JPH02260672A - Superconductive member - Google Patents

Superconductive member

Info

Publication number
JPH02260672A
JPH02260672A JP1081955A JP8195589A JPH02260672A JP H02260672 A JPH02260672 A JP H02260672A JP 1081955 A JP1081955 A JP 1081955A JP 8195589 A JP8195589 A JP 8195589A JP H02260672 A JPH02260672 A JP H02260672A
Authority
JP
Japan
Prior art keywords
layer
oxide superconductor
superconducting
film
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1081955A
Other languages
Japanese (ja)
Other versions
JP2878706B2 (en
Inventor
Mutsuki Yamazaki
六月 山崎
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1081955A priority Critical patent/JP2878706B2/en
Publication of JPH02260672A publication Critical patent/JPH02260672A/en
Application granted granted Critical
Publication of JP2878706B2 publication Critical patent/JP2878706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To enhance a critical current and its density by a method wherein an oxide superconductor oriented layer, an oxide superconductor layer, and a normal conductor layer are successively formed in lamination on a base to form a laminated unit, and a superconductive member of this design is composed of two or more laminated units. CONSTITUTION:An oxide superconductor oriented layer 2 is formed on a base 1, an oxide superconductor layer 3 is deposited thereon, and a normal conductor layer 4 which functions as the pinning center of the superconductor layer 3 is formed thereon to form a superconductive member 5. The layer 4 is formed on a metal thin film of Fe, Ni, Co, Ag, Au, Pt, Pd, Mo, Ta, W, or the like or ally thin film of them. On the other hand, a unit is formed of a three-layered laminated body of the layers 2-4 and two or more units are successively stacked up to constitute a superconductive member 11. The oxide superconductor layers 3 separated by the layers 2 and 4 serve as current paths separately.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いた超電導部材に関する
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting member using an oxide superconductor.

(従来の技術) 1986年にBa−La−Cu−0系の層状ペロブスカ
イト型の酸化物が40に以上の高い臨界温度を有するこ
とが発表されて以来、酸化物系の超電導体が注目を集め
、新材料探索の研究が活発に行われている。
(Prior art) Since it was announced in 1986 that Ba-La-Cu-0-based layered perovskite oxides have a high critical temperature of over 40, oxide-based superconductors have attracted attention. , research in the search for new materials is being actively conducted.

その中でも、液体窒素温度以上の高い臨界温度を有する
Y−Ba−Cu−0系で代表される欠陥ペロブスカイト
型の酸化物超電導体や、B1−3r−Ca−Cu−0系
およびTl−Ba−Ca−Cu−0系の酸化物超電導体
は、冷媒として高価な液体ヘリウムに代えて、安価な液
体窒素を利用できるため、工業的にも重要な価値を有し
ている。そして、それらの応用の研究も盛んに行われて
おり、超高速の超電導デバイス、SQU I Dセンサ
、超電導配線、超電導コイル、送電線など、多数の応用
が考えられている。
Among them, defective perovskite-type oxide superconductors represented by the Y-Ba-Cu-0 system, which have a high critical temperature higher than the liquid nitrogen temperature, the B1-3r-Ca-Cu-0 system and the Tl-Ba- Ca-Cu-0-based oxide superconductors have important industrial value because inexpensive liquid nitrogen can be used as a coolant instead of expensive liquid helium. Research into these applications is also being actively conducted, and a large number of applications are being considered, including ultra-high-speed superconducting devices, SQUID sensors, superconducting wiring, superconducting coils, and power transmission lines.

たとえば超電導体を各種電子デバイスの配線として使用
すれば、配線による信号の遅延が低減されるため、信号
処理あるいは演算の高速化を可能にする。酸化物超電導
体をこのような超電導配線に応用することを考えた場合
、バルク材に比べて臨界電流密度が一桁以上高い薄膜を
利用することが有利である。このような超電導特性に優
れた酸化物超電導体薄膜は、酸化物超電導体と熱膨脹係
数や格子定数などが近似しているMgOや5rTiJな
どの単結晶基板を基板として用いることによって達成さ
れており、これら単結晶基板上にスパッタ法や蒸着法な
どによって形成された配向性を有する酸化物超電導体薄
膜によって、臨界電流密度が10” A/+jを超える
ものが得られるようになってきている。
For example, if superconductors are used as wiring for various electronic devices, signal delays caused by the wiring will be reduced, making it possible to speed up signal processing or calculations. When considering the application of oxide superconductors to such superconducting wiring, it is advantageous to use a thin film whose critical current density is one order of magnitude higher than that of a bulk material. Oxide superconductor thin films with such excellent superconducting properties are achieved by using single crystal substrates such as MgO and 5rTiJ, which have similar coefficients of thermal expansion and lattice constants to those of oxide superconductors, as substrates. By using oriented oxide superconductor thin films formed on these single crystal substrates by sputtering, vapor deposition, etc., it has become possible to obtain critical current densities exceeding 10'' A/+j.

また、曲げ加工が可能な金属テープなどの上に酸化物超
電導体薄膜を形成することも試みられており、この容易
に曲げ加工などが可能であるという性質を利用して、こ
れを超電導コイル用の線材とすることも試みられている
In addition, attempts have been made to form oxide superconductor thin films on bendable metal tapes, etc., and by taking advantage of this property that they can be easily bent, they can be used for superconducting coils. Attempts have also been made to make wire rods.

ところで、上述したように酸化物超電導体薄膜の臨界電
流密度は、バルク材のそれに比べて一桁以上高いことが
知られているが、これはあくまでも電流密度であり、た
とえば膜厚を厚くしても、それに比例して臨界電流が必
ずしも増加するとは限らず、ある一定の値に収まってし
まう。これは、超電導状態でも起こる表皮効果に起因す
るものと考えられる。しかし、実際に要求される配線の
最大電流は、酸化物超電導体薄膜の臨界電流値を超えて
いる。′ そこで、充分な電流を流すために、酸化物超電導体層間
に常電導物質や絶縁体によって境界を設け、複数の電流
経路を形成した超電導配線が提案されている(特開昭6
4−3908号公報、同64−28844号公報など参
照)。
By the way, as mentioned above, it is known that the critical current density of an oxide superconductor thin film is more than an order of magnitude higher than that of a bulk material, but this is just a current density. However, the critical current does not necessarily increase in proportion to it, but remains at a certain value. This is considered to be due to the skin effect that occurs even in the superconducting state. However, the maximum current required for the wiring actually exceeds the critical current value of the oxide superconductor thin film. ' Therefore, in order to flow a sufficient current, a superconducting interconnection has been proposed in which boundaries are provided between oxide superconductor layers using a normal conductive material or an insulator to form multiple current paths (Japanese Patent Laid-Open No. 6
4-3908, 64-28844, etc.).

また、酸化物超電導体の臨界電流密度自体を向上させる
方法として、酸化物超電導体層間に強磁性金属材層をピ
ンニングセンタとして介在させ、電流経路を複数設は最
大電流を向上させるとともに、磁束の侵入を抑制して臨
界電流密度を向上させることが提案されている(特開昭
63−318014号公報など参照)。
In addition, as a method to improve the critical current density of an oxide superconductor, a ferromagnetic metal layer is interposed between the oxide superconductor layers as a pinning center, and multiple current paths are provided to improve the maximum current and reduce the magnetic flux. It has been proposed to improve the critical current density by suppressing the invasion (see Japanese Patent Application Laid-open No. 318014/1983, etc.).

(発明が解決しようとする課題) 酸化物超電導体の臨界電流密度は、結晶方位を一定方向
に揃えることによって向上することが知られており、そ
のために基板としてMgOや5rTI(hなどの単結晶
基板が一般に用いられている。しかしながら、上述した
常電導物質層や絶縁体層を介在させた酸化物超電導体の
多層構造体では、各酸化物超電導体層が常電導物質層や
絶縁体層上に形成されるため、酸化物超電導体の結晶方
位の制御が困難となり、これによって各酸化物超電導体
層自体の臨界電流密度の低下が予想され、電流経路を複
数設けたことによる効果や、ピンニングセンタを介在さ
せた効果を充分に生かしきれないという問題があった。
(Problem to be solved by the invention) It is known that the critical current density of an oxide superconductor can be improved by aligning the crystal orientation in a certain direction. However, in the above-mentioned multilayer structure of oxide superconductors with a normal conducting material layer or insulating layer interposed, each oxide superconducting layer is placed on a normal conducting material layer or an insulating layer. This makes it difficult to control the crystal orientation of the oxide superconductor, which is expected to reduce the critical current density of each oxide superconductor layer itself. There was a problem in that the effect of intervening the center could not be fully utilized.

本発明は、このような従来技術の課題に対処するために
なされたもので、電流経路を複数設けることによって得
られる臨界電流値の向上およびピンニングセンタの導入
による臨界電流密度の向上を、各酸化物超電導体層の配
向性を維持することによって充分に生かした超電導部材
を提供することを目的としている。
The present invention has been made to address the problems of the prior art, and aims to improve the critical current value obtained by providing multiple current paths and the critical current density by introducing a pinning center. The purpose of this invention is to provide a superconducting member that is fully utilized by maintaining the orientation of the physical superconductor layer.

[発明の構成] (課題を解決するための手段) すなわち本発明の超電導部材は、基体上に超電導転移を
示す物質を含む超電導導体層が形成された超電導部材に
おいて、前記超電導導体層は、酸化物超電導体の配向層
と、この配向層上に形成された酸化物超電導体層と、こ
の酸化物超電導体層上に形成された常電導物質層とによ
る積層ユニットにより構成されていることを特徴として
おり、特にこの積層ユニットが、厚さ方向に対して順に
複数形成されていることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the superconducting member of the present invention is a superconducting member in which a superconducting conductor layer containing a substance exhibiting superconducting transition is formed on a base, wherein the superconducting conductor layer is oxidized. It is characterized by being composed of a laminated unit consisting of an oriented layer of a physical superconductor, an oxide superconductor layer formed on this oriented layer, and a normal conductive material layer formed on this oxide superconductor layer. In particular, it is characterized in that a plurality of laminated units are formed in order in the thickness direction.

(作 用) 本発明の超電導部材は、MgOや5rTj01などから
なる酸化物超電導体の配向層/酸化物超電導体層/常電
導物質層を1積層ユニットとして超電導導体層を構成し
ているため、酸化物超電導体層はたえず配向層の存在に
よって結晶方位が一定となる。また、酸化物超電導体層
上に形成された常電導物質層がピンニングセンタとして
機能し、酸化物超電導体内部への磁束線の侵入を抑制す
る。
(Function) In the superconducting member of the present invention, the superconducting conductor layer is composed of an orientation layer of an oxide superconductor made of MgO, 5rTj01, etc./an oxide superconductor layer/a normal conductive material layer as one laminated unit. The crystal orientation of the oxide superconductor layer is always constant due to the presence of the orientation layer. Further, the normal conductive material layer formed on the oxide superconductor layer functions as a pinning center, and suppresses the intrusion of magnetic flux lines into the inside of the oxide superconductor.

これらによって、臨界電流密度などの超電導特性の向上
が図れる。そして、上記積層ユニットを順に複数積層し
て設けることにより、配向層の存在によって結晶方位が
揃えられた個々の酸化物超電導体層が電流経路として働
き、ユニット数に比例して超電導導体層中に流すことが
可能な最大電流が増加する。
These can improve superconducting properties such as critical current density. By sequentially laminating a plurality of the above laminated units, each oxide superconductor layer whose crystal orientation is aligned due to the presence of the orientation layer acts as a current path, and the superconductor layer flows in proportion to the number of units. The maximum current that can flow increases.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の超電導部材の構成を示す断
面図である。同図において1は、St単結晶基板、Mg
O5SrTi03 、Al103、Y安定化Zr0z 
(YSZ)などの酸化物基板、金属テープなど、各種祠
質および形状からなる基体であり、この基体1上に厚さ
10人〜3000人程度の酸化物超電導体層の配向層2
が形成されている。この配向層2は、たとえばMgO、
5rT103 、A1203、Y安定化Zr02(YS
Z)などからなるものであり、酸化物超電導体と格子定
数や熱膨張係数が近似する材質が用いられ、これによっ
て配向層上に形成される酸化物超電導体層の結晶方位を
一定方向に揃え、酸化物超電導体が本来有する超電導特
性を確保するものである。なお、基体1として配向層2
と同材質のものを用いる場合、この第1層目の配向層は
形成を省略することができる。
FIG. 1 is a sectional view showing the structure of a superconducting member according to an embodiment of the present invention. In the same figure, 1 is an St single crystal substrate, an Mg
O5SrTi03, Al103, Y stabilized Zr0z
The substrate is made of various materials and shapes such as oxide substrates such as (YSZ) and metal tapes, and on this substrate 1 is an alignment layer 2 of an oxide superconductor layer with a thickness of about 10 to 3000 layers.
is formed. This alignment layer 2 is made of, for example, MgO,
5rT103, A1203, Y-stabilized Zr02 (YS
Z), etc., and a material with a lattice constant and thermal expansion coefficient similar to those of the oxide superconductor is used, which aligns the crystal orientation of the oxide superconductor layer formed on the orientation layer in a certain direction. , which ensures the superconducting properties inherent to oxide superconductors. Note that the alignment layer 2 is used as the substrate 1.
If the same material is used, the formation of this first alignment layer can be omitted.

配向層2Fには、厚さ 500人〜5μ−程度の酸化物
超電導体層3が形成されており、この酸化物超電導体と
しては、希土類元素含有のペロブスカイト型の酸化物超
電導体や、■−3r−Ca−Cu−0系酸化物超電導体
、Tl−Ba−Ca−Cu−0系酸化物超電導体などが
適用される。
An oxide superconductor layer 3 having a thickness of about 500 to 5μ is formed on the alignment layer 2F, and examples of this oxide superconductor include perovskite-type oxide superconductors containing rare earth elements, 3r-Ca-Cu-0 based oxide superconductor, Tl-Ba-Ca-Cu-0 based oxide superconductor, etc. are applied.

希土類元素を含有しペロブスカイト型構造を有する酸化
物超電導体は、超電導状態を実現できるものであればよ
く、たとえばREMCuO系237−δ (REは、 Y  s  LaS ScS Nd、  
Ss、 Eu% Gd、  Dy、、 Ho5Ers 
Tm、 Yb、 Luなどの希土類元素から選ばれた少
なくとも 1種の元素を、旧tBaSSr、 Caから
選ばれた少なくとも 18の元素を、δは酸素欠陥を表
し通常1以下の数、Cuの一部はTI、vSCrs M
11%Fe、 Co、旧、Znなどで置換可能。)の酸
化物などが例示される。なお、希土類元素は広義の定義
とし、5cSYおよびLa系を含むものとする。
The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, for example, REMCuO-based 237-δ (RE is Y s LaS ScS Nd,
Ss, Eu% Gd, Dy,, Ho5Ers
At least one element selected from rare earth elements such as Tm, Yb, and Lu, at least 18 elements selected from old tBaSSr and Ca, δ represents an oxygen defect, usually a number of 1 or less, and a part of Cu. is TI, vSCrs M
11%Can be replaced with Fe, Co, old, Zn, etc. ) are exemplified. Note that rare earth elements are defined in a broad sense and include 5cSY and La-based elements.

また、B1−8r−Ca−Cu−0系の酸化物超電導体
は、化学式: Bi25r2Ca2 Cu30x   
 ・−(1):B12(Sr、Ca)3cu20x  
 −(II)(式中、Blの一部はpbなどで置換可能
。)などで表されるものであり、TI−Ha−Ca−C
u−0系酸化物超電導体は、 化学式: T12 Ba2 Ca2 Cu30x   
 =−−−(m):T12(Ba、Ca)3Cu20x
   ・;・・・・・・(IV)などで表されるもので
ある。
In addition, the B1-8r-Ca-Cu-0-based oxide superconductor has the chemical formula: Bi25r2Ca2 Cu30x
・-(1): B12 (Sr, Ca) 3cu20x
-(II) (in the formula, a part of Bl can be replaced with pb etc.), and is represented by TI-Ha-Ca-C
The u-0 based oxide superconductor has the chemical formula: T12 Ba2 Ca2 Cu30x
=---(m): T12(Ba, Ca)3Cu20x
.;...(IV) etc.

そして、酸化物超電導体層3上にこの酸化物超電導体の
ピンニングセンタとして機能する常電導物質層4が形成
されて、超電導部材5が構成されている。このピンニン
グセンタとなる常電導物質層4は、Pe5Ni、Co5
Ag5Au−Pt5Pd%No、Ta。
A normal conducting material layer 4 functioning as a pinning center for the oxide superconductor is formed on the oxide superconductor layer 3 to constitute a superconducting member 5. The normal conductive material layer 4 which becomes this pinning center is composed of Pe5Ni, Co5
Ag5Au-Pt5Pd%No, Ta.

Vなどの各金属薄膜やこれらの合金薄膜を厚さ50人〜
2000人程度の厚さに形成したものである。
Each metal thin film such as V and these alloy thin films can be made to a thickness of 50 people or more.
It was formed to a thickness of about 2,000 people.

上記構成のこの実施例の超電導部材5は、たとえば以下
のようにして作製される。
The superconducting member 5 of this embodiment having the above-mentioned configuration is manufactured, for example, as follows.

まず、基体1表面に配向層2をスパッタ法、CVD法、
イオンクラスタービーム蒸着法、分子線エピタキシー法
などによって形成する。特にイオンクラスタービーム蒸
着法によれば結晶性の良好な薄膜が得られる。
First, the alignment layer 2 is formed on the surface of the substrate 1 by sputtering, CVD, or
It is formed by ion cluster beam evaporation method, molecular beam epitaxy method, etc. In particular, a thin film with good crystallinity can be obtained by ion cluster beam evaporation.

次に、配向層2上に酸化物超電導体層3を同様にスパッ
タ法、CVD法、イオンクラスタービーム蒸着法などに
よって形成する。
Next, an oxide superconductor layer 3 is similarly formed on the alignment layer 2 by a sputtering method, a CVD method, an ion cluster beam evaporation method, or the like.

たとえばスパッタ法によって酸化物超電導体層3を形成
する場合のターゲットは、各酸化物超電導体の焼結体を
用いてもよいし、また酸化物超電導体の構成元素を含む
化合物を個々に用いてもよい。酸化物超電導体の焼結体
をターゲットとして用いる際には、得られる膜の組成と
ターゲット組成が必ずしも一致しない場合があるので、
得られた膜を分析し、足りない元素はターゲットの方に
多く含有させたり、あるいは不足しゃすい元素を含有す
るターゲットをさらに設置して独立して制御することが
好ましい。なお、スパッタ法によって酸化物超電導体層
3を形成する場合、必要に応じて真空室内で酸素を導入
しながら熱処理を行ったり、真空室から取出した後、酸
素気流中で熱処理することにより、酸素欠損がより少な
い良質の膜が得られ、転移温度の向上が図れる。
For example, when forming the oxide superconductor layer 3 by sputtering, the target may be a sintered body of each oxide superconductor, or a compound containing the constituent elements of the oxide superconductor may be used individually. Good too. When using a sintered body of oxide superconductor as a target, the composition of the obtained film and the target composition may not necessarily match.
It is preferable to analyze the obtained film and make the target contain more of the missing element, or to further install a target containing the missing element and control it independently. Note that when forming the oxide superconductor layer 3 by sputtering, heat treatment may be performed while introducing oxygen in a vacuum chamber as necessary, or oxygen may be removed by heat treatment in an oxygen stream after removal from the vacuum chamber. A high-quality film with fewer defects can be obtained, and the transition temperature can be improved.

また、イオンクラスタービーム蒸着法は、各構成元素を
含む原料を個々に加熱し蒸発させて付着させるものであ
り、各元素毎に組成制御することが可能である。また、
通常の蒸着法と異なり、蒸発した原子がノズルから飛出
した後、断熱膨張により急冷され、凝集してクラスター
を形成し、さらにイオン化して加速されることから、被
着面でのマイグレーション効果が他の方法に比較して著
しく大きく、配向した膜が比較的低温で得られるという
利点がある。ただし、酸化物の薄膜を形成する場合、酸
化物の融点は一般に高く、それ自身を蒸発させることは
困難であるため、酸素雰囲気中で各元素を蒸発させ、反
応させなから成膜を行う。したがって、酸素の供給方法
が重要な要因となる。酸素の供給は、電子サイクロトロ
ン共鳴(P、CR)によりイオン化して供給したり、高
周波、マイクロ波、光などにより酸素のラジカルを形成
して供給したり、あるいは加熱して活性化させるなど、
活性状態の酸素を供給することが好ましく、これにより
単に酸素を被着面に吹付けるよりも多大な効果が得られ
る。また酸素だけでなく、酸素を無声放電Iミよりオゾ
ン化させることも効果的である。さらに、酸素を持つガ
スでN20 、Goなどは、他原子との結合エネルギー
が弱く、分子状酸素からよりも高周波電力などの電力に
よる放電によって、容易に酸素ラジカルを形成すること
ができる。
Further, in the ion cluster beam evaporation method, raw materials containing each constituent element are individually heated and evaporated to be deposited, and the composition can be controlled for each element. Also,
Unlike normal vapor deposition methods, after the evaporated atoms fly out of the nozzle, they are rapidly cooled by adiabatic expansion, aggregate to form clusters, and are further ionized and accelerated, which reduces the migration effect on the deposition surface. It has the advantage that significantly larger and more oriented films can be obtained at relatively low temperatures compared to other methods. However, when forming a thin film of an oxide, the melting point of the oxide is generally high and it is difficult to evaporate the oxide itself, so each element is evaporated in an oxygen atmosphere and the film is formed without reacting. Therefore, the method of supplying oxygen is an important factor. Oxygen can be supplied by being ionized by electron cyclotron resonance (P, CR), by forming oxygen radicals by high frequency, microwave, light, etc., or by heating and activating.
It is preferable to supply oxygen in an active state, which provides a greater effect than simply spraying oxygen onto the surface to be deposited. In addition to oxygen, it is also effective to convert oxygen into ozone using silent discharge. Furthermore, oxygen-containing gases such as N20 and Go have weak bonding energy with other atoms, and can more easily form oxygen radicals by electric discharge such as high-frequency electric power than from molecular oxygen.

この後、酸化物超電導体層3上に常電導物質層4を同様
にスパッタ法、真空蒸着法、イオンクラスタービーム蒸
着法などによって形成することによって、第1図に示し
た超電導部材5が得られる。
Thereafter, a normal conductive material layer 4 is similarly formed on the oxide superconductor layer 3 by sputtering, vacuum evaporation, ion cluster beam evaporation, etc., thereby obtaining the superconducting member 5 shown in FIG. .

次に、上記製造方法にしたがって具体的に超電導部材を
作製した例について説明する。
Next, an example in which a superconducting member was specifically manufactured according to the above manufacturing method will be described.

実施例1 まず、真空容器内に配置された加熱機構を有する基板ホ
ルダにSl単結晶基板をセットするとともに、5rT1
03をターゲットとして配置した。そして、真空容器内
にArガスおよび02ガスをそれぞれl08ec!4で
供給しツツ、真空容器内をlXl0−”T。
Example 1 First, an Sl single crystal substrate was set in a substrate holder equipped with a heating mechanism placed in a vacuum container, and a 5rT1
03 was placed as a target. Then, Ar gas and 02 gas were added to the vacuum container at 108ec! 4, and the inside of the vacuum container is lXl0-"T.

rr圧まで減圧した後、Sl単結晶基板を450’Cに
加熱しながらターゲットに lkVのR1力を供給して
スパッタリングを行い、厚さ1000人の5rTi03
膜を配向層として形成した。
After reducing the pressure to rr pressure, sputtering was performed by supplying R1 force of lkV to the target while heating the Sl single crystal substrate to 450'C, and sputtering was performed to form a 5rTi03 film with a thickness of 1000 mm.
The film was formed as an alignment layer.

次に、ターゲットをYBa  Cu  O組成を有2 
 3  7−δ する酸化物超電導体の焼結体に交換し、以下の条件によ
って厚さ5000人のY−Ba−Cu−0系酸化物超電
導体膜を形成した。
Next, the target has a YBa Cu O composition of 2
The sintered body was replaced with a sintered body of an oxide superconductor having a diameter of 37-δ, and a Y-Ba-Cu-0 based oxide superconductor film having a thickness of 5,000 wafers was formed under the following conditions.

スパッタガス:Arガス−108108CCガス−10
3CCM 真空容器内圧カニ  l X 10’ Torr基板温
度−650℃ 供給型カニRF電カー 1kV なお、スパッタによる成膜後に、酸素ガスを導入しなが
ら800℃で10分間熱処理を行った。
Sputtering gas: Ar gas-108108CC gas-10
3CCM Vacuum container internal pressure 1 x 10' Torr Substrate temperature -650°C Supply type crab RF electric car 1 kV Note that after film formation by sputtering, heat treatment was performed at 800°C for 10 minutes while introducing oxygen gas.

この後、Y−Da−Cu−0系酸化物超電導体薄膜上に
以下の条件によって厚さ1000人のAg膜を形成した
Thereafter, an Ag film with a thickness of 1,000 thick was formed on the Y-Da-Cu-0 based oxide superconductor thin film under the following conditions.

スパッタガス:Arガス−10secM真空容器内圧カ
ニ  I X 10’ Torr供給電カニRF電カー
 1kW このようにして得られたSrTiO3膜/Y−Ba−C
uO系酸化物超電導体膜/Ag膜の積層ユニットを有す
る超電導部材の転移温度を測定したところ、80にであ
り、また5Tの高磁場中において臨界電流密度を測定し
たところ、10’ A/cdを超える良好な値が得られ
た。これは、5rTI(h膜がY−Da−Cu−0系酸
化物超電導体膜の配向性を高め、並びにAg膜が磁束の
ピンニングセンタとなったことに由来するものである。
Sputtering gas: Ar gas - 10 secM Vacuum container internal pressure I
When the transition temperature of a superconducting member having a laminated unit of uO-based oxide superconductor film/Ag film was measured, it was 80, and when the critical current density was measured in a high magnetic field of 5 T, it was 10' A/cd. A good value exceeding . This is because the 5rTI(h film enhances the orientation of the Y-Da-Cu-0 based oxide superconductor film, and the Ag film serves as a pinning center for magnetic flux.

実施例2 真空容器内に配置された加熱機構を有する基板ホルダに
31単結晶基板をセットし、真空容器内に02ガスを1
0300Mで供給しつつ、真空容器内をl X 10−
’ Torrまで減圧した後、Sl単結晶基板を300
℃に加熱しながらS「とTiのクラスターをそれぞれ別
々のイオンガンから蒸発させて、厚さ1000人の5r
T1(h膜を配向層として形成した。なお、イオン化電
流は0.5A 、加速電圧は 1kVとした。
Example 2 A 31 single crystal substrate was set in a substrate holder with a heating mechanism placed in a vacuum container, and 02 gas was poured into the vacuum container.
While supplying at 0300M, the inside of the vacuum container was
' After reducing the pressure to Torr, the Sl single crystal substrate was heated to 300 Torr.
The S' and Ti clusters were evaporated from separate ion guns while heating to 1000 °C to form a 5r
A T1(h film was formed as an alignment layer. The ionization current was 0.5 A, and the acceleration voltage was 1 kV.

次に、5rT103膜上にY 、 BaおよびCuをそ
れぞれ別々のイオンガンから蒸発させるとともに、酸素
をl 0900Mで供給しつつECRによって励起し、
厚さ5000人のY−Ba−Cu−0系酸化物超電導体
膜を形成した。
Next, Y, Ba and Cu were evaporated onto the 5rT103 film from separate ion guns, and excited by ECR while supplying oxygen at 10900M.
A Y-Ba-Cu-0 based oxide superconductor film with a thickness of 5000 was formed.

個々の条件は以下の通りである。The individual conditions are as follows.

Y:蒸発速度−15人/+u+ s加速電圧−1kV。Y: Evaporation rate -15 people/+u+ s Acceleration voltage -1 kV.

イオン化電流−0,5A Ba:蒸発速度−40人l■、加速電圧−1kV、イオ
ン化電流−0,5A Cu:蒸発速度−10人l■、加速電圧−1kV。
Ionization current - 0.5A Ba: Evaporation rate - 40 people 1■, acceleration voltage - 1kV, ionization current - 0.5A Cu: Evaporation rate - 10 people 1■, acceleration voltage - 1kV.

イオン化電流−0,5A ECR条件:雰囲気圧−LX 10−’ Torr、マ
イクロ波電力−200W 、磁場−g75G 、基板温
度−400℃ なお、このようにして得たY−Ba−Cu−0系酸化物
超電導体膜の転移温度および臨界電流密度を1lFI定
したところ、Tc −80K 、 J c −105A
/c(と良好な値が得られた。また、X線回折を行った
ところ、配向性に優れたYBa  Cu  O膜である
ことを237−δ 確認した。このようにイオンクラスタービーム蒸着法に
よれば、低い基板温度で良質な酸化物超電導体膜を得る
ことができる。
Ionization current - 0.5 A ECR conditions: Atmospheric pressure - LX 10' Torr, Microwave power - 200 W, Magnetic field - g 75 G, Substrate temperature - 400°C The Y-Ba-Cu-0 based oxidation obtained in this way When the transition temperature and critical current density of the superconductor film were determined at 1lFI, Tc -80K, Jc -105A
A good value of /c (237-δ) was obtained. Also, when X-ray diffraction was performed, it was confirmed that the YBa Cu O film had excellent orientation. According to the method, a high-quality oxide superconductor film can be obtained at a low substrate temperature.

この後、Y−Ba−Cu−0系酸化物超電導体膜上に以
下の条件によって厚さ1000人のAg膜を形成した。
Thereafter, an Ag film with a thickness of 1,000 thick was formed on the Y-Ba-Cu-0 based oxide superconductor film under the following conditions.

蒸発源二Ag 真空容器内圧カニ  LX 10’ Torr加速電圧
:  lkV イオン化電流二 〇、3A このようにして得られた5rT103膜/ Y−Ba−
Cu−0系酸化物超電導体膜/Ag膜の積層ユニットを
有する超電導導体の超電導特性を2−1定したところ、
転移温度は80にで、5Tの高磁場中での臨界電流密度
もIO’A/cjを超える良好な値を示した。
Evaporation source 2Ag Vacuum container internal pressure LX 10' Torr Acceleration voltage: lkV Ionization current 20, 3A 5rT103 film thus obtained/Y-Ba-
When the superconducting properties of a superconducting conductor having a stacked unit of Cu-0 based oxide superconductor film/Ag film were determined in 2-1,
The transition temperature was 80, and the critical current density in a high magnetic field of 5 T also showed a good value exceeding IO'A/cj.

また、基板直下にコイルを設置し、これに高周波を印加
する一方、コイルに開けた穴から酸素を吹出させて、プ
ラズマを形成することで、酸素の欠損がより少ない良質
の膜が得られた。さらに、真空容器内あるいは炉による
酸素雰囲気中での後処理により、さらに膜質が改善され
ることを確認した。
In addition, by installing a coil directly under the substrate and applying high-frequency waves to it, oxygen was blown out through a hole in the coil to form plasma, resulting in a high-quality film with fewer oxygen deficiencies. . Furthermore, it was confirmed that the film quality was further improved by post-treatment in a vacuum container or in an oxygen atmosphere using a furnace.

なお、このイオンクラスタービーム法によれば、単元素
毎に制御ができるため、B1−8r−Ca−Cu−0系
やT l−Ba−Ca−Cu−0系の酸化物超電導体膜
においても、高い転移温度を示す膜が得られた。
In addition, according to this ion cluster beam method, since it is possible to control each single element, it is possible to control even B1-8r-Ca-Cu-0 system and Tl-Ba-Ca-Cu-0 system oxide superconductor films. , a film exhibiting a high transition temperature was obtained.

実施例3.4 基体として厚さ 0.l■、幅10nmの銅テープを用
意し、この銅テープ上に実施例1および2と同一条件で
、それぞれ5rTI(h膜/ Y−Ba−Cu−0系酸
化物超電導体膜/八g膜の積層ユニットを作製した。
Example 3.4 Thickness as substrate 0. A copper tape with a width of 10 nm was prepared, and 5rTI (h film/Y-Ba-Cu-0 based oxide superconductor film/8g film) was deposited on this copper tape under the same conditions as in Examples 1 and 2. A laminated unit was fabricated.

このようにして得られたテープ状超電導導体の5T下に
おける臨界電流密度を測定したところ、それぞれ104
^/C?以上と良好な値が得られ、またこのテープ状超
電導導体を用いて超電導コイルを作製し、磁場強度を測
定したところ、それぞれ実用上充分な磁力を発揮するこ
とを確認した。
When the critical current density of the tape-shaped superconducting conductor obtained in this way was measured under 5T, it was found that each
^/C? Good values were obtained, and when superconducting coils were fabricated using this tape-shaped superconducting conductor and the magnetic field strength was measured, it was confirmed that each of them exhibited sufficient magnetic force for practical use.

なお、このような線状基体としては、Pe1SO3%A
g、^lなどのテープ材や線材を用いても、同様な効果
が得られた。
In addition, as such a linear substrate, Pe1SO3%A
Similar effects were obtained using tape materials and wire materials such as g and ^l.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第2図は、本発明の他の実施例の超電導導体の構成を示
す断面図である。同図に示すように、この実施例の超電
導部材11は、基体1上に上記実施例と同様に配向層2
、酸化物超電導体層3および常電導物質層5が順に形成
されており、この3層積層体をlユニッ、トとして複数
のユニットが順に形成されており、配向層2と常電導物
質層4によって仕切られた各酸化物超電導体層3は、そ
れぞれ個別に電流経路を構成している。
FIG. 2 is a sectional view showing the structure of a superconducting conductor according to another embodiment of the present invention. As shown in the figure, the superconducting member 11 of this example has an alignment layer 2 on the base 1 as in the above example.
, an oxide superconductor layer 3 and a normal conductive material layer 5 are formed in order, and a plurality of units are formed in order with this three-layer stack as a unit. Each of the oxide superconductor layers 3 partitioned by the oxide superconductor layer 3 constitutes an individual current path.

次に、上記構成の超電導部材を具体的に作製した例につ
いて説明する。
Next, an example in which a superconducting member having the above structure was specifically manufactured will be described.

実施例5.6 実施例1および2と同一条件でS l !It結晶基板
上に、それぞれ5rTI(h膜/ Y−Ba−Cu−0
系酸化物超電導体膜/Ag膜の積層ユニットを作製し、
さらにこの積層ユニットを 1ユニツトとして同一条件
でそれぞれ10層積層して、超電導部材をそれぞれ作製
した。
Example 5.6 S l under the same conditions as Examples 1 and 2! 5rTI (h film/Y-Ba-Cu-0
A laminated unit of oxide superconductor film/Ag film was prepared,
Further, each of these laminated units was made into one unit and 10 layers were laminated under the same conditions to produce superconducting members.

このようにして得た複数の電流経路を有する超電導部材
に流すことが可能な最大電流値を測定したところ、それ
ぞれ50A以上の良好な値が得られた。
When the maximum current value that can be passed through the superconducting member having a plurality of current paths thus obtained was measured, good values of 50 A or more were obtained for each.

また、これらの実施例との比較として、酸化物超電導体
層間にAg膜のみを形成する以外は、積層数など上記実
施例と同一条件で超電導部材を作製し、最大電流値を測
定したところ5Aであった。
In addition, as a comparison with these examples, a superconducting member was fabricated under the same conditions as the above examples, including the number of laminated layers, except that only an Ag film was formed between the oxide superconductor layers, and the maximum current value was measured. Met.

このように、従来の複数の電流経路を有する超電導部材
は、層数を増加させるほど、酸化物超電導体層の配向性
が悪化するため、各酸化物超電導体層の超電導特性が劣
化し、充分な効果が得られない。これに対して、本発明
の超電導部材は、各酸化物超電導体層を配向層上に形成
しているため、配向性をみだすことなく、多層に積層す
ることが可能となり、電流経路を複数化した効果やピン
ニングセンタを導入した効果を充分に得ることが可能と
なる。
In this way, in conventional superconducting members having multiple current paths, as the number of layers increases, the orientation of the oxide superconductor layers deteriorates, and the superconducting properties of each oxide superconductor layer deteriorates, making it difficult to maintain sufficient No effect can be obtained. On the other hand, in the superconducting member of the present invention, each oxide superconductor layer is formed on an orientation layer, so it is possible to stack multiple layers without losing the orientation, thereby creating multiple current paths. This makes it possible to fully obtain the effects of introducing the pinning center and the effects of introducing the pinning center.

[発明の効果] 以上説明したように本発明の超電導部材は、配向層によ
る酸化物超電導体層の結晶方位の一定化と、常電導物質
層による磁束のピン止め効果とによって、酸化物超電導
体層の超電導特性を向上させる。ことが可能となる。そ
して、これらを順に積層することによって、その優れた
超電導特性を損うことなく電流経路を複数化でき、実用
上充分な電流を流すことが可能となり、実用的な超電導
部材を提供することができる。
[Effects of the Invention] As explained above, the superconducting member of the present invention has a constant crystal orientation of the oxide superconductor layer by the orientation layer and a magnetic flux pinning effect by the normal conductive material layer, so that the superconducting member of the present invention Improve the superconducting properties of the layer. becomes possible. By stacking these in order, it is possible to create multiple current paths without impairing their excellent superconducting properties, making it possible to flow a practically sufficient current, and providing a practical superconducting member. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超電導部材の構成を模式的
に示す断面図、第2図は本発明の他の実施例の構成を模
式的に示す断面図である。 1・・・・・・基体、2・・・・・・配向層、3・・・
・・・酸化物超電導体層、4・・・・・・常電導物質層
、5.11・・・・・・超電導部材。 出願人      株式会社 東芝
FIG. 1 is a cross-sectional view schematically showing the structure of a superconducting member according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing the structure of another embodiment of the present invention. 1... Base body, 2... Orientation layer, 3...
...Oxide superconductor layer, 4...Normal conductive material layer, 5.11...Superconducting member. Applicant: Toshiba Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)基体上に超電導転移を示す物質を含む超電導導体
層が形成された超電導部材において、前記超電導導体層
は、酸化物超電導体の配向層と、この配向層上に形成さ
れた酸化物超電導体層と、この酸化物超電導体層上に形
成された常電導物質層とによる積層ユニットにより構成
されていることを特徴とする超電導部材。
(1) In a superconducting member in which a superconducting conductor layer containing a substance exhibiting superconducting transition is formed on a substrate, the superconducting conductor layer includes an oriented layer of an oxide superconductor and an oxide superconductor formed on the oriented layer. 1. A superconducting member comprising a laminated unit including a body layer and a normal conductive material layer formed on the oxide superconductor layer.
(2)前記積層ユニットが、厚さ方向に対して順に複数
形成されていることを特徴とする請求項1記載の超電導
部材。
(2) The superconducting member according to claim 1, wherein a plurality of the laminated units are formed in order in the thickness direction.
JP1081955A 1989-03-31 1989-03-31 Superconducting material Expired - Fee Related JP2878706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081955A JP2878706B2 (en) 1989-03-31 1989-03-31 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081955A JP2878706B2 (en) 1989-03-31 1989-03-31 Superconducting material

Publications (2)

Publication Number Publication Date
JPH02260672A true JPH02260672A (en) 1990-10-23
JP2878706B2 JP2878706B2 (en) 1999-04-05

Family

ID=13760924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081955A Expired - Fee Related JP2878706B2 (en) 1989-03-31 1989-03-31 Superconducting material

Country Status (1)

Country Link
JP (1) JP2878706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283372A (en) * 2008-05-23 2009-12-03 Fujikura Ltd Oxide superconductor introducing artificial pin and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283372A (en) * 2008-05-23 2009-12-03 Fujikura Ltd Oxide superconductor introducing artificial pin and method of manufacturing the same

Also Published As

Publication number Publication date
JP2878706B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US4994435A (en) Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
KR20020025957A (en) Enhanced High Temperature Coated Superconductors
US8431515B2 (en) Tape-shaped oxide superconductor
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
JPH10507590A (en) Multilayer composite and method of manufacture
JP2005044636A (en) Superconductive wire rod
JPH03218686A (en) Josephson element
JP2878706B2 (en) Superconducting material
JP2854623B2 (en) Method for producing oxide superconductor thin film
AU2007216116A1 (en) Method of manufacturing superconducting thin-film material, superconducting device and superconducting thin-film material
JP2013097889A (en) Method and device for manufacturing stabilization layer for oxide superconducting conductor and oxide superconducting conductor
JP4128358B2 (en) Manufacturing method of oxide superconductor
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP2515947B2 (en) Superconducting element
JPH0567517A (en) Manufacture of superconducting oxide coil
JP3155558B2 (en) Oxide superconducting wire
JPH08106827A (en) Manufacture of superconductive wire
JP2809960B2 (en) Magnetic field generator
JP2654555B2 (en) Superconducting device manufacturing method
JPS6167282A (en) Resistance element for superconductor integrated circuit and manufacture thereof
JP2919954B2 (en) Superconducting member manufacturing method
JP2919956B2 (en) Superconducting member manufacturing method
JPH04315705A (en) Superconducting tape wire material
JPH01179779A (en) Method for protecting multi-ply oxide superconductor
JP2919955B2 (en) Superconducting member manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees