In the range where the critical current value is proportional, the base material is used. A method for producing an oxide superconducting wire, wherein a plurality of superconducting wires having different critical current values indicated by the oxide superconducting layer are produced by selecting and sorting the surface roughness Ra.
基材上に、ベッド層を介して中間層を形成することを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 1, wherein an intermediate layer is formed on the base material via a bed layer. 基材上に、拡散防止層とベッド層を介して中間層を形成することを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 1, wherein an intermediate layer is formed on the base material via a diffusion preventing layer and a bed layer. 基材表面の表面粗さRaの値に応じて同一厚さの酸化物超電導層において得られる臨界電流値が上限値を示す範囲が2nm以上7nm未満であることを特徴とする請求項1または2に記載の酸化物超電導線材の製造方法。   The range in which the critical current value obtained in the oxide superconducting layer having the same thickness according to the value of the surface roughness Ra of the substrate surface shows an upper limit value is 2 nm or more and less than 7 nm. The manufacturing method of the oxide superconducting wire described in 1. Ni合金の基材とAlの拡散防止層とYのベッド層とMgOの中間層とRE−123系酸化物超電導層(REBaCu7−X:REは希土類元素)として超電導線材を製造するに際し、基材表面の表面粗さRaを2nm以上、7nm以下の範囲として臨界電流値Ic:400A級の超電導線材を製造する工程と、基材表面の表面粗さRaを7nm超、8nm以下の範囲として臨界電流値Ic:300A級の超電導線材を製造する工程と、基材表面の表面粗さRaを8nm超、8.6nm以下の範囲として臨界電流値Ic:200A級の超電導線材を製造する工程と、基材表面の表面粗さRaを8.6nm超、9.0nm以下の範囲として臨界電流値Ic:100A級の超電導線材を製造する工程の内、複数を組み合わせて酸化物超電導層が示す臨界電流値が異なる複数の超電導線材を製造し分けることを特徴とする請求項1〜4のいずれかに記載の酸化物超電導線材の製造方法。 Ni alloy base material, Al 2 O 3 diffusion prevention layer, Y 2 O 3 bed layer, MgO intermediate layer, RE-123 oxide superconducting layer (REBa 2 Cu 3 O 7-X : RE is a rare earth element) ), A process for producing a superconducting wire having a critical current value Ic: 400A class with a surface roughness Ra of the surface of the base material in the range of 2 nm to 7 nm, and a surface roughness Ra of the base material surface. Of a superconducting wire having a critical current value Ic: 300A class with a surface roughness Ra of more than 8 nm and 8.6 nm or less, and a critical current value Ic: 200A. A plurality of steps of manufacturing a superconducting wire of a grade A and a superconducting wire of a critical current value Ic: 100A class with a surface roughness Ra of the substrate surface in the range of more than 8.6 nm and 9.0 nm or less. Combination Method of manufacturing an oxide superconducting wire according to claim 1, the critical current value is equal to or separating manufactures different superconducting wires shown by the oxide superconducting layer Te.
JP2010121749A 2010-05-27 2010-05-27 Method for manufacturing superconducting wire rod Pending JP2011249162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121749A JP2011249162A (en) 2010-05-27 2010-05-27 Method for manufacturing superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121749A JP2011249162A (en) 2010-05-27 2010-05-27 Method for manufacturing superconducting wire rod

Publications (1)

Publication Number Publication Date
JP2011249162A true JP2011249162A (en) 2011-12-08

Family

ID=45414178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121749A Pending JP2011249162A (en) 2010-05-27 2010-05-27 Method for manufacturing superconducting wire rod

Country Status (1)

Country Link
JP (1) JP2011249162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032362A (en) * 2013-07-31 2015-02-16 公益財団法人国際超電導産業技術研究センター Method of producing oxide superconductive wire rod
CN118360572A (en) * 2023-07-27 2024-07-19 上海超导科技股份有限公司 Cooling system for ion beam assisted deposition coating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
JP2007179827A (en) * 2005-12-27 2007-07-12 Fujikura Ltd Method of manufacturing metal base material for oxide superconductive conductoor and method of manufacturing oxide superconductive conductor
JP2008036724A (en) * 2006-08-01 2008-02-21 Nihon Micro Coating Co Ltd Method for grinding tape base material for oxide superconductor, oxide superconductor, and base material for oxide superconductor
JP2010086796A (en) * 2008-09-30 2010-04-15 Fujikura Ltd Polycrystalline thin film and method of manufacturing the same, and oxide superconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
JP2007179827A (en) * 2005-12-27 2007-07-12 Fujikura Ltd Method of manufacturing metal base material for oxide superconductive conductoor and method of manufacturing oxide superconductive conductor
JP2008036724A (en) * 2006-08-01 2008-02-21 Nihon Micro Coating Co Ltd Method for grinding tape base material for oxide superconductor, oxide superconductor, and base material for oxide superconductor
JP2010086796A (en) * 2008-09-30 2010-04-15 Fujikura Ltd Polycrystalline thin film and method of manufacturing the same, and oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032362A (en) * 2013-07-31 2015-02-16 公益財団法人国際超電導産業技術研究センター Method of producing oxide superconductive wire rod
CN118360572A (en) * 2023-07-27 2024-07-19 上海超导科技股份有限公司 Cooling system for ion beam assisted deposition coating device

Similar Documents

Publication Publication Date Title
Goyal et al. The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors
RU2414769C2 (en) Superconducting wire
US9564258B2 (en) Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
KR101119957B1 (en) Biaxially-textured film deposition for superconductor coated tapes
US6383989B2 (en) Architecture for high critical current superconducting tapes
US8142881B2 (en) Mesh-type stabilizer for filamentary coated superconductors
US6730410B1 (en) Surface control alloy substrates and methods of manufacture therefor
JP4713012B2 (en) Tape-shaped oxide superconductor
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US6673387B1 (en) Control of oxide layer reaction rates
JP5799081B2 (en) Thick oxide film with single layer coating
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP2004071359A (en) Oxide superconductor wire material
JP4398582B2 (en) Oxide superconducting wire and method for producing the same
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
US6998028B1 (en) Methods for forming superconducting conductors
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP2011249162A (en) Method for manufacturing superconducting wire rod
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
KR20110081112A (en) Coated conductor with improved grain orientation
KR100721901B1 (en) Superconducting article and its manufacturing method
JP2012212571A (en) Oxide superconductor
JP2012018829A (en) Superconductive wire material and manufacturing method thereof
JP2013026188A (en) Base material for oxide superconducting conductor and method for producing the same, and oxide superconducting conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603