JP2008311222A - Superconductive wire and its manufacturing method - Google Patents

Superconductive wire and its manufacturing method Download PDF

Info

Publication number
JP2008311222A
JP2008311222A JP2008125217A JP2008125217A JP2008311222A JP 2008311222 A JP2008311222 A JP 2008311222A JP 2008125217 A JP2008125217 A JP 2008125217A JP 2008125217 A JP2008125217 A JP 2008125217A JP 2008311222 A JP2008311222 A JP 2008311222A
Authority
JP
Japan
Prior art keywords
polishing
superconducting
groove
substrate
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008125217A
Other languages
Japanese (ja)
Inventor
Kazutomi Miyoshi
一富 三好
Hisaki Sakamoto
久樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center filed Critical Furukawa Electric Co Ltd
Priority to JP2008125217A priority Critical patent/JP2008311222A/en
Publication of JP2008311222A publication Critical patent/JP2008311222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive wire showing excellent critical current characteristics with surface characteristics of a base body improved, and its manufacturing method. <P>SOLUTION: The superconductive wire equipped with a base body 1 containing a metal substrate, and a superconductive layer formed on the base body, is manufactured by applying polish on a metal plate with a high rolling treatment process of rolling reduction with 90% or more and an oriented heat treatment process applied, and removing a protrusion part A formed on a grain boundary, as well as flattening a substance structuring the protrusion part deposited in a groove part B, and then forming a superconductive layer on a base body surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導線およびその製造方法に係り、特に、結晶粒界の突起部を除去するとともに溝部を埋めることにより、優れた超電導特性を示す超電導線およびその製造方法に関する。   The present invention relates to a superconducting wire and a method for manufacturing the same, and more particularly to a superconducting wire exhibiting excellent superconducting characteristics by removing protrusions at a grain boundary and filling a groove, and a method for manufacturing the same.

金属基板を用いた高温超電導線は、一般に、2軸配向多結晶金属基板上に中間層として、下層側からCeO/YSZ/CeOの3層構造を形成し、この中間層の上にさらに超電導層を成膜したものが知られている(例えば、特許文献1、2参照)。超電導層は、酸化物高温超電導体であって、その組成はRE−Ba−Cu−O(RE:希土類金属)である。超電導層の上には安定化金属として銀などの金属を成膜する。 A high-temperature superconducting wire using a metal substrate generally forms a three-layer structure of CeO 2 / YSZ / CeO 2 from the lower layer side as an intermediate layer on a biaxially oriented polycrystalline metal substrate. A film having a superconducting layer formed thereon is known (for example, see Patent Documents 1 and 2). The superconducting layer is an oxide high temperature superconductor, and its composition is RE-Ba-Cu-O (RE: rare earth metal). On the superconducting layer, a metal such as silver is deposited as a stabilizing metal.

しかしながら、配向金属基板を用いた超電導線では、その超電導層の臨界電流密度は、その超電導体の単結晶から得られる本来の臨界電流密度よりも低く、このため応用機器の開発や製作において、小型化や低コスト化の観点から問題となっていた。   However, in a superconducting wire using an oriented metal substrate, the critical current density of the superconducting layer is lower than the original critical current density obtained from the single crystal of the superconductor. It has become a problem from the viewpoint of cost reduction and cost reduction.

一般に、酸化物高温超電導線の製造においては、配向金属基板を強圧延加工してテープ状とし、それに配向熱処理を施して、表面層の結晶粒を2軸配向させるが、この2軸配向した基板上に、中間層をエピタキシャル成長させ、さらにその中間層の上に超電導層をエピタキシャル成長させたとき、超電導層の臨界電流特性は、超電導層内の各結晶粒の2軸配向性(超電導体結晶軸のa軸とb軸が面内にあり、そのa軸とb軸の方向が各結晶粒で揃っている状態)が高い(結晶方位が揃っている)ときに高い特性を示し、逆に一部の結晶粒の方位が大きくずれて(大傾角粒界が存在する状態)配向性が低いと、臨界電流特性が低いことが知られている。   In general, in the manufacture of high-temperature oxide superconducting wires, an oriented metal substrate is strongly rolled into a tape shape and subjected to orientation heat treatment to biaxially orient the crystal grains of the surface layer. This biaxially oriented substrate When the intermediate layer is epitaxially grown and the superconducting layer is further epitaxially grown on the intermediate layer, the critical current characteristic of the superconducting layer is determined by the biaxial orientation of each crystal grain in the superconducting layer (superconducting crystal axis a-axis and b-axis are in-plane, and the directions of the a-axis and b-axis are aligned for each crystal grain). It is known that the critical current characteristic is low when the orientation of crystal grains is greatly shifted (state where a large tilt grain boundary exists) and the orientation is low.

従来の配向金属基板の配向度は、X線極点図の半値幅で見るとΔφが7°〜10°程度であって、これに中間層を成膜すると中間層表面のΔφは6°程度になり、さらに超電導層を成膜するとΔφが6°程度とマクロスコピック的に揃っているものの、その表面層の一部に大傾角粒界が超電導層に生成されてしまい、そのため、臨界電流特性が本来の特性よりも低い結果となっていた。   The degree of orientation of a conventional oriented metal substrate is Δφ of about 7 ° to 10 ° when viewed from the half-value width of the X-ray pole figure. When an intermediate layer is formed on this, Δφ on the surface of the intermediate layer is about 6 °. Furthermore, when a superconducting layer is formed, Δφ is macroscopically aligned to about 6 °, but a large-angle grain boundary is generated in the superconducting layer in a part of the surface layer. The result was lower than the original characteristics.

このような超電導層の低い臨界電流特性を改善するには、その結晶配向性を高める必要があり、そのためには大元(テンプレート)である配向金属基板の表面特性を、超電導層の配向性にとって最適なものにすることが必要となる。   In order to improve the low critical current characteristics of such a superconducting layer, it is necessary to increase its crystal orientation. To that end, the surface characteristics of the oriented metal substrate, which is the original (template), are used for the superconducting layer orientation. It needs to be optimized.

なお、超電導線材の表面に関する先行公知文献として、特許文献3〜9があるが、これらは超電導材の研磨方法や表面粗度について述べられているに過ぎない。
特願2005−100635公報 特願平11−3620号公報 特願2005−56754公報 特願2005−5089公報 特願平11−329118号公報 特願平10−269865号公報 特願平06−251649号公報 特願平06−114812号公報 特願平05−250931号公報
In addition, there exist patent documents 3-9 as prior well-known literature regarding the surface of a superconducting wire, These are only described about the grinding | polishing method and surface roughness of a superconducting material.
Japanese Patent Application No. 2005-100635 Japanese Patent Application No. 11-3620 Japanese Patent Application No. 2005-56754 Japanese Patent Application No. 2005-5089 Japanese Patent Application No. 11-329118 Japanese Patent Application No. 10-269865 Japanese Patent Application No. 06-251649 Japanese Patent Application No. 06-114812 Japanese Patent Application No. 05-250931

本発明は、以上のような事情の下になされ、基体の表面特性を改善して、優れた臨界電流特性を示す超電導線およびその製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and an object thereof is to provide a superconducting wire exhibiting excellent critical current characteristics by improving the surface characteristics of a substrate and a method for manufacturing the same.

上記課題を解決するため、本発明の第1の態様は、金属基板を含む基体と、この基体上に形成された超電導層を具備する超電導線であって、前記基体の表面は結晶粒界の溝部を有し、前記溝部が堆積物により埋められていることを特徴とする超電導線を提供する。このように基体表面の溝部が堆積物により埋められていることにより、基体表面の平坦性が向上する。   In order to solve the above problems, a first aspect of the present invention is a superconducting wire comprising a base including a metal substrate and a superconducting layer formed on the base, wherein the surface of the base is a crystal grain boundary. There is provided a superconducting wire having a groove portion, wherein the groove portion is filled with a deposit. Thus, the flatness of the substrate surface is improved by filling the grooves on the substrate surface with deposits.

このような本発明の第1の態様に係る超電導線において、前記基体の表面は、{100}<001>に完全配向または結晶軸の<001>に対するずれ角が25°以下に配向しているものとすることができる。このように、電流を流す方向(金属基板の圧延方向)の結晶配向を揃えることにより、その上に形成される超電導層に電流が流れやすくなる。また、前記基体表面に中間層を形成することができる。ここで、中間層を形成することにより、金属基板から超電導層への金属原子の拡散を防止することができる。更に、前記基体の表面は、Ni、Fe、Cu、及びAgからなる群から選ばれた金属の1種またはそれを含む合金からなるものとすることができる。これらの金属は立方晶のため、結晶軸が配向しやすい。   In such a superconducting wire according to the first aspect of the present invention, the surface of the base body is fully oriented in {100} <001> or the deviation angle of the crystal axis from <001> is 25 ° or less. Can be. Thus, by aligning the crystal orientation in the direction in which current flows (the rolling direction of the metal substrate), the current easily flows in the superconducting layer formed thereon. An intermediate layer can be formed on the surface of the substrate. Here, by forming the intermediate layer, diffusion of metal atoms from the metal substrate to the superconducting layer can be prevented. Further, the surface of the substrate may be made of one kind of metal selected from the group consisting of Ni, Fe, Cu, and Ag or an alloy containing the same. Since these metals are cubic crystals, the crystal axes are easily oriented.

なお、前記基体表面の前記溝部を含まない結晶粒内の表面粗さRa1と、前記溝部を含む結晶粒界部分の表面粗さRa2の差分が、50nm以下であることが望ましい。このように結晶粒内と結晶粒界の差を小さくすることで、基体表面全体の粗さが均一化される。   The difference between the surface roughness Ra1 in the crystal grains not including the groove on the surface of the substrate and the surface roughness Ra2 of the crystal grain boundary including the groove is preferably 50 nm or less. Thus, by reducing the difference between the crystal grains and the crystal grain boundaries, the roughness of the entire substrate surface is made uniform.

本発明の第2の態様は、金属板に90%以上の圧下率の強圧延加工を施す圧延加工工程と、前記圧延加工が施された前記金属板を還元性雰囲気中で配向熱処理を施す配向熱処理工程と、前記配向熱処理が施された、結晶粒界に突起部と溝部を表面に有する前記金属板に研磨を施し、前記突起部を除去するとともに、除去された突起部を構成する物質を前記金属板の表面の溝部内に堆積させる研磨・堆積工程と、前記研磨・堆積工程が施された前記金属板上に超電導層を形成する超電導層形成工程とを具備することを特徴とする超電導線の製造方法を提供する。このように基体表面の溝部が堆積工程により埋められていることにより、基体表面の平坦性が向上する。   According to a second aspect of the present invention, there is provided a rolling process step for subjecting a metal plate to a strong rolling process at a rolling reduction of 90% or more, and an orientation process for subjecting the metal plate subjected to the rolling process to an orientation heat treatment in a reducing atmosphere. A heat treatment step, and polishing the metal plate having projections and grooves on the crystal grain boundaries that have been subjected to the orientation heat treatment, removing the projections, and forming a substance constituting the removed projections A superconducting process comprising: a polishing / depositing step for depositing in a groove on the surface of the metal plate; and a superconducting layer forming step for forming a superconducting layer on the metal plate subjected to the polishing / deposition step. A method of manufacturing a wire is provided. Thus, the flatness of the substrate surface is improved by filling the grooves on the substrate surface by the deposition process.

この場合、前記研磨工程は、機械研磨、化学的機械研磨、又はそれらの組み合わせによる研磨方法により行うことができる。   In this case, the polishing step can be performed by a polishing method using mechanical polishing, chemical mechanical polishing, or a combination thereof.

本発明の第3の態様は、金属板に90%以上の圧下率の強圧延加工を施す圧延加工工程と、前記圧延加工が施された前記金属板を還元性雰囲気中で配向熱処理を施す配向熱処理工程と、前記配向熱処理が施された、結晶粒界の突起部と溝部を表面に有する前記金属板に研磨を施し、前記突起部を除去する研磨工程と、めっき処理を施して前記溝部内に堆積物を堆積する堆積工程と、前記めっき処理が施された前記金属板上に超電導層を形成する超電導層形成工程とを具備することを特徴とする超電導線の製造方法を提供する。このように基体表面の溝部がめっき処理による堆積工程によって、埋められていることにより、体表面の平坦性が向上する。   According to a third aspect of the present invention, there is provided a rolling process for subjecting a metal plate to a strong rolling process at a reduction rate of 90% or more, and an orientation for subjecting the metal sheet subjected to the rolling process to an orientation heat treatment in a reducing atmosphere. A polishing process for polishing the metal plate having the grain boundary protrusions and grooves on the surface, and removing the protrusions, and performing a plating treatment in the grooves. And a superconducting layer forming step of forming a superconducting layer on the metal plate on which the plating process has been performed. As described above, the flatness of the body surface is improved by filling the grooves on the surface of the base body by the deposition process by plating.

この場合、前記研磨工程は、電解研磨、化学研磨、機械研磨、化学的機械研磨、又はそれらの組み合わせによる研磨方法により行うことができる。例えば、電解研磨、化学研磨、又はそれらの組み合わせにより研磨を行うことができ、あるいは機械研磨、化学的機械研磨、又はそれらの組み合わせにより研磨を行った後、電解研磨、化学研磨、又はそれらの組み合わせにより研磨を行うことができる。なお、機械研磨や化学的機械研磨などで除去された突起部を構成する物質を金属板の表面の溝部内に堆積させた後にめっき処理を行ってもよい。   In this case, the polishing step can be performed by a polishing method using electrolytic polishing, chemical polishing, mechanical polishing, chemical mechanical polishing, or a combination thereof. For example, polishing can be performed by electropolishing, chemical polishing, or a combination thereof, or after polishing by mechanical polishing, chemical mechanical polishing, or a combination thereof, electrolytic polishing, chemical polishing, or a combination thereof Polishing can be performed. In addition, the plating process may be performed after depositing a substance constituting the protrusion removed by mechanical polishing or chemical mechanical polishing in the groove on the surface of the metal plate.

なお、以上の超電導線の製造方法において、前記超電導層を形成する前の前記金属板表面に中間層を形成することが出来る。ここで、中間層を形成することにより、金属基板から超電導層への金属原子の拡散を防止することができる。また、前記中間層の表面を研磨することができる。このように、更に中間層の表面を研磨することにより、中間層の表面をより平坦化することができ、超電導層の超電導特性を向上させることができる。   In the above method for manufacturing a superconducting wire, an intermediate layer can be formed on the surface of the metal plate before forming the superconducting layer. Here, by forming the intermediate layer, diffusion of metal atoms from the metal substrate to the superconducting layer can be prevented. Further, the surface of the intermediate layer can be polished. Thus, by further polishing the surface of the intermediate layer, the surface of the intermediate layer can be further flattened, and the superconducting characteristics of the superconducting layer can be improved.

本発明によると、基体表面を研磨し、溝部内を堆積物で埋めることにより、基体表面の平坦性が向上し、その上に超電導層を形成することにより、超電導特性の非常に優れた超電導線を提供することができる。   According to the present invention, the surface of the substrate is polished and the inside of the groove is filled with a deposit, so that the flatness of the substrate surface is improved, and a superconducting layer is formed on the substrate, thereby forming a superconducting wire with excellent superconducting characteristics. Can be provided.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明の一実施形態に係る超電導線は、2軸配向金属基板上に超電導層を形成してなり、その超電導特性を改善するために、金属基板を含む基体の表面の結晶粒界における、いわゆる「グルーブ」と呼ばれる突起部及び溝部に着目してなされた。   A superconducting wire according to an embodiment of the present invention is formed by forming a superconducting layer on a biaxially oriented metal substrate, and in order to improve the superconducting characteristics, a so-called crystal grain boundary on the surface of the substrate including the metal substrate is called It was made paying attention to the projection part and groove part called a "groove".

本実施形態において、金属基板としては、少なくとも表面が、ニッケルまたはその合金、鉄またはその合金、銅またはその合金、銀またはその合金であるものが望ましい。ニッケルまたはその合金としては、例えばNi−3at%W、Ni−5at%W、Ni−7at%WなどのNi−W合金、Ni−Co、Ni−Fe、Ni−Mn、Ni−Cr、Ni−Vなどを挙げることができる。鉄またはその合金としては、例えばFe−Cr、Fe−Co、Fe−Mn、Fe−Cu、Fe−Snなどを挙げることができる。銅またはその合金としては、例えばCu−Cr、Cu−Mo、Cu−W、Cu−V、Cu−Snなどを挙げることができる。また、銀またはその合金としては、例えばAg−Mn、Ag−Mg、Ag−Mo、Ag−Crなどを挙げることができる。   In the present embodiment, it is desirable that at least the surface of the metal substrate is nickel or an alloy thereof, iron or an alloy thereof, copper or an alloy thereof, silver or an alloy thereof. Examples of nickel or an alloy thereof include Ni-W alloys such as Ni-3 at% W, Ni-5 at% W, Ni-7 at% W, Ni-Co, Ni-Fe, Ni-Mn, Ni-Cr, Ni- V etc. can be mentioned. Examples of iron or an alloy thereof include Fe—Cr, Fe—Co, Fe—Mn, Fe—Cu, and Fe—Sn. Examples of copper or an alloy thereof include Cu—Cr, Cu—Mo, Cu—W, Cu—V, and Cu—Sn. Examples of silver or an alloy thereof include Ag-Mn, Ag-Mg, Ag-Mo, and Ag-Cr.

これら金属基板の表面金属は、結晶系が面心立方結晶系に属し、強圧延加工を行い易いという利点がある。このような強圧延加工と熱処理により、表面が2軸配向され、超電導層の形成のための下地として好適に用いることができる。   The surface metal of these metal substrates has the advantage that the crystal system belongs to the face-centered cubic crystal system and is easy to perform strong rolling. By such a strong rolling process and heat treatment, the surface is biaxially oriented and can be suitably used as a base for forming a superconducting layer.

また、金属基板の強度や耐熱性を高めることや、金属基板の磁性を低くするなどのために、基板の芯となる部分に表面層と異なる金属を用いることもできる。ここで表面層と異なる芯材として、Ni−W合金、Ni−Fe合金、Ni−Mn合金、Ni−Co合金、Ni−Mg合金、Ni−V合金、Ni−Coなどの耐熱性と高強度と低磁性の特性を有する金属であればその種類を問わない。これら芯材としての金属は、表面金属よりも高い強度を有しているので、複合則から、例えば同じ厚さの基板に対して、組み合わせない基板よりも強度を向上させることができる。   Further, in order to increase the strength and heat resistance of the metal substrate, or to lower the magnetism of the metal substrate, a metal different from the surface layer can be used for the core portion of the substrate. Here, as a core material different from the surface layer, Ni-W alloy, Ni-Fe alloy, Ni-Mn alloy, Ni-Co alloy, Ni-Mg alloy, Ni-V alloy, Ni-Co, etc. heat resistance and high strength Any metal having low magnetic properties can be used. Since the metal as the core material has higher strength than the surface metal, it is possible to improve the strength, for example, with respect to substrates having the same thickness as compared with a substrate not combined with a substrate having the same thickness.

以上のような金属基板は、表面金属を2軸配向させるために、90%以上の加工率で強圧延加工し、ついで還元性雰囲気で500℃以上で熱処理する。ここで、特に望ましい配向熱処理は、アルゴンガスに水素を3%から7%程度混合した還元ガスを熱処理炉に流し、熱処理温度を900℃から1200℃の間とし、基板のその熱処理温度にさらされている時間は、配向率と配向度と表面結晶粒径の大きさの兼ね合いから選ぶが、少なくとも10分以上とすることである。   In order to make the surface metal biaxially oriented, the metal substrate as described above is subjected to strong rolling at a processing rate of 90% or more, and then heat-treated at 500 ° C. or more in a reducing atmosphere. Here, a particularly desirable orientation heat treatment is performed by flowing a reducing gas in which about 3% to 7% of hydrogen is mixed with argon gas into a heat treatment furnace, and the heat treatment temperature is between 900 ° C. and 1200 ° C., and the substrate is exposed to that heat treatment temperature. The time is selected from the balance between the orientation rate, the degree of orientation, and the size of the surface crystal grain size, but is at least 10 minutes.

なお、90%以上の加工率の「加工率」とは、圧延における「圧下率」のことであり、圧延前と圧延後の厚みの差を圧延前の厚みで除して100を乗じた値である。   The “working rate” at a working rate of 90% or more is a “rolling rate” in rolling, and is a value obtained by dividing the difference in thickness before and after rolling by the thickness before rolling and multiplying by 100. It is.

このような強圧延加工及び配向熱処理により、金属基板の表面を{100}<001>に2軸配向あるいはほぼ2軸配向させることができる。このように、電流を流す方向(金属基板の圧延方向)の結晶配向を揃えることにより、その上に形成される超電導層に電流が流れやすくなり、臨界電流を向上させることができる。   By such a strong rolling process and orientation heat treatment, the surface of the metal substrate can be biaxially or almost biaxially oriented in {100} <001>. Thus, by aligning the crystal orientation in the direction in which the current flows (the rolling direction of the metal substrate), the current can easily flow through the superconducting layer formed thereon, and the critical current can be improved.

しかし、このように強圧延加工及び配向熱処理の2つの処理が施されると、金属基板の表面には、結晶粒界において、図1(a)に示すように、いわゆる「グルーブ」と呼ばれる突起部Aと溝部Bとが発生する。溝部Bの深さは、熱処理温度高いほど及び/又は熱処理時間が長いほど、深く形成されるものと考えられる。このような「グルーブ」の存在は、金属基板表面に中間層を成膜した場合に、中間層にクラックを生じさせたり、超電導層を成膜した場合に超電導特性の低い巨大結晶粒成長を生じさせたりする。   However, when the two processes of the strong rolling process and the orientation heat treatment are performed in this manner, the so-called “groove” projections are formed on the surface of the metal substrate, as shown in FIG. A part A and a groove part B are generated. The depth of the groove B is considered to be deeper as the heat treatment temperature is higher and / or the heat treatment time is longer. The presence of such “grooves” causes cracks in the intermediate layer when the intermediate layer is formed on the surface of the metal substrate, or causes growth of giant crystal grains with low superconducting characteristics when the superconducting layer is formed. I will let you.

本実施形態では、配向熱処理の後に、金属基板表面を研磨することにより、このような問題の解消を図っている。即ち、2軸配向あるいは2軸にほぼ配向した配向金属基板1の表面に、機械研磨、化学的機械研磨、それら組み合わせた研磨などの研磨処理を施している。その結果、図1(b)に示すように、突起部Aは除去されるとともに、図1(c)に示すように、溝部Bは堆積物Cで埋められる。   In the present embodiment, such a problem is solved by polishing the surface of the metal substrate after the alignment heat treatment. That is, the surface of the oriented metal substrate 1 that is biaxially or substantially biaxially oriented is subjected to a polishing process such as mechanical polishing, chemical mechanical polishing, or a combination thereof. As a result, the protrusion A is removed as shown in FIG. 1B, and the groove B is filled with the deposit C as shown in FIG.

ここで、溝部Bは堆積物Cで実質的に埋められているとは、後述する図2の示すグルーブの溝部を含む領域3(10μm四方)の表面粗さRa2が50nm以下である場合をいう。   Here, that the groove B is substantially filled with the deposit C means that the surface roughness Ra2 of the region 3 (10 μm square) including the groove of the groove shown in FIG. 2 to be described later is 50 nm or less. .

この場合、溝部B内を埋める堆積物は、研磨により除去された突起部Aの研磨滓であるが、研磨粒の一部を含む場合もある。いずれの堆積物も溝部B内に強固に堆積し、後の洗浄工程においても溝部B内から脱離することはない。   In this case, the deposit filling the groove portion B is a polishing rod of the protruding portion A removed by polishing, but may include a part of the abrasive grains. Any deposit is firmly deposited in the groove B and is not detached from the groove B in the subsequent cleaning process.

なお、堆積物は、ICP(Inductively Coupled Plasma(誘導結合プラズマ))分析、EDX(エネルギー分散型X線分析)、SEM(走査型電子顕微鏡)&EPMA(X線マイクロアナライザー)等により分析することが可能である。   Deposits can be analyzed by ICP (Inductively Coupled Plasma) analysis, EDX (energy dispersive X-ray analysis), SEM (scanning electron microscope) & EPMA (X-ray microanalyzer), etc. It is.

研磨方法としては、電解研磨、化学研磨、それら組み合わせた研磨を採用することも可能であるが、これらの研磨によっては、突起部Aを除去することはできるが、溝部B内を埋めることはできない。この場合には、研磨処理を施した後、めっき等の表面処理により、別途、溝部B内を埋めることが必要となる。この場合、機械研磨又は化学的機械研磨を行なった後に電解研磨や化学研磨を行い、その後、めっき等の表面処理を行うことにより、より平坦性を向上させることができる。なお、電解研磨は、処理速度が速く、また処理コストが低いという利点がある。   As a polishing method, electrolytic polishing, chemical polishing, or a combination thereof may be employed. However, the protrusion A can be removed by these polishing, but the groove B cannot be filled. . In this case, after the polishing treatment, it is necessary to fill the groove B separately by a surface treatment such as plating. In this case, the flatness can be further improved by performing electrolytic polishing or chemical polishing after performing mechanical polishing or chemical mechanical polishing, and then performing surface treatment such as plating. Electropolishing has the advantages of high processing speed and low processing cost.

ここで、研磨に関しては、機械研磨において、研磨粒はダイアモンド粒や酸化物粒、特に酸化アルミニウム、酸化セリウム、酸化クロム、酸化ジルコニウム、酸化鉄などが望ましく、またその溶液(研磨液)は水や界面活性剤や油類や有機溶剤やそれらの混合液、あるいは水に蟻酸や酢酸や硝酸などの酸、あるいは水に水酸化ナトリウムなどのアルカリを混合した溶液であればよいが、特に石けん水が望ましい。   Here, regarding mechanical polishing, in mechanical polishing, the abrasive grains are preferably diamond grains or oxide grains, particularly aluminum oxide, cerium oxide, chromium oxide, zirconium oxide, iron oxide, etc., and the solution (polishing liquid) is water or Surfactants, oils, organic solvents and mixtures thereof, or solutions in which water is mixed with an acid such as formic acid, acetic acid or nitric acid, or an alkali such as sodium hydroxide in water, are especially soapy water. desirable.

化学研磨において、研磨液は、基板表面と化学反応する化学溶液であって、例えば硝酸、硫酸、蟻酸、酢酸、塩酸、フッ酸、クロム酸、過酸化水素、シュウ酸、テトラリン酸、氷酢酸などの液体あるいはその混合溶液で、さらにその混合溶液に飽和アルコールやスルホン酸類などの促進剤を混合した溶液が望ましい。   In chemical polishing, the polishing liquid is a chemical solution that chemically reacts with the substrate surface, such as nitric acid, sulfuric acid, formic acid, acetic acid, hydrochloric acid, hydrofluoric acid, chromic acid, hydrogen peroxide, oxalic acid, tetraphosphoric acid, glacial acetic acid, etc. Or a mixed solution thereof, and a solution obtained by further mixing an accelerator such as saturated alcohol or sulfonic acid with the mixed solution.

化学的機械研磨においては、研磨粒は上記機械研磨の粒でよく、そこに化学研磨の溶液を含む研磨溶液(スラリー)を用いる。   In chemical mechanical polishing, the abrasive grains may be the above-mentioned mechanically polished grains, and a polishing solution (slurry) containing a chemical polishing solution is used there.

電解研磨では、基板を電解液に浸して、基板を陽極として通電して電解反応で基板表面を研磨する。この電解液は、酸やアルカリでよく、特に硝酸、リン酸、クロム酸、過酸化水素、水酸化カリウム、シアン化カリウムなどが望ましい。   In electrolytic polishing, a substrate is immersed in an electrolytic solution, and the substrate surface is polished by an electrolytic reaction by energizing the substrate as an anode. This electrolytic solution may be an acid or an alkali, and nitric acid, phosphoric acid, chromic acid, hydrogen peroxide, potassium hydroxide, potassium cyanide and the like are particularly desirable.

以上のような研磨処理を行うことにより(場合によっては引き続きめっき処理を行うことにより)、平坦性が大幅に向上し、その上に成膜される中間層や超電導層の結晶粒が平坦化されて、配向度が改善され、超電導線の特性を著しく高めることができる。   By performing the above-described polishing treatment (in some cases, subsequent plating treatment), the flatness is greatly improved, and the crystal grains of the intermediate layer and the superconducting layer formed thereon are flattened. Thus, the degree of orientation is improved, and the characteristics of the superconducting wire can be remarkably enhanced.

基板表面の平坦性は、図2に示すように、結晶内におけるグルーブを含まない領域4(10μm四方)の表面粗さRa1と、長さ10μm以上のグルーブの溝部が埋められた領域3(10μm四方)の表面粗さRa2との差を好ましくは50nm以下、より好ましくは10nm以下とすることにより、中間層や超電導層の成膜による粒界に起因したクラックの発生の防止や、中間層や超電導層の結晶粒径のさらなる微細化が可能になり、超電導特性が著しく向上する。   As shown in FIG. 2, the flatness of the substrate surface is determined by the surface roughness Ra1 of the region 4 (10 μm square) not including the groove in the crystal and the region 3 (10 μm) in which the groove of the groove having a length of 10 μm or more is filled. The difference from the surface roughness Ra2 of the four sides) is preferably 50 nm or less, more preferably 10 nm or less, thereby preventing the occurrence of cracks due to grain boundaries due to the formation of the intermediate layer or the superconducting layer, The crystal grain size of the superconducting layer can be further refined, and the superconducting characteristics are remarkably improved.

特に、中間層において発生するクラック(下地配向金属基板の結晶粒界の近傍に多く見られるクラック)を解消することができるので、超電導線として曲げなどの条件下でも、超電導特性を良好に保持することが可能になる。   In particular, cracks (cracks often found in the vicinity of crystal grain boundaries of the underlying oriented metal substrate) that occur in the intermediate layer can be eliminated, so that superconducting properties are maintained well even under conditions such as bending as a superconducting wire. It becomes possible.

なお、表面粗さRaとは、JIS B 0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。   The surface roughness Ra is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameter defined in JIS B 0601-2001.

また、基板表面の溝部が埋められている状態は、SEM又はレーザー顕微鏡により確認することができる。   The state where the groove on the substrate surface is filled can be confirmed by SEM or a laser microscope.

金属基板上には、中間層を形成することができる。中間層を形成することにより、金属基板から超電導層への金属原子の拡散を防止することができる。なお、中間層に対しても研磨を施すことが望ましい。金属基板表面の研磨処理により平坦性の良好な中間層を形成することが可能であるが、更に中間層の表面を研磨することにより、中間層の表面をより平坦化することができ、超電導層の超電導特性を向上させることができる。   An intermediate layer can be formed on the metal substrate. By forming the intermediate layer, diffusion of metal atoms from the metal substrate to the superconducting layer can be prevented. It is desirable to polish the intermediate layer as well. It is possible to form an intermediate layer with good flatness by polishing the surface of the metal substrate, but the surface of the intermediate layer can be further flattened by further polishing the surface of the intermediate layer. The superconducting properties of can be improved.

中間層としては、酸化物、特に金属基板の表面を構成する金属の酸化物を用いることができる。   As the intermediate layer, an oxide, particularly an oxide of a metal constituting the surface of the metal substrate can be used.

実施例
以下に本発明の実施例を示し、本発明について具体的に説明する。
EXAMPLES Examples of the present invention will be shown below, and the present invention will be specifically described.

実施例1
図3は、本発明の一実施例に係る配向金属基板を用いた超電導線の断面構成図である。図3において、厚さ100μmの配向金属基板11上に、合計の厚さ300μmの3層の中間層12が形成され、この中間層12上に厚さ1μmの超電導層13及び厚さ約5μmの銀層14が形成されて、超電導線が構成されている。
Example 1
FIG. 3 is a cross-sectional configuration diagram of a superconducting wire using an oriented metal substrate according to an embodiment of the present invention. In FIG. 3, three intermediate layers 12 having a total thickness of 300 μm are formed on an oriented metal substrate 11 having a thickness of 100 μm. A superconducting layer 13 having a thickness of 1 μm and a thickness of about 5 μm are formed on the intermediate layer 12. A silver layer 14 is formed to constitute a superconducting wire.

図3に示す超電導線は、以下のようにして製造される。まず、市販されている外径25mm×長さ1000mmのNi−5at%W製の丸棒を、圧延加工率95%となるように厚さ0.1mmに圧延してテープ状とし、さらに幅が10mmになるようにスリットした。   The superconducting wire shown in FIG. 3 is manufactured as follows. First, a commercially available round bar made of Ni-5 at% W having an outer diameter of 25 mm and a length of 1000 mm is rolled to a thickness of 0.1 mm so as to achieve a rolling rate of 95%, and the width is further increased. Slit to 10 mm.

このテープ線を長さ200mについて、リールトゥリール式の連続配向熱処理装置(炉の長さ2m)に取り付けて、搬送速さ3m/時間にて、1100℃の配向熱処理を施した。このとき、炉内はアルゴンガスに水素3%の混合ガス雰囲気として還元熱処理することで、2軸配向させた。   The tape wire was attached to a reel-to-reel type continuous alignment heat treatment apparatus (furnace length 2 m) for a length of 200 m, and subjected to alignment heat treatment at 1100 ° C. at a conveyance speed of 3 m / hour. At this time, the inside of the furnace was biaxially oriented by reducing heat treatment in an argon gas mixed gas atmosphere of 3% hydrogen.

このように配向熱処理されたテープ線の表面を調べたところ、X線ディフラクションメーターで(100)結晶軸の配向率P=99%となり、X線極点図では2軸結晶配向度Δφ=6.7°であった。   When the surface of the tape wire subjected to orientation heat treatment as described above was examined, the orientation rate of the (100) crystal axis P was 99% with an X-ray diffractometer, and the biaxial crystal orientation degree Δφ = 6. It was 7 °.

ここで結晶粒の配向率とは、X線回折装置でいわゆるθ−2θ測定での回折強度比として、(111)軸と(200)軸の強度をそれぞれP1とP2とした時に、下記式で表されるPをいう。   Here, the orientation rate of crystal grains is the following formula when the intensity of the (111) axis and the (200) axis is P1 and P2, respectively, as a diffraction intensity ratio in so-called θ-2θ measurement with an X-ray diffractometer. P represented.

P=〔P2/(P1+P2)〕×100(%)
このPが90%程度を超える場合が高配向と呼ばれている。
P = [P2 / (P1 + P2)] × 100 (%)
The case where P exceeds about 90% is called high orientation.

さらに、レーザー顕微鏡の観察から結晶粒界に、いわゆるグルーブと呼ばれる突起部が見られ、原子間力顕微鏡(AFM)による、そのグルーブを含む10μm角の表面粗さRa2は270nmであり、グルーブを含まない部分(結晶粒内部)の10μm角の表面粗度Ra1は28nmであった。   Further, a projection called a groove is seen at the crystal grain boundary from the observation with a laser microscope, and the surface roughness Ra2 of 10 μm square including the groove is 270 nm by the atomic force microscope (AFM), and the groove is included. The 10 μm-square surface roughness Ra1 of the portion not present (inside the crystal grains) was 28 nm.

このようにして得た配向金属基板11に、図4に示す連続式機械研磨装置を用いて表面を機械研磨して、結晶粒界のグルーブを研磨した。   The surface of the oriented metal substrate 11 thus obtained was mechanically polished using a continuous mechanical polishing apparatus shown in FIG.

即ち、供給ドラム21からの配向金属基板11は、研磨室22内において研磨される。研磨室22内には、支持台23及び研磨ヘッド24が配置され、スラリー供給器25から研磨スラリーが研磨ヘッド24に供給される。配向金属基板11は支持台23と研磨ヘッド24との間を走行しつつ連続的に研磨される。   That is, the oriented metal substrate 11 from the supply drum 21 is polished in the polishing chamber 22. A support base 23 and a polishing head 24 are disposed in the polishing chamber 22, and polishing slurry is supplied to the polishing head 24 from a slurry supplier 25. The oriented metal substrate 11 is continuously polished while running between the support base 23 and the polishing head 24.

研磨された後の配向金属基板11は、研磨室22を出て洗浄室26に入り、洗浄機27により洗浄された後、乾燥室28においてエアーナイフ29により乾燥される。乾燥された配向金属基板11は、巻き取りドラム30に巻き取られる。   The polished alignment metal substrate 11 exits the polishing chamber 22 and enters the cleaning chamber 26, is cleaned by the cleaning machine 27, and is then dried by the air knife 29 in the drying chamber 28. The dried oriented metal substrate 11 is wound around a winding drum 30.

研磨では、粒度が異なる2種類の研磨材を用意した。研磨材は酸化アルミニウムの微粒子(粒径約1μm)と水を主成分とするスラリー(研磨粒混合液)と、同じく酸化アルミニウムの微粒子(粒径約0.02μm)と水を主成分とするスラリーであった。   For polishing, two types of abrasives with different particle sizes were prepared. The abrasive is a slurry mainly composed of aluminum oxide fine particles (particle size of about 1 μm) and water (a mixture of abrasive particles), and similarly a slurry mainly composed of aluminum oxide fine particles (particle size of about 0.02 μm) and water. Met.

図4に示す連続式機械研磨装置は、テープ線をリールトゥリール式に連続搬送可能となっており、搬送時には送り出しドラム21と巻き取りドラム30が連携して張力を調整することができる機構を備えている。この装置の配向金属基板11のパスライン上に、円盤状の研磨ヘッド24が2機セットされてあり、この研磨ヘッド24を配向金属基板11に押しつけながら回転させてスラリーを流し込み、配向金属基板11を搬送することで連続研磨を行った。研磨ヘッド24は、ダイアモンド微粒子を表面に取り付けた円盤であり、連続研磨では、前段に粒径の大きい方を、後段に粒径の細かい方のスラリーを適用した。   The continuous mechanical polishing apparatus shown in FIG. 4 is capable of continuously transporting tape wires in a reel-to-reel manner, and has a mechanism capable of adjusting the tension in cooperation between the feed drum 21 and the take-up drum 30 during transport. I have. Two disk-shaped polishing heads 24 are set on the pass line of the oriented metal substrate 11 of this apparatus, and the polishing head 24 is rotated while being pressed against the oriented metal substrate 11 to flow the slurry. Was carried out to carry out continuous polishing. The polishing head 24 is a disk with diamond fine particles attached to its surface. In continuous polishing, a slurry having a larger particle diameter is applied to the front stage and a slurry having a smaller particle diameter is applied to the rear stage.

以上のように研磨された配向金属基板11の一部を取り出して、その表面粗さをAFM装置で、また配向度をX線極点図で測定した。なお、配向金属基板11の表面をSEMで観察したところ、溝部が埋められているのが確認された。これは、研磨により削り取られた突起部の研磨滓が溝部内に強固に堆積したものである。   A portion of the alignment metal substrate 11 polished as described above was taken out, and its surface roughness was measured with an AFM apparatus, and the degree of alignment was measured with an X-ray pole figure. In addition, when the surface of the alignment metal substrate 11 was observed by SEM, it was confirmed that the groove part was filled. This is because the polishing ridges of the protrusions scraped off by polishing are firmly accumulated in the grooves.

このように研磨処理が施された配向金属基板11の表面に、連続式エレクトロンビーム蒸着装置を用いて、蒸着部位の配向基板温度を約800℃に加熱してCeOからなるシード層を成膜レート1nm/s、真空度約1×10−2Paの条件で、約100nmの厚さに成膜した。また、このシード層の上に、スパッター法にて700℃で真空度約5×10−3Paの条件で、YSZ(イットリア安定化ジルコニア)膜を100nmの厚さに成膜し、更にこの上にCeO膜をスパッター法にて約100nmの厚さに成膜し、3層構造の中間層を形成した。 A seed layer made of CeO 2 is formed on the surface of the alignment metal substrate 11 thus polished by heating the alignment substrate temperature at the evaporation site to about 800 ° C. using a continuous electron beam evaporation apparatus. The film was formed to a thickness of about 100 nm under the conditions of a rate of 1 nm / s and a degree of vacuum of about 1 × 10 −2 Pa. On this seed layer, a YSZ (yttria stabilized zirconia) film having a thickness of 100 nm is formed by sputtering at 700 ° C. under a vacuum degree of about 5 × 10 −3 Pa. A CeO 2 film was formed to a thickness of about 100 nm by a sputtering method to form an intermediate layer having a three-layer structure.

次に、基板を850℃に加熱し、中間層の上に、YBCO超電導体を、有機金属気相成長法(MOCVD法)によって、約1μmの厚さに形成した。   Next, the substrate was heated to 850 ° C., and a YBCO superconductor was formed on the intermediate layer to a thickness of about 1 μm by metal organic vapor phase epitaxy (MOCVD method).

そして、YBCO超電導層の上面に銀を高周波スパッター装置を用いて約1μmの厚さに蒸着して電極部を形成した。   Then, silver was deposited on the upper surface of the YBCO superconducting layer to a thickness of about 1 μm using a high frequency sputtering apparatus to form an electrode part.

このようにして得た超電導線の銀面に、4端子法で臨界電流を測定するために、電流リード線と電圧リード線をハンダ接続し、液体窒素に浸漬した状態で通電して、臨界電流を計測した。   In order to measure the critical current by the four-terminal method on the silver surface of the superconducting wire thus obtained, the current lead wire and the voltage lead wire are soldered and energized while immersed in liquid nitrogen. Was measured.

基板表面の結晶粒界のグルーブの溝による超電導特性の影響を調べるために、上記の研磨工程での研磨ヘッド圧力と粒子の粒径を同一とし、搬送速さを変えて、グルーブの溝部の埋まり方の水準が複数となるように実験した。このグルーブの溝部の埋まり方を定量化するために、図2におけるグルーブを含まない領域4のRa1とグルーブを含む領域3のRa2の差が約130nm、約100nm、約80nm、約60nm、約50nm、約20nm、約10nm、約5nmになるようにして、上記と同様の工程で超電導線を製作した。その結果を下記表1に示す。

Figure 2008311222
In order to investigate the influence of superconducting properties due to groove grooves in the crystal grain boundaries on the substrate surface, the polishing head pressure and the particle diameter in the above polishing process are the same, the conveying speed is changed, and the groove groove portion is filled. Experiments were made so that there were multiple levels. In order to quantify how the groove of the groove is filled, the difference between Ra1 in the region 4 not including the groove and Ra2 in the region 3 including the groove in FIG. 2 is about 130 nm, about 100 nm, about 80 nm, about 60 nm, about 50 nm. A superconducting wire was manufactured in the same process as described above so that the thickness was about 20 nm, about 10 nm, and about 5 nm. The results are shown in Table 1 below.
Figure 2008311222

上記表1から、各配向金属基板のΔφは、ほぼ6°台前半に揃っていることから、ほとんど同じ結晶粒方位を有していることが分かる。これに中間層と超電導層を成膜した超電導特性は、表面粗度が微粒になるに従い臨界電流特性も向上するが、本実施例の結晶粒界のグルーブを含まない領域4のRa1とグルーブを含む領域3のRa2の差が50nm以下で、臨界電流が実用的に求められている200A以上となり、望ましくは10nm以下で、臨界電流が400A以上となり、臨界電流特性が飛躍的に向上することが分かる。   From Table 1 above, it can be seen that Δφ of each oriented metal substrate is substantially in the first half of the 6 ° range, and thus has almost the same crystal grain orientation. On the other hand, the superconducting characteristics in which the intermediate layer and the superconducting layer are formed improve the critical current characteristics as the surface roughness becomes finer. However, the Ra1 and the groove in the region 4 not including the grain boundary groove of the present example are reduced. When the difference in Ra2 of the region 3 is 50 nm or less, the critical current is 200 A or more, which is practically required, and preferably 10 nm or less, the critical current is 400 A or more, and the critical current characteristics are drastically improved. I understand.

実施例2
本実施例では、クラッド式の配向金属基板を用いた例を示す。ここでクラッド式とは、中心部と表面部に異なる金属を配置した構造を指すもので、図5に示すとおり、2層(a)や3層(b)や4層(c)の層数があるが、ここでは特に図5(b)に示す3層のサンドイッチ構造の場合について述べる。この3層構造では、中心部の強度が表面部よりも高いことが望ましい。
Example 2
In this embodiment, an example using a clad-type oriented metal substrate is shown. Here, the clad type refers to a structure in which different metals are arranged at the center portion and the surface portion, and as shown in FIG. 5, the number of layers of two layers (a), three layers (b), and four layers (c). Here, the case of the three-layer sandwich structure shown in FIG. In this three-layer structure, it is desirable that the strength of the central portion is higher than that of the surface portion.

まず、外径40mm/内径25mm、長さ50mmの市販のNi−3at%W管内に、外径24.8mm、長さ40mmのNi−7at%Wの丸棒を挿入し、Ni−3at%W管の両端に、管のふたとしてNi−3at%W製の円盤(外径40mm)を電子ビーム溶接して、ビレットを組み立てた。   First, a Ni-7 at% W round bar having an outer diameter of 24.8 mm and a length of 40 mm is inserted into a commercially available Ni-3 at% W pipe having an outer diameter of 40 mm / inner diameter of 25 mm and a length of 50 mm. A billet was assembled by electron beam welding a disk made of Ni-3 at% W (outer diameter: 40 mm) as a tube lid to both ends of the tube.

このビレットを押し出し機で押し出し、ロール圧延とスリット加工によって、厚さ0.1mm、幅10mm、長さ50mのテープに仕上げた。このとき、表面のNi合金層の厚さは、約10μmであった。これにより、加工率は90%以上を確保した。   The billet was extruded with an extruder and finished into a tape having a thickness of 0.1 mm, a width of 10 mm, and a length of 50 m by roll rolling and slitting. At this time, the thickness of the Ni alloy layer on the surface was about 10 μm. As a result, a processing rate of 90% or more was secured.

このテープ線をパンケーキ状に巻いたコイルを箱形の熱処理炉内に設置し、アルゴンガスと水素の混合ガス雰囲気で1100℃×3時間保持し、配向熱処理(バッチ式配向熱処理)した。その結果、最外層のNi−3at%W層が2軸配向した。   A coil in which the tape wire was wound in a pancake shape was placed in a box-shaped heat treatment furnace, and kept at 1100 ° C. for 3 hours in a mixed gas atmosphere of argon gas and hydrogen to perform orientation heat treatment (batch orientation heat treatment). As a result, the outermost Ni-3 at% W layer was biaxially oriented.

Ni−3at%W層を調べたところ、P=99%となり、X線極点図では2軸結晶配向度Δφ=6.9°で、原子間力顕微鏡(AFM)による結晶粒界のグルーブを含む10μm角の表面粗さRa2は、約270nmであって、結晶粒内のグルーブを含まない10μm角の表面粗度Ra1は32nmであった。   When the Ni-3 at% W layer was examined, it was found that P = 99%, and in the X-ray pole figure, the biaxial crystal orientation degree Δφ = 6.9 ° and including the grain boundary groove by the atomic force microscope (AFM). The 10 μm square surface roughness Ra2 was about 270 nm, and the 10 μm square surface roughness Ra1 not including the groove in the crystal grains was 32 nm.

また、引っ張り試験を室温で行ったところ、0.2%耐力は900MPaであった。従って、高配向かつ高強度の金属基板を得ることができた。   Further, when the tensile test was performed at room temperature, the 0.2% yield strength was 900 MPa. Therefore, a highly oriented and high strength metal substrate could be obtained.

この配向金属基板に図6に示す連続式電解研磨装置を用いて表面を電解研磨した。即ち、送り出しドラム31からの配向金属基板11は、絶縁されたリール32を介して電解液槽33内において電解研磨される。電解液槽33内には、マイナス電極34が配置され、このマイナス電極34と配向金属基板11との間に通電することにより電解研磨が行われる。   The surface of this oriented metal substrate was electropolished using a continuous electropolishing apparatus shown in FIG. That is, the oriented metal substrate 11 from the delivery drum 31 is electrolytically polished in the electrolytic solution tank 33 through the insulated reel 32. A negative electrode 34 is disposed in the electrolytic solution tank 33, and electropolishing is performed by energizing between the negative electrode 34 and the alignment metal substrate 11.

電解研磨された後の配向金属基板11は、電解液槽33を出て水洗・乾燥室35に入り、洗浄及び乾燥された後、巻き取りドラム36に巻き取られる。   After the electrolytic polishing, the oriented metal substrate 11 exits the electrolytic solution tank 33 and enters the water washing / drying chamber 35. After being washed and dried, the oriented metal substrate 11 is wound around the winding drum 36.

電解研磨条件を下記表2に示す。

Figure 2008311222
The electrolytic polishing conditions are shown in Table 2 below.
Figure 2008311222

以上のような電解研磨では、図1に示す突起部Aを除去することはできるが、溝部Bを埋めることはできない。そのため、溝部Bを埋めるために、表面に電解ニッケルめっきを施した。このときのめっき浴は、硫酸ニッケル、塩化ニッケル、硼酸を主成分とするいわゆるワット浴でよく、それ以外のニッケルめっき浴でも構わない。ここでは、下記表3に示すめっき浴を用意して、この浴の中に陽極に純ニッケルを電極とし、陰極に研磨した配向基板を取り付け、配向基板表面にニッケルめっきを施した。このときの通電電流は、0.3Aであり、めっき処理時間は1分間であった。

Figure 2008311222
In the electrolytic polishing as described above, the protrusion A shown in FIG. 1 can be removed, but the groove B cannot be filled. Therefore, in order to fill the groove B, the surface was subjected to electrolytic nickel plating. The plating bath at this time may be a so-called Watt bath mainly composed of nickel sulfate, nickel chloride and boric acid, or may be other nickel plating baths. Here, a plating bath shown in Table 3 below was prepared. In this bath, pure nickel was used as an electrode for the anode, a polished alignment substrate was attached to the cathode, and the surface of the alignment substrate was plated with nickel. The energization current at this time was 0.3 A, and the plating time was 1 minute.
Figure 2008311222

この配向金属基板11の表面に、連続式エレクトロンビーム蒸着装置を用いて、蒸着部位の配向基板温度を約800℃に加熱してCeOからなるシード層を成膜レート1nm/s、真空度約1×10−2Paの条件で、約100nmの厚さに成膜した。また、このシード層の上に、スパッター法にて700℃で真空度約5×10−3Paの条件で、YSZ(イットリア安定化ジルコニア)膜を100nmの厚さに成膜し、更にこの上にCeO膜をスパッター法にて約100nmの厚さに成膜し、3層構造の中間層を形成した。 A seed layer composed of CeO 2 is formed on the surface of the oriented metal substrate 11 by using a continuous electron beam deposition apparatus to heat the orientation substrate temperature of the deposition site to about 800 ° C., and the deposition rate is 1 nm / s, and the degree of vacuum is about The film was formed to a thickness of about 100 nm under the condition of 1 × 10 −2 Pa. On this seed layer, a YSZ (yttria stabilized zirconia) film having a thickness of 100 nm is formed by sputtering at 700 ° C. under a vacuum degree of about 5 × 10 −3 Pa. A CeO 2 film was formed to a thickness of about 100 nm by a sputtering method to form an intermediate layer having a three-layer structure.

次に、基板を850℃に加熱し、中間層の上に、YBCO超電導体を、有機金属気相成長法(MOCVD法)によって、約1μmの厚さに形成した。   Next, the substrate was heated to 850 ° C., and a YBCO superconductor was formed on the intermediate layer to a thickness of about 1 μm by metal organic vapor phase epitaxy (MOCVD method).

そして、YBCO超電導層の上面に銀を、高周波スパッター装置を用いて約1μmの厚さに蒸着して電極部を形成した。   Then, silver was vapor-deposited on the upper surface of the YBCO superconducting layer to a thickness of about 1 μm using a high frequency sputtering apparatus to form an electrode part.

このようにして得た超電導線の銀面に、4端子法で臨界電流を測定するために、電流リード線と電圧リード線をハンダ接続し、液体窒素に浸漬した状態で通電して、臨界電流を計測した。   In order to measure the critical current by the four-terminal method on the silver surface of the superconducting wire thus obtained, the current lead wire and the voltage lead wire are soldered and energized while immersed in liquid nitrogen. Was measured.

基板表面の結晶粒界のグルーブの溝による超電導特性の影響を調べるために、上記の研磨工程での研磨ヘッド圧力と粒子の粒径を同一とし、搬送速さを変えて、グルーブの溝部の埋まり方の水準が複数となるように実験した。このグルーブの溝部の埋まり方を定量化するために、図2におけるグルーブを含まない領域4のRa1とグルーブを含む領域3のRa2の差が約200nm、約100nm、約80nm、約60nm、約50nm、約20nm、約10nm、約5nmになるようにして、上記と同様の工程で超電導線を製作した。その結果を下記表4に示す。

Figure 2008311222
In order to investigate the influence of superconducting properties due to groove grooves in the crystal grain boundaries on the substrate surface, the polishing head pressure and the particle diameter in the above polishing process are the same, the conveying speed is changed, and the groove groove portion is filled. Experiments were made so that there were multiple levels. In order to quantify how the groove of the groove is filled, the difference between Ra1 of the region 4 not including the groove and Ra2 of the region 3 including the groove in FIG. 2 is about 200 nm, about 100 nm, about 80 nm, about 60 nm, about 50 nm. A superconducting wire was manufactured in the same process as described above so that the thickness was about 20 nm, about 10 nm, and about 5 nm. The results are shown in Table 4 below.
Figure 2008311222

上記表4から、各配向金属基板のΔφは、ほぼ6°台前半に揃っていることから、ほとんど同じ結晶粒方位を有していることが分かる。これに中間層と超電導層を成膜した超電導特性は、表面粗度が微粒になるに従い臨界電流特性も向上するが、本実施例の結晶粒界のグルーブを含まない領域4のRa1とグルーブを含む領域3のRa2の差が50nm以下で、臨界電流が実用的に求められている200A以上となり、望ましくは10nm以下で、臨界電流が400A以上となり、臨界電流特性が飛躍的に向上することが分かる。   From Table 4 above, it can be seen that Δφ of each oriented metal substrate is almost in the first half of the 6 ° range, so that it has almost the same crystal grain orientation. On the other hand, the superconducting characteristics in which the intermediate layer and the superconducting layer are formed improve the critical current characteristics as the surface roughness becomes finer. However, the Ra1 and the groove in the region 4 not including the grain boundary groove of the present example are reduced. When the difference in Ra2 of the region 3 is 50 nm or less, the critical current is 200 A or more, which is practically required, and preferably 10 nm or less, the critical current is 400 A or more, and the critical current characteristics are drastically improved. I understand.

実施例3
Ra2(溝部を含む領域の平均粗さ)を変化させたことを除いて、実施例1と同様にして、超電導線を製作し、それらの臨界電流を測定した。その結果を下記表5に示す。

Figure 2008311222
Example 3
Superconducting wires were manufactured in the same manner as in Example 1 except that Ra2 (average roughness of the region including the groove) was changed, and their critical currents were measured. The results are shown in Table 5 below.
Figure 2008311222

上記表5から、Ra2が50nm以下となると臨界電流が実用的に求められている200A以上となり、向上することがわかる。この結果から、Ra2が50nm以下で、実質的に溝部が埋められていると言うことができる。   From Table 5 above, it can be seen that when Ra2 is 50 nm or less, the critical current becomes 200 A or more, which is practically required, and is improved. From this result, it can be said that Ra2 is 50 nm or less and the groove is substantially filled.

研磨処理による本発明の原理を説明するための図である。It is a figure for demonstrating the principle of this invention by grinding | polishing process. 基板表面の平坦性を示す領域4における表面粗さRa1と領域3における表面粗さRa2の差を説明する図である。It is a figure explaining the difference of surface roughness Ra1 in the area | region 4 which shows the flatness of a substrate surface, and surface roughness Ra2 in the area | region 3. FIG. 本発明の一実施例に係る配向金属基板を用いた超電導線の断面構成図である。It is a section lineblock diagram of a superconducting wire using an orientation metal substrate concerning one example of the present invention. 連続式機械研磨装置を示す図である。It is a figure which shows a continuous mechanical polishing apparatus. クラッド式の配向金属基板を用いた例を示す断面図である。It is sectional drawing which shows the example using the clad type orientation metal substrate. 連続式電解研磨装置を示す図である。It is a figure which shows a continuous electropolishing apparatus.

符号の説明Explanation of symbols

1,11…配向金属基板、A…突起部、B…溝部、C…堆積物、2…結晶粒界、3…グルーブを含む領域、4…グルーブを含まない領域、12…中間層、13…超電導層、14…銀層、21…供給ドラム、22…研磨室、23…支持台、24…研磨ヘッド、25…スラリー供給器、26…洗浄室、27…洗浄機、28…乾燥室、2…エアーナイフ、30…巻き取りドラム、31…送り出しドラム、32…リール、33…電解液槽、34…マイナス電極、35…水洗・乾燥室、36…巻き取りドラム。   DESCRIPTION OF SYMBOLS 1,11 ... Oriented metal substrate, A ... Protrusion part, B ... Groove part, C ... Deposit, 2 ... Grain boundary, 3 ... Area including groove, 4 ... Area not containing groove, 12 ... Intermediate layer, 13 ... Superconducting layer, 14 ... silver layer, 21 ... feed drum, 22 ... polishing chamber, 23 ... support base, 24 ... polishing head, 25 ... slurry feeder, 26 ... cleaning chamber, 27 ... washing machine, 28 ... drying chamber, 2 DESCRIPTION OF SYMBOLS ... Air knife, 30 ... Winding drum, 31 ... Sending drum, 32 ... Reel, 33 ... Electrolyte tank, 34 ... Negative electrode, 35 ... Washing / drying chamber, 36 ... Winding drum.

Claims (11)

金属基板を含む基体と、この基体上に形成された超電導層を具備する超電導線であって、前記基体の表面は結晶粒界の溝部を有し、前記溝部が堆積物により埋められていることを特徴とする超電導線。   A superconducting wire comprising a base including a metal substrate and a superconducting layer formed on the base, wherein the surface of the base has a groove of a crystal grain boundary, and the groove is filled with a deposit. Superconducting wire characterized by 前記基体の表面は、{100}<001>に完全配向または結晶軸の<001>に対するずれ角が25°以下に配向していることを特徴とする請求項1に記載の超電導線。   2. The superconducting wire according to claim 1, wherein the surface of the substrate is {100} <001> fully oriented or oriented so that a deviation angle of crystal axis from <001> is 25 ° or less. 前記基体の表面に中間層を有することを特徴とする請求項1または2に記載の超電導線。   The superconducting wire according to claim 1 or 2, further comprising an intermediate layer on a surface of the substrate. 前記基体の表面は、Ni、Fe、Cu、及びAgからなる群から選ばれた金属の1種またはそれを含む合金からなることを特徴とする請求項1〜3のいずれかに記載の超電導線。   The superconducting wire according to any one of claims 1 to 3, wherein the surface of the substrate is made of one kind of metal selected from the group consisting of Ni, Fe, Cu, and Ag or an alloy containing the same. . 前記基体の表面の前記溝部を含まない結晶粒内の領域の表面粗さRa1と、前記溝部を含む結晶粒界部分の表面粗さRa2の差分が50nm以下であることを特徴とする請求項1〜4のいずれかに記載の超電導線。   The difference between the surface roughness Ra1 of the region in the crystal grains not including the groove on the surface of the substrate and the surface roughness Ra2 of the crystal grain boundary including the groove is 50 nm or less. The superconducting wire in any one of -4. 金属板に90%以上の圧下率の強圧延加工を施す圧延加工工程と、
前記圧延加工が施された前記金属板を還元性雰囲気中で配向熱処理を施す配向熱処理工程と、
前記配向熱処理が施された、結晶粒界に突起部と溝部を表面に有する前記金属板に研磨を施し、前記突起部を除去するとともに、除去された突起部を構成する物質を前記金属板の表面の溝部内に堆積させる研磨・堆積工程と、
前記研磨・堆積工程が施された前記金属板上に超電導層を形成する超電導層形成工程とを具備することを特徴とする超電導線の製造方法。
A rolling process for subjecting a metal sheet to a strong rolling process with a rolling reduction of 90% or more;
An orientation heat treatment step of subjecting the metal plate subjected to the rolling process to an orientation heat treatment in a reducing atmosphere;
The orientation heat treatment is performed, the metal plate having projections and grooves on the crystal grain boundaries is polished, the projections are removed, and a substance constituting the removed projections is removed from the metal plate. Polishing / deposition process to deposit in the groove on the surface,
And a superconducting layer forming step of forming a superconducting layer on the metal plate that has been subjected to the polishing / deposition step.
前記研磨工程が、機械研磨、化学的機械研磨、又はそれらの組み合わせによる研磨方法により行われることを特徴とする請求項6に記載の超電導線の製造方法。   The method of manufacturing a superconducting wire according to claim 6, wherein the polishing step is performed by a polishing method using mechanical polishing, chemical mechanical polishing, or a combination thereof. 金属板に90%以上の圧下率の強圧延加工を施す圧延加工工程と、
前記圧延加工が施された前記金属板を還元性雰囲気中で配向熱処理を施す配向熱処理工程と、
前記配向熱処理が施された、結晶粒界の突起部と溝部を表面に有する前記金属板に研磨を施し、前記突起部を除去する研磨工程と、
めっき処理を施して前記溝部内に堆積物を堆積する堆積工程と、
前記めっき処理が施された前記金属板上に超電導層を形成する超電導層形成工程とを具備することを特徴とする超電導線の製造方法。
A rolling process for subjecting a metal sheet to a strong rolling process with a rolling reduction of 90% or more;
An orientation heat treatment step of subjecting the metal plate subjected to the rolling process to an orientation heat treatment in a reducing atmosphere;
Polishing the metal plate having the crystal grain boundary protrusions and grooves on the surface subjected to the orientation heat treatment, and removing the protrusions;
A deposition step of performing a plating process to deposit deposits in the groove;
And a superconducting layer forming step of forming a superconducting layer on the metal plate subjected to the plating treatment.
前記研磨工程が、電解研磨、化学研磨、機械研磨、化学的機械研磨、又はそれらの組み合わせによる研磨方法により行われることを特徴とする請求項8に記載の超電導線の製造方法。   The method of manufacturing a superconducting wire according to claim 8, wherein the polishing step is performed by a polishing method using electrolytic polishing, chemical polishing, mechanical polishing, chemical mechanical polishing, or a combination thereof. 前記超電導層を形成する前の前記金属板表面に中間層を形成する工程を更に具備することを特徴とする請求項6〜9のいずれかに記載の超電導線の製造方法。   The method for manufacturing a superconducting wire according to any one of claims 6 to 9, further comprising a step of forming an intermediate layer on the surface of the metal plate before forming the superconducting layer. 前記中間層の表面を研磨する工程を更に具備することを特徴とする請求項10に記載の超電導線の製造方法。   The method of manufacturing a superconducting wire according to claim 10, further comprising a step of polishing a surface of the intermediate layer.
JP2008125217A 2007-05-11 2008-05-12 Superconductive wire and its manufacturing method Pending JP2008311222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125217A JP2008311222A (en) 2007-05-11 2008-05-12 Superconductive wire and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007126826 2007-05-11
JP2008125217A JP2008311222A (en) 2007-05-11 2008-05-12 Superconductive wire and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008311222A true JP2008311222A (en) 2008-12-25

Family

ID=40238620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125217A Pending JP2008311222A (en) 2007-05-11 2008-05-12 Superconductive wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008311222A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153090A (en) * 2008-12-24 2010-07-08 Furukawa Electric Co Ltd:The Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod
JP2011096593A (en) * 2009-11-02 2011-05-12 Sumitomo Electric Ind Ltd Method of manufacturing oxide superconducting thin film
JP2012064519A (en) * 2010-09-17 2012-03-29 Fujikura Ltd Substrate for oxide superconductor and method of producing the same, oxide superconductor and method of producing the same
WO2013002410A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Superconducting thin film substrate and superconducting thin film, and superconducting thin film substrate manufacturing method
JP2013037947A (en) * 2011-08-09 2013-02-21 Fujikura Ltd Oxide superconductor having substrate connection and manufacturing method therefor
JP2016207506A (en) * 2015-04-23 2016-12-08 住友電気工業株式会社 Superconducting wire rod, and superconducting wire rod connection structure
WO2019013386A1 (en) * 2017-07-13 2019-01-17 한국전기연구원 Superconducting cable having machined surface and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
JP2004039442A (en) * 2002-07-03 2004-02-05 Fujikura Ltd Oxide superconductor tape filament
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
KR100691061B1 (en) * 2005-08-30 2007-03-09 엘에스전선 주식회사 Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
JP2004039442A (en) * 2002-07-03 2004-02-05 Fujikura Ltd Oxide superconductor tape filament
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
KR100691061B1 (en) * 2005-08-30 2007-03-09 엘에스전선 주식회사 Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP2009506512A (en) * 2005-08-30 2009-02-12 エルエス ケーブル リミテッド Superconducting wire substrate, manufacturing method thereof, and superconducting wire
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153090A (en) * 2008-12-24 2010-07-08 Furukawa Electric Co Ltd:The Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod
JP2011096593A (en) * 2009-11-02 2011-05-12 Sumitomo Electric Ind Ltd Method of manufacturing oxide superconducting thin film
JP2012064519A (en) * 2010-09-17 2012-03-29 Fujikura Ltd Substrate for oxide superconductor and method of producing the same, oxide superconductor and method of producing the same
WO2013002410A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Superconducting thin film substrate and superconducting thin film, and superconducting thin film substrate manufacturing method
CN103069508A (en) * 2011-06-30 2013-04-24 古河电气工业株式会社 Superconducting thin film substrate and superconducting thin film, and superconducting thin film substrate manufacturing method
JPWO2013002410A1 (en) * 2011-06-30 2015-02-23 古河電気工業株式会社 Superconducting thin film substrate, superconducting thin film, and method of manufacturing superconducting thin film substrate
US9608191B2 (en) 2011-06-30 2017-03-28 Furukawa Electric Co., Ltd. Substrate for superconductor thin film, superconductor thin film, and method for producing substrate for superconductor thin film
JP2013037947A (en) * 2011-08-09 2013-02-21 Fujikura Ltd Oxide superconductor having substrate connection and manufacturing method therefor
JP2016207506A (en) * 2015-04-23 2016-12-08 住友電気工業株式会社 Superconducting wire rod, and superconducting wire rod connection structure
WO2019013386A1 (en) * 2017-07-13 2019-01-17 한국전기연구원 Superconducting cable having machined surface and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4143073B2 (en) Biaxially oriented metal tape with low magnetic hysteresis loss and manufacturing method thereof
US7927715B2 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2008311222A (en) Superconductive wire and its manufacturing method
JP5324763B2 (en) Alignment substrate for epitaxial film formation and surface modification method for alignment substrate for epitaxial film formation
EP3214627B1 (en) Superconducting wire material substrate and method for manufacturing same, and superconducting wire material
US20160276067A1 (en) Method for producing substrates for superconducting layers
JP5400416B2 (en) Superconducting wire
JP6530713B2 (en) Method of forming oxide layer, laminated substrate for epitaxial growth, and method of manufacturing the same
CN103282975B (en) The manufacture method of superconducting wire substrate, superconducting wire substrate and superconducting wire
US10115501B2 (en) Substrate for superconducting wire, method for manufacturing the same, and superconducting wire
Wang et al. (110) Orientation growth of magnetic metal nanowires with face-centered cubic structure using template synthesis technique
JP2012216487A (en) High-temperature superconducting wire rod
JP2007107086A (en) Structure and method for producing the same
US20220045260A1 (en) Electro-Formed Metal Foils
JP5763718B2 (en) Alignment substrate for epitaxial film formation and manufacturing method thereof
KR20150067128A (en) Substrate for epitaxial growth, manufacturing method therefor, and substrate for superconductor wire
Liu et al. Electrochemical fabrication and structure of NixZn1− x alloy nanowires
JP5531065B2 (en) Alignment substrate for epitaxial film formation
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
GM et al. 318a 318b 318C
JP4964669B2 (en) Film generation method
CN114974725A (en) Polishing method of batched superconducting base bands and superconducting base bands
CN104955601B (en) There is the fixed abrasive sawline at nickel oxide interface between nickel subgrade
JP2012018829A (en) Superconductive wire material and manufacturing method thereof
Yoo et al. Formation of strongly biaxial-textured Ni Layer for YBCO coated conductor by electrodeposition process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528