JP2515947B2 - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JP2515947B2
JP2515947B2 JP4138332A JP13833292A JP2515947B2 JP 2515947 B2 JP2515947 B2 JP 2515947B2 JP 4138332 A JP4138332 A JP 4138332A JP 13833292 A JP13833292 A JP 13833292A JP 2515947 B2 JP2515947 B2 JP 2515947B2
Authority
JP
Japan
Prior art keywords
superconducting
voltage
current
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4138332A
Other languages
Japanese (ja)
Other versions
JPH05335640A (en
Inventor
三雄 須賀
壽一 西野
正彦 平谷
徳海 深沢
正一 赤松
塚本  晃
良信 樽谷
一正 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4138332A priority Critical patent/JP2515947B2/en
Publication of JPH05335640A publication Critical patent/JPH05335640A/en
Application granted granted Critical
Publication of JP2515947B2 publication Critical patent/JP2515947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導スイッチング素子
等、超電導エレクトロニクスの分野に関わり、特にデジ
タル回路、アナログ回路の分野に応用される超電導素子
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of superconducting electronics such as superconducting switching elements, and more particularly to superconducting elements applied to the fields of digital circuits and analog circuits.

【0002】[0002]

【従来の技術】酸化物系の材料を用いた超電導素子とし
ては、酸化物超電導体の結晶粒界を弱結合部とした超電
導素子、および2層の酸化物超電導薄膜を貴金属で接続
した超電導素子が得られている。さらには、アプライド
・フィジックス・レターズ55巻2032頁(1989
年)に弱結合部としてYBa2Cu3yと結晶学的に同系
統のPrBa2Cu3yを用い、YBa2Cu3y薄膜によっ
て挟んだ構造が、すなわち、YBa2Cu3y−PrBa2
u3y−YBa2Cu3yの積層構造が記載されている。こ
の構造が、弱結合特性を有していることがマイクロ波照
射時の電流−電圧特性により示された。また、組成の異
なるBaBi1-xPbx3-yを積層する事により誘起される
超電導を電界で制御する超電導素子が特開平1−205
578に記載されている。
2. Description of the Related Art As a superconducting element using an oxide-based material, a superconducting element in which a crystal grain boundary of an oxide superconductor is a weak coupling portion and a superconducting element in which two oxide superconducting thin films are connected by a noble metal Has been obtained. Furthermore, Applied Physics Letters, Vol. 55, p. 2032 (1989)
YBa 2 Cu 3 O y crystallographically similar PrBa 2 Cu 3 O y as a weak coupling part and sandwiched between YBa 2 Cu 3 O y thin films, that is, YBa 2 Cu 3 O. y- PrBa 2 C
u 3 layered structure of O y -YBa 2 Cu 3 O y is described. It was shown by the current-voltage characteristics during microwave irradiation that this structure has weak coupling characteristics. Further, a superconducting element for controlling superconductivity induced by stacking BaBi 1-x Pb x O 3-y having different compositions by an electric field is disclosed in Japanese Patent Application Laid-Open No. 1-205.
578.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、YBa2Cu3y−PrBa2Cu3y−YBa2Cu
3yの積層構造あるいは組成の異なるBaBi1-xPbx
3-yの積層構造が必要であるため、これらの積層構造の
作製が難く、積層構造は素子性能の劣化につながる格子
欠陥および元素の拡散等を含み易い。また、BaBi1-x
Pbx3-yの積層により誘起された超電導を電界を用い
てコントロールする素子においては、キャリア濃度の高
い層を通して誘起される超電導性をコントロールするた
めに電界効果が小さく増幅特性あるいはスイッチング特
性が悪い。
However, according to the above-mentioned conventional technique, YBa 2 Cu 3 O y -PrBa 2 Cu 3 O y -YBa 2 Cu is used.
BaO 1-x Pb x O with different laminated structure or composition of 3 O y
Since a 3-y laminated structure is required, it is difficult to manufacture these laminated structures, and the laminated structure is likely to include lattice defects and element diffusion that lead to deterioration of device performance. Also, BaBi 1-x
In an element in which superconductivity induced by stacking Pb x O 3-y is controlled by using an electric field, the electric field effect is small and the amplification characteristic or switching characteristic is small in order to control the superconductivity induced through a layer having a high carrier concentration. bad.

【0004】本発明の目的は、層状ペロブスカイト構造
を持つ酸化物半導体に特有な性質を用いて、単層の酸化
物半導体に複雑な結晶構造を有さない物質を接触させる
ことにより酸化物半導体内に誘起される超電導性を用い
て、作製が難しい積層構造を必要としない超電導素子を
提供すること、および、誘起された超電導を電界により
コントロールする事により良好な増幅特性あるいはスイ
ッチング特性を有する素子を提供することにある。
It is an object of the present invention to utilize a property peculiar to an oxide semiconductor having a layered perovskite structure to bring a substance not having a complicated crystal structure into contact with a single-layer oxide semiconductor so that To provide a superconducting element that does not require a layered structure that is difficult to fabricate by using superconductivity induced by the electric field, and to control the induced superconductivity by an electric field to obtain an element having good amplification characteristics or switching characteristics. To provide.

【0005】[0005]

【課題を解決するための手段】上記目的は、図2に示す
ように、基板上に形成された銅を含んだ酸化物系の半導
体層と、上記半導体層上に互いに対向するように設けら
れた第1、第2の電極と、少なくとも上記半導体層上に
上記半導体層内に流れる電流を制御するための制御電極
を絶縁膜を介して形成される超電導素子において、上記
第1、第2の電極は物質の非超電導状態を用いて形成す
ることにより達成される。上記酸化物系の半導体層とし
ては、酸化物半導体R 1+x Ba 2-X Cu 3 y (Rは Prを除く希土類元素、0.3<x<0.8,6<y<
8)、酸化物半導体 Pr 1+x Ba 2-x Cu 3 y (0≦x≦0.5,6<y<
8)、酸化物半導体 1-x Pr x Ba 2 Cu 3 y (0.6≦x≦1,6<y<
8)、酸化物半導体 Bi 2 Sr 2 Ca 1-x x Cu 2 y (Rは希土類元素、0.
6≦x≦1,8<y<8.5)、およびRBa 2 Cu 3
y (RはYまたは希土類元素、 6.0<y<6.4)のいずれかを用いる。
As shown in FIG. 2, the above object is to achieve an oxide-based semiconductor containing copper formed on a substrate.
The body layer and the semiconductor layer are provided so as to face each other.
The first and second electrodes, and at least the semiconductor layer
Control electrode for controlling current flowing in the semiconductor layer
In a superconducting element formed through an insulating film,
The first and second electrodes are formed by using the non-superconducting state of the substance
It is achieved by As the oxide-based semiconductor layer
The oxide semiconductor R 1 + x Ba 2−x Cu 3 O y (R is a rare earth element other than Pr, 0.3 <x <0.8, 6 <y <
8), oxide semiconductor Pr 1 + x Ba 2-x Cu 3 O y (0 ≦ x ≦ 0.5, 6 <y <
8), oxide semiconductor Y 1-x Pr x Ba 2 Cu 3 O y (0.6 ≦ x ≦ 1, 6 <y <
8), the oxide semiconductor Bi 2 Sr 2 Ca 1-x R x Cu 2 O y (R is a rare earth element, 0.
6 ≦ x ≦ 1, 8 <y <8.5), and RBa 2 Cu 3 O
Any of y (R is Y or a rare earth element, 6.0 <y <6.4) is used.

【0006】[0006]

【作用】酸化物半導体R1+xBa2-XCu3y(RはPr
を除く希土類元素、0.3<x<0.8,6<y<
8)、酸化物半導体Pr1+xBa2-xCu3y(0≦x≦
0.5,6<y<8)、酸化物半導体Y1-xPrxBa2
Cu3y(0.6≦x≦1,6<y<8)、酸化物半導
体Bi2Sr2Ca1-xxCu2y(Rは希土類元素、
0.6≦x≦1,8<y<8.5)、およびRBa2
3y(RはYまたは希土類元素、6.0<y<6.
4)のいずれかに、非超電導状態の物質10、11
接触させ、かつ、酸化物半導体に接触した非超電導状
態の物質10、11の間に幅1μm以下の溝をもうけた
構成によって、上記酸化物半導体の電子状態は、非超
電導状態の物質10、11と上記酸化物半導体の界面
近傍において、非超電導状態の物質10、11の影響を
受ける。これは、上記酸化物半導体のキャリア密度と
非超電導状態の物質10、11のキャリア密度が異なる
ためと、両物質の真空準位が異なるために生じる。その
結果、上記酸化物半導体と非超電導状態の物質10、
11との界面近傍に於て、フェルミ準位が移動するため
に電荷移動型ギャップが壊れるため、酸化物半導体
は、界面近傍に於て超電導性を示すようになる。酸化物
半導体9には、2つの非超電導状態の物質間に誘起され
た超電導により超電導電流が流れ、良好な弱結合特性が
得られる。さらに、酸化物半導体内部に動きうるキャリ
アの密度が酸化物超電導体を用いた場合と比較して低い
(10 19 個/cm 3 程度)ため、電界により誘起された
超電導のコントロールを行う場合、電界による効果が大
きい。このため、良好な素子特性が得られる。
[Function] Oxide semiconductor R1 + xBa2-XCu3Oy(R is Pr
Rare earth elements, excluding 0.3 <x <0.8, 6 <y <
8), oxide semiconductor Pr1 + xBa2-xCu3Oy(0 ≦ x ≦
0.5, 6 <y <8), oxide semiconductor Y1-xPrxBa2
Cu3Oy(0.6 ≦ x ≦ 1, 6 <y <8), oxide semiconductor
Body Bi2Sr2Ca1-xRxCu2Oy(R is a rare earth element,
0.6 ≦ x ≦ 1, 8 <y <8.5), andAnd RBa2C
u3Oy(R is Y or a rare earth element, 6.0 <y <6.
Any of 4)9A non-superconducting substance10, 11To
Contact and oxide semiconductor9Non-superconducting material in contact with
Substance10, 11A groove with a width of 1 μm or less was provided
Depending on the configuration, the above oxide semiconductor9Electronic state is non-super
Conductive substance10, 11And the above oxide semiconductor9Interface
Non-superconducting substances in the vicinity10, 11The effect of
receive. This is the above oxide semiconductor9Carrier density of
Non-superconducting substance10, 11Carrier density is different
ForAnd bothIt occurs because the vacuum level of the substance is different. That
As a result, the above oxide semiconductor9And non-superconducting substances10,
11Because the Fermi level moves near the interface with
Charge transfer gap is brokenFor,Oxide semiconductor9
Shows superconductivity near the interface.Oxide
In the semiconductor 9, induced between two non-superconducting substances
Superconducting current flows due to superconductivity,
can get. Furthermore, a carrier that can move inside the oxide semiconductor
The density of a is lower than when using an oxide superconductor
(10 19 Pieces / cm 3 Degree), therefore induced by the electric field
When controlling superconductivity, the effect of the electric field is great.
Kii. Therefore, good device characteristics can be obtained.

【0007】[0007]

【実施例】〈実施例1〉以下、本発明を電界効果型超電
導三端子素子の例を用いて説明する。
EXAMPLES Example 1 Hereinafter, the present invention will be described using an example of a field effect superconducting three-terminal element.

【0008】本素子の構造を、図1に示す。SrTiO3
(110)面方位単結晶基板1上に形成したLa1.5Ba
1.5Cu3y半導体薄膜2の上にAu電極(ソース)3、
Au電極(ドレイン)4を形成し、3,4間に寸法0.1
μmのギャップを形成した。その後、CaF2絶縁膜6を
設け、Au電極(ゲート)7を形成する。
The structure of this device is shown in FIG. SrTiO 3
La 1.5 Ba formed on the (110) plane-oriented single crystal substrate 1
1.5 Cu 3 O y Au thin film (source) 3 on the semiconductor thin film 2,
An Au electrode (drain) 4 is formed, and the dimension between 3 and 4 is 0.1.
A μm gap was formed. Then, a CaF 2 insulating film 6 is provided and an Au electrode (gate) 7 is formed.

【0009】La1.5Ba1.5Cu3y薄膜は、マイクロ波
酸素プラズマを用いた反応性蒸着装置によって成膜を行
なった。雰囲気ガスは純酸素ガスとし、全圧力は8×1
0-5torrとした。原料は、それぞれ金属状態のLa,Ba,
Cuを用い、クヌードセンセルを用いて蒸発させた。酸
化力を高めるために、2.45GHz、120Wのマイ
クロ波を照射した。膜形成時の基板温度は450℃とし
た。この様な条件で形成したLa1.5Ba1.5Cu3y薄膜
2は、(110)面が基板面と垂直な方向の結晶性を有
する。Au電極およびCaF2絶縁膜の形成にも反応性蒸
着装置を用いたが、それぞれ真空中でマイクロ波を照射
せずに成膜を行なった。また、Auは、電子銃蒸着装置
を用いて蒸発させた。
The La 1.5 Ba 1.5 Cu 3 O y thin film was formed by a reactive vapor deposition apparatus using microwave oxygen plasma. The atmospheric gas is pure oxygen gas, and the total pressure is 8 × 1.
Was 0- 5 torr. The raw materials are La, Ba, and
It was evaporated using Cu and a Knudsen cell. Irradiation with microwaves of 2.45 GHz and 120 W was performed to increase the oxidizing power. The substrate temperature during film formation was 450 ° C. The La 1.5 Ba 1.5 Cu 3 O y thin film 2 formed under such conditions has crystallinity in which the (110) plane is perpendicular to the substrate surface. A reactive vapor deposition apparatus was also used for forming the Au electrode and the CaF 2 insulating film, but the film was formed in a vacuum without irradiation with microwaves. Au was evaporated using an electron gun vapor deposition device.

【0010】超電導素子の作製行程は以下の通りとし
た。すなわち、La1.5Ba1.5Cu3y薄膜2をSrTiO3
の(110)面方位単結晶基板1上に形成した。膜厚は
100nmとした。この上に、マスク蒸着法によりバー状
のAu薄膜を形成した。Au薄膜の膜厚は30nmで、大き
さは0.2×5mmとした。この上に電子線用レジストを
塗布した後、電子線描画装置で0.2mmの辺に平行にAu
電極の中央に0.1μmの線状のパターンを描いた。反
応性イオンビームエッチング法でレジストパターンを基
にAu薄膜に溝状のパターンを形成し、それぞれAu電極
(ソース)3およびAu電極(ドレイン)4とした。こ
の溝状のチャネル5上にCaF2絶縁膜6を形成し、ゲー
ト絶縁膜とした。ゲート絶縁膜の上にAuを蒸着し、Au
電極(ゲート)7とした。
The manufacturing process of the superconducting device was as follows. That is, the La 1.5 Ba 1.5 Cu 3 O y thin film 2 is replaced with SrTiO 3
It was formed on the (110) plane-oriented single crystal substrate 1. The film thickness was 100 nm. A bar-shaped Au thin film was formed on this by a mask vapor deposition method. The Au thin film had a thickness of 30 nm and a size of 0.2 × 5 mm. After applying an electron beam resist on this, an Au beam was drawn in parallel with the 0.2 mm side by an electron beam drawing device.
A 0.1 μm linear pattern was drawn in the center of the electrode. A groove-shaped pattern was formed on the Au thin film based on the resist pattern by the reactive ion beam etching method to form Au electrode (source) 3 and Au electrode (drain) 4, respectively. A CaF 2 insulating film 6 was formed on this groove-shaped channel 5 to form a gate insulating film. Au is vapor-deposited on the gate insulating film,
The electrode (gate) 7 was used.

【0011】この超電導素子の60Kにおけるソース、
ドレイン間の電流−電圧特性においては、約1.0mA
の超電導電流が流れ、これ以上のバイアス電流に対して
電圧が発生する。さらにゲートに対して200mVの電
圧を印加した場合、超電導電流は0.2mAに減少し、
これ以上のバイアス電流で電圧が発生する。以上のごと
く、本超電導素子は、三端子素子としての基本特性を有
する。また、LaのかわりにPr以外の希土類元素を用い
て素子を作製した場合も同様の特性が得られた。この場
合、Eu以外の希土類元素はクヌードセンセルの代わり
に電子銃蒸着装置を用いて蒸発させた。さらに、Auの
かわりにAg,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,I
n,Al,V,Ta,Wを用いた素子も作製したが、この場合
にも同様の特性が得られた。
The source of this superconducting element at 60K,
In the current-voltage characteristics between drains, about 1.0 mA
Of superconducting current flows, and a voltage is generated for a bias current higher than this. Furthermore, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.2 mA,
A voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Similar characteristics were also obtained when a device was manufactured by using a rare earth element other than Pr instead of La. In this case, rare earth elements other than Eu were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Further, instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb, I
A device using n, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0012】〈実施例2〉実施例1と同じ薄膜構造にお
いて、Au電極(ソース)3とAu電極(ドレイン)4の
間の距離のみを変更し、線の幅を0.5μmとした。作
製工程等は、実施例1と同じである。この超電導素子の
30Kにおけるソース、ドレイン間の電流−電圧特性に
おいては、約0.8mAの超電導電流が流れ、これ以上
のバイアス電流に対して電圧が発生する。さらにゲート
に対して200mVの電圧を印加した場合、超電導電流
は0.15Aに減少し、これ以上のバイアス電流で電圧
が発生する。以上のごとく、本超電導素子は、三端子素
子としての基本特性を有する。また、LaのかわりにPr
を除く希土類元素を用いて素子を作製した場合も同様の
特性が得られた。この場合、Eu以外の希土類元素はク
ヌードセンセルの代わりに電子銃蒸着装置を用いて蒸発
させた。さらに、AuのかわりにAg,Bi,Sb,PbBi,P
b,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も
作製したが、この場合にも同様の特性が得られた。
Example 2 In the same thin film structure as in Example 1, only the distance between the Au electrode (source) 3 and the Au electrode (drain) 4 was changed, and the line width was set to 0.5 μm. The manufacturing process and the like are the same as in Example 1. In the current-voltage characteristic between the source and the drain at 30 K of this superconducting element, a superconducting current of about 0.8 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.15 A, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of La, Pr
Similar characteristics were obtained when devices were manufactured using rare earth elements other than. In this case, rare earth elements other than Eu were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Furthermore, instead of Au, Ag, Bi, Sb, PbBi, P
A device using b, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0013】〈実施例3〉実施例1と同じ薄膜構造にお
いて、Au電極(ソース)3とAu電極(ドレイン)4の
間の距離のみを変更し、線の幅を1μmとした。作製工
程等は、実施例1と同じである。この超電導素子の4.
2Kにおけるソース、ドレイン間の電流−電圧特性にお
いては、約0.2mAの超電導電流が流れ、これ以上の
バイアス電流に対して電圧が発生する。さらにゲートに
対して200mVの電圧を印加した場合、超電導電流は
0.01mAに減少し、これ以上のバイアス電流で電圧
が発生する。以上のごとく、本超電導素子は、三端子素
子としての基本特性を有する。また、LaのかわりにPr
を除く希土類元素を用いて素子を作製した場合も同様の
特性が得られた。この場合、Eu以外の希土類元素はク
ヌードセンセルの代わりに電子銃蒸着装置を用いて蒸発
させた。さらに、AuのかわりにAg,Bi,Sb,PbBi,P
b,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も
作製したが、この場合にも同様の特性が得られた。
Example 3 In the same thin film structure as in Example 1, only the distance between the Au electrode (source) 3 and the Au electrode (drain) 4 was changed, and the line width was set to 1 μm. The manufacturing process and the like are the same as in Example 1. 4. of this superconducting element
In the current-voltage characteristics between the source and the drain at 2K, a superconducting current of about 0.2 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.01 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of La, Pr
Similar characteristics were obtained when devices were manufactured using rare earth elements other than. In this case, rare earth elements other than Eu were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Furthermore, instead of Au, Ag, Bi, Sb, PbBi, P
A device using b, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0014】〈実施例4〉実施例1と同じ薄膜構造にお
いて、酸化物半導体の組成のみを変更し、La1.3Ba1.7
Cu3yを用いた。作製工程等は、実施例1と同じであ
る。この超電導素子の60Kにおけるソース、ドレイン
間の電流−電圧特性においては、約1.3mAの超電導
電流が流れ、これ以上のバイアス電流に対して電圧が発
生する。さらにゲートに対して200mVの電圧を印加
した場合、超電導電流は0.3mAに減少し、これ以上
のバイアス電流で電圧が発生する。以上のごとく、本超
電導素子は、三端子素子としての基本特性を有する。ま
た、LaのかわりにPrを除く希土類元素を用いて素子を
作製した場合も同様の特性が得られた。この場合、Eu
以外の希土類元素はクヌードセンセルの代わりに電子銃
蒸着装置を用いて蒸発させた。さらに、Auのかわりに
Ag,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,In,Al,V,
Ta,Wを用いた素子も作製したが、この場合にも同様の
特性が得られた。
<Embodiment 4> In the same thin film structure as in Embodiment 1, only the composition of the oxide semiconductor was changed to obtain La 1.3 Ba 1.7.
Cu 3 O y was used. The manufacturing process and the like are the same as in Example 1. In the current-voltage characteristic between the source and the drain at 60 K of this superconducting element, a superconducting current of about 1.3 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current is reduced to 0.3 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Similar characteristics were also obtained when a device was manufactured by using a rare earth element other than Pr instead of La. In this case, Eu
Other rare earth elements were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Further, instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb, In, Al, V,
An element using Ta and W was also manufactured, but similar characteristics were obtained in this case as well.

【0015】〈実施例5〉実施例1と同じ薄膜構造にお
いて、酸化物半導体の組成のみを変更し、La1.7Ba1.3
Cu3yを用いた。作製工程等は、実施例1と同じであ
る。この超電導素子の60Kにおけるソース、ドレイン
間の電流−電圧特性においては、約0.8mAの超電導
電流が流れ、これ以上のバイアス電流に対して電圧が発
生する。さらにゲートに対して200mVの電圧を印加
した場合、超電導電流は0.1mAに減少し、これ以上
のバイアス電流で電圧が発生する。以上のごとく、本超
電導素子は、三端子素子としての基本特性を有する。こ
の場合、Eu以外の希土類元素はクヌードセンセルの代
わりに電子銃蒸着装置を用いて蒸発させた。さらに、A
uのかわりにAg,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,
In,Al,V,Ta,Wを用いた素子も作製したが、この場
合にも同様の特性が得られた。
<Embodiment 5> In the same thin film structure as in Embodiment 1, only the composition of the oxide semiconductor was changed to obtain La 1.7 Ba 1.3.
Cu 3 O y was used. The manufacturing process and the like are the same as in Example 1. In the current-voltage characteristic between the source and the drain at 60 K of this superconducting element, a superconducting current of about 0.8 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current is reduced to 0.1 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. In this case, rare earth elements other than Eu were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Furthermore, A
Instead of u, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb,
A device using In, Al, V, Ta and W was also manufactured, but similar characteristics were obtained also in this case.

【0016】〈実施例6〉実施例1と同じ薄膜構造にお
いて、酸化物半導体のみを変更し、Pr1.5Ba1.5Cu3y
を用いた。ただし、半導体薄膜の原料としてそれぞれ金
属状態のPr,Ba,Cuを用い、Prは電子銃蒸着装置を用
いて蒸発させた。その他の作製工程は、実施例1と同じ
である。
<Sixth Embodiment> In the same thin film structure as in the first embodiment, only the oxide semiconductor is changed to Pr 1.5 Ba 1.5 Cu 3 O y.
Was used. However, Pr, Ba, and Cu in the metal state were used as raw materials for the semiconductor thin film, and Pr was evaporated by using an electron gun vapor deposition apparatus. The other manufacturing steps are the same as in Example 1.

【0017】この超電導素子の60Kにおけるソース、
ドレイン間の電流−電圧特性においては、約0.5mA
の超電導電流が流れ、これ以上のバイアス電流に対して
電圧が発生する。さらにゲートに対して200mVの電
圧を印加した場合、超電導電流は0.05mAに減少
し、これ以上のバイアス電流で電圧が発生する。以上の
ごとく、本超電導素子は、三端子素子としての基本特性
を有する。また、AuのかわりにAg,Bi,Sb,PbBi,P
b,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も
作製したが、この場合にも同様の特性が得られた。
The source of this superconducting element at 60K,
The current-voltage characteristics between the drains are about 0.5 mA.
Of superconducting current flows, and a voltage is generated for a bias current higher than this. Furthermore, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.05 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi, P
A device using b, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0018】〈実施例7〉実施例6と同じ薄膜構造にお
いて、酸化物半導体の組成のみを変更し、Pr1.1Ba1.9
Cu3yを用いた。この超電導素子の60Kにおけるソ
ース、ドレイン間の電流−電圧特性においては、約0.
7mAの超電導電流が流れ、これ以上のバイアス電流に
対して電圧が発生する。さらにゲートに対して200m
Vの電圧を印加した場合、超電導電流は0.1mAに減
少し、これ以上のバイアス電流で電圧が発生する。以上
のごとく、本超電導素子は、三端子素子としての基本特
性を有する。また、AuのかわりにAg,Bi,Sb,PbBi,
Pb,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子
も作製したが、この場合にも同様の特性が得られた。
<Embodiment 7> In the same thin film structure as in Embodiment 6, only the composition of the oxide semiconductor was changed to obtain Pr 1.1 Ba 1.9.
Cu 3 O y was used. The current-voltage characteristics between the source and drain at 60 K of this superconducting element are about 0.
A superconducting current of 7 mA flows, and a voltage is generated for a bias current higher than this. 200m to the gate
When a voltage of V is applied, the superconducting current decreases to 0.1 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi,
A device using Pb, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0019】〈実施例8〉実施例6と同じ薄膜構造にお
いて、酸化物半導体のみを変更し、PrBa2Cu3yを用
いた。ただし、半導体薄膜の原料としてそれぞれ金属状
態のPr,Ba,Cuを用い、Prは電子銃蒸着装置を用いて
蒸発させた。
Example 8 In the same thin film structure as in Example 6, only the oxide semiconductor was changed and PrBa 2 Cu 3 O y was used. However, Pr, Ba, and Cu in the metal state were used as raw materials for the semiconductor thin film, and Pr was evaporated by using an electron gun vapor deposition apparatus.

【0020】この超電導素子の60Kにおけるソース、
ドレイン間の電流−電圧特性においては、約0.8mA
の超電導電流が流れ、これ以上のバイアス電流に対して
電圧が発生する。さらにゲートに対して200mVの電
圧を印加した場合、超電導電流は0.15mAに減少
し、これ以上のバイアス電流で電圧が発生する。以上の
ごとく、本超電導素子は、三端子素子としての基本特性
を有する。また、AuのかわりにAg,Bi,Sb,PbBi,P
b,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も
作製したが、この場合にも同様の特性が得られた。
The source of this superconducting element at 60K,
The current-voltage characteristic between the drains is about 0.8 mA.
Of superconducting current flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.15 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi, P
A device using b, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0021】〈実施例9〉実施例1と同じ薄膜構造にお
いて、酸化物半導体のみを変更し、Y0.4Pr0.6Ba2Cu
3yを用いた。ただし、半導体薄膜の原料としてそれぞ
れ金属状態のY,Pr,Ba,Cuを用い、Y,Prは電子銃蒸
着装置を用いて蒸発させた。
<Embodiment 9> In the same thin film structure as in Embodiment 1, only the oxide semiconductor is changed to Y 0.4 Pr 0.6 Ba 2 Cu.
3 O y was used. However, Y, Pr, Ba, and Cu in the metallic state were used as raw materials for the semiconductor thin film, and Y and Pr were vaporized by using an electron gun vapor deposition apparatus.

【0022】この超電導素子の60Kにおけるソース、
ドレイン間の電流−電圧特性においては、約2.0mA
の超電導電流が流れ、これ以上のバイアス電流に対して
電圧が発生する。さらにゲートに対して200mVの電
圧を印加した場合、超電導電流は0.4mAに減少し、
これ以上のバイアス電流で電圧が発生する。以上のごと
く、本超電導素子は、三端子素子としての基本特性を有
する。また、AuのかわりにAg,Bi,Sb,PbBi,Pb,S
n,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も作製
したが、この場合にも同様の特性が得られた。
The source of this superconducting element at 60K,
About 2.0mA in current-voltage characteristics between drains
Of superconducting current flows, and a voltage is generated for a bias current higher than this. When a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.4 mA,
A voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi, Pb, S
An element using n, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0023】〈実施例10〉実施例9と同じ薄膜構造に
おいて、Au電極(ソース)3とAu電極(ドレイン)4
の間の距離のみを変更し、線の幅を0.5μmとした。
作製工程等は、実施例9と同じである。この超電導素子
の30Kにおけるソース、ドレイン間の電流−電圧特性
においては、約1.2mAの超電導電流が流れ、これ以
上のバイアス電流に対して電圧が発生する。さらにゲー
トに対して200mVの電圧を印加した場合、超電導電
流は0.2mAに減少し、これ以上のバイアス電流で電
圧が発生する。以上のごとく、本超電導素子は、三端子
素子としての基本特性を有する。また、Auのかわりに
Ag,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,In,Al,V,
Ta,Wを用いた素子も作製したが、この場合にも同様の
特性が得られた。
<Embodiment 10> In the same thin film structure as in Embodiment 9, an Au electrode (source) 3 and an Au electrode (drain) 4 are provided.
Only the distance between them was changed, and the width of the line was set to 0.5 μm.
The manufacturing process and the like are the same as in Example 9. In the current-voltage characteristic between the source and the drain at 30 K of this superconducting element, a superconducting current of about 1.2 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.2 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb, In, Al, V,
An element using Ta and W was also manufactured, but similar characteristics were obtained in this case as well.

【0024】〈実施例11〉実施例9と同じ薄膜構造に
おいて、Au電極(ソース)3とAu電極(ドレイン)4
の間の距離のみを変更し、線の幅を1μmとした。作製
工程等は、実施例9と同じである。この超電導素子の
4.2Kにおけるソース、ドレイン間の電流−電圧特性
においては、約0.5mAの超電導電流が流れ、これ以
上のバイアス電流に対して電圧が発生する。さらにゲー
トに対して200mVの電圧を印加した場合、超電導電
流は0.01mAに減少し、これ以上のバイアス電流で
電圧が発生する。以上のごとく、本超電導素子は、三端
子素子としての基本特性を有する。また、Auのかわり
にAg,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,In,Al,
V,Ta,Wを用いた素子も作製したが、この場合にも同
様の特性が得られた。
<Embodiment 11> In the same thin film structure as that of Embodiment 9, an Au electrode (source) 3 and an Au electrode (drain) 4 are provided.
Only the distance between them was changed, and the line width was set to 1 μm. The manufacturing process and the like are the same as in Example 9. In the current-voltage characteristics between the source and drain at 4.2K of this superconducting element, a superconducting current of about 0.5 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.01 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb, In, Al,
An element using V, Ta and W was also manufactured, but similar characteristics were obtained in this case as well.

【0025】〈実施例12〉実施例1と同じ薄膜構造に
おいて、酸化物半導体のみを変更し、Bi2Sr2NdYCu
3Oyを用いた。ただし、半導体薄膜の原料としてそれぞ
れ金属状態のBi,Sr,Nd,Cuを用い、Yは電子銃蒸着
装置を用いて蒸発させ、他の原料はクヌードセンセルを
用いて蒸発させた。他の工程は、実施例1に記したのと
同様である。 この超電導素子の50Kにおけるソー
ス、ドレイン間の電流−電圧特性においては、約1.0
mAの超電導電流が流れ、これ以上のバイアス電流に対
して電圧が発生する。さらにゲートに対して100mV
の電圧を印加した場合、超電導電流は0.2mAに減少
し、これ以上のバイアス電流で電圧が発生する。以上の
ごとく、本超電導素子は、三端子素子としての基本特性
を有する。また、NdのかわりにYあるいは他の希土類
元素を用いた場合にも同様の特性が得られた。この場
合、Eu以外の希土類元素およびYはクヌードセンセル
の代わりに電子銃蒸着装置を用いて蒸発させた。さら
に、AuのかわりにAg,Bi,Sb,PbBi,Pb,Sn,Zn,G
a,Nb,In,Al,V,Ta,Wを用いた素子も作製したが、
この場合にも同様の特性が得られた。
<Embodiment 12> In the same thin film structure as in Embodiment 1, only the oxide semiconductor is changed, and Bi 2 Sr 2 NdYCu is used.
3 Oy was used. However, Bi, Sr, Nd, and Cu in the metallic state were used as the raw materials of the semiconductor thin film, Y was evaporated using an electron gun vapor deposition apparatus, and the other raw materials were evaporated using a Knudsen cell. The other steps are the same as those described in Example 1. The current-voltage characteristics between the source and drain at 50 K of this superconducting device are about 1.0.
A superconducting current of mA flows, and a voltage is generated for a bias current higher than this. 100 mV to the gate
When the above voltage is applied, the superconducting current is reduced to 0.2 mA, and the voltage is generated by the bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Similar characteristics were obtained when Y or another rare earth element was used instead of Nd. In this case, the rare earth elements other than Eu and Y were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Further, instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, G
An element using a, Nb, In, Al, V, Ta, W was also manufactured,
Similar characteristics were obtained in this case as well.

【0026】〈実施例13〉実施例12と同じ薄膜構造
において、酸化物半導体の組成のみを変更し、Bi2Sr2
Ca0.4Nd0.6YCu3yを用いた。この超電導素子の6
0Kにおけるソース、ドレイン間の電流−電圧特性にお
いては、約1.8mAの超電導電流が流れ、これ以上の
バイアス電流に対して電圧が発生する。さらにゲートに
対して200mVの電圧を印加した場合、超電導電流は
0.3mAに減少し、これ以上のバイアス電流で電圧が
発生する。以上のごとく、本超電導素子は、三端子素子
としての基本特性を有する。また、NdのかわりにYあ
るいは他の希土類元素を用いた場合にも同様の特性が得
られた。この場合、Eu以外の希土類元素およびYはク
ヌードセンセルの代わりに電子銃蒸着装置を用いて蒸発
させた。さらに、AuのかわりにAg,Bi,Sb,PbBi,P
b,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを用いた素子も
作製したが、この場合にも同様の特性が得られた。
<Embodiment 13> In the same thin film structure as that of Embodiment 12, only the composition of the oxide semiconductor is changed, and Bi 2 Sr 2 is added.
Ca 0.4 Nd 0.6 YCu 3 O y was used. 6 of this superconducting element
In the current-voltage characteristics between the source and drain at 0K, a superconducting current of about 1.8 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current is reduced to 0.3 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Similar characteristics were obtained when Y or another rare earth element was used instead of Nd. In this case, the rare earth elements other than Eu and Y were evaporated using an electron gun vapor deposition device instead of the Knudsen cell. Furthermore, instead of Au, Ag, Bi, Sb, PbBi, P
A device using b, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, but similar characteristics were obtained in this case as well.

【0027】〈実施例14〉実施例12と同じ薄膜構造
において、Au電極(ソース)3とAu電極(ドレイン)
4の間の距離のみを変更し、線の幅を0.5μmとし
た。作製工程等は、実施例12と同じである。この超電
導素子の60Kにおけるソース、ドレイン間の電流−電
圧特性においては、約0.3mAの超電導電流が流れ、
これ以上のバイアス電流に対して電圧が発生する。さら
にゲートに対して200mVの電圧を印加した場合、超
電導電流は0.01mAに減少し、これ以上のバイアス
電流で電圧が発生する。以上のごとく、本超電導素子
は、三端子素子としての基本特性を有する。また、Au
のかわりにAg,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,
In,Al,V,Ta,Wを用いた素子も作製したが、この場
合にも同様の特性が得られた。
<Embodiment 14> In the same thin film structure as that of Embodiment 12, an Au electrode (source) 3 and an Au electrode (drain).
Only the distance between 4 was changed, and the line width was set to 0.5 μm. The manufacturing process and the like are the same as in Example 12. In the current-voltage characteristics between the source and drain at 60 K of this superconducting element, a superconducting current of about 0.3 mA flows,
A voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.01 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, Au
Instead of Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb,
A device using In, Al, V, Ta and W was also manufactured, but similar characteristics were obtained also in this case.

【0028】〈実施例15〉実施例12と同じ薄膜構造
において、Au電極(ソース)3とAu電極(ドレイン)
4の間の距離のみを変更し、線の幅を1μmとした。作
製工程等は、実施例12と同じである。この超電導素子
の25Kにおけるソース、ドレイン間の電流−電圧特性
においては、約0.2mAの超電導電流が流れ、これ以
上のバイアス電流に対して電圧が発生する。さらにゲー
トに対して200mVの電圧を印加した場合、超電導電
流は0.01mAに減少し、これ以上のバイアス電流で
電圧が発生する。以上のごとく、本超電導素子は、三端
子素子としての基本特性を有する。また、Auのかわり
にAg,Bi,Sb,PbBi,Pb,Sn,Zn,Ga,Nb,In,Al,
V,Ta,Wを用いた素子も作製したが、この場合にも同
様の特性が得られた。
<Embodiment 15> In the same thin film structure as Embodiment 12, an Au electrode (source) 3 and an Au electrode (drain).
Only the distance between 4 was changed and the line width was 1 μm. The manufacturing process and the like are the same as in Example 12. In the current-voltage characteristic between the source and the drain at 25K of this superconducting element, a superconducting current of about 0.2 mA flows, and a voltage is generated for a bias current higher than this. Further, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.01 mA, and a voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Also, instead of Au, Ag, Bi, Sb, PbBi, Pb, Sn, Zn, Ga, Nb, In, Al,
An element using V, Ta and W was also manufactured, but similar characteristics were obtained in this case as well.

【0029】〈実施例16〉実施例1と同じ薄膜構造に
おいて、酸化物半導体のみを変更し、YBa2Cu36+y
を用いた。ただし、半導体薄膜の原料としてそれぞれ金
属状態のY,Ba,Cuを用い、Yは電子銃蒸着装置を用い
て蒸発させた。また、酸化物薄膜を形成した後、チェー
ンサイトの酸素を十分に欠損させるために、Ar中、4
50℃で6時間アニールした。他の工程はすべて実施例
1で記したのと同様である。
<Example 16> In the same thin film structure as in Example 1, only the oxide semiconductor was changed, and YBa 2 Cu 3 O 6 + y was used.
Was used. However, Y, Ba, and Cu in a metallic state were used as raw materials for the semiconductor thin film, and Y was evaporated by using an electron gun vapor deposition apparatus. In addition, after forming the oxide thin film, in order to sufficiently deplete oxygen at the chain site, in Ar, 4
Annealed at 50 ° C. for 6 hours. All other steps are the same as described in Example 1.

【0030】この超電導素子の30Kにおけるソース、
ドレイン間の電流−電圧特性においては、約0.9mA
の超電導電流が流れ、これ以上のバイアス電流に対して
電圧が発生する。さらにゲートに対して200mVの電
圧を印加した場合、超電導電流は0.1mAに減少し、
これ以上のバイアス電流で電圧が発生する。以上のごと
く、本超電導素子は、三端子素子としての基本特性を有
する。また、Yのかわりに希土類元素を用いた場合も同
様の特性が得られた。さらに、AuのかわりにAg,Bi,
Sb,PbBi,Pb,Sn,Zn,Ga,Nb,In,Al,V,Ta,Wを
用いた素子も作製したが、この場合にも同様の特性が得
られた。
The source of this superconducting element at 30K,
In the current-voltage characteristic between drains, about 0.9 mA
Of superconducting current flows, and a voltage is generated for a bias current higher than this. Furthermore, when a voltage of 200 mV is applied to the gate, the superconducting current decreases to 0.1 mA,
A voltage is generated with a bias current higher than this. As described above, the present superconducting element has the basic characteristics as a three-terminal element. Similar characteristics were also obtained when a rare earth element was used instead of Y. Furthermore, instead of Au, Ag, Bi,
A device using Sb, PbBi, Pb, Sn, Zn, Ga, Nb, In, Al, V, Ta, W was also manufactured, and similar characteristics were obtained in this case as well.

【0031】なお、実施例における薄膜形成法は反応性
蒸着法であったが、レーザーアブレーション法、スパッ
タリング法、MOVPE法など、他の成膜法が適用可能
であることは言うまでもない。また、本実施例において
は、SrTiO3を基板として用いたが、MgO、LaAlO
3等他の基板の上に作製できることは言うまでもない。
さらに、本実施例においては三端子素子に関して記した
が、三端子素子の構成要素である弱結合素子等他の超電
導素子を作製できることは言うまでもない。
Although the thin film forming method in the examples was the reactive vapor deposition method, it goes without saying that other film forming methods such as the laser ablation method, the sputtering method and the MOVPE method can be applied. In this embodiment, SrTiO 3 is used as the substrate, but MgO and LaAlO are used.
Needless to say, it can be formed on another substrate such as 3 .
Furthermore, in the present embodiment, the description has been made on the three-terminal element, but it goes without saying that another superconducting element such as a weak coupling element which is a constituent element of the three-terminal element can be manufactured.

【0032】[0032]

【発明の効果】実施例の項において述べたごとく、本発
明にかかる構造の素子は以下の効果を有する。
As described in the embodiments, the device having the structure according to the present invention has the following effects.

【0033】(1)酸化物半導体に結晶構造の単純な非
超電導物質を接触させ、かつ、非超電導物質間の距離を
1μm以下とすることにより、酸化物半導体に誘起され
る超電導性を用いて動作する素子なので、複雑な積層構
造が必要でなくなり、素子の作製が単純になる。
(1) The superconductivity induced in the oxide semiconductor is used by bringing the oxide semiconductor into contact with a simple non-superconducting substance having a crystalline structure and setting the distance between the non-superconducting substances to 1 μm or less. Since it is a device that operates, a complicated laminated structure is not required, and the device can be simply manufactured.

【0034】(2)酸化物半導体以外は室温で形成する
ことが出来るため、界面近傍における拡散が少なくなり
素子性能が向上する。
(2) Since the components other than the oxide semiconductor can be formed at room temperature, diffusion near the interface is reduced and the device performance is improved.

【0035】(3)超電導染みだしのコントロールを行
なうために、電界による効果が大きく、良好な素子性能
を有する。
(3) Since the superconducting exudate is controlled, the effect of the electric field is great, and the device performance is good.

【0036】(4)上記超電導素子を用いた超電導論理
回路、記憶回路を構成することが出来る。
(4) A superconducting logic circuit and a memory circuit using the above superconducting element can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】超電導の誘起及び超電導染みだしに関する原理
実験を行なうための配置図である。
FIG. 2 is a layout diagram for conducting a principle experiment on superconducting induction and superconducting exudation.

【符号の説明】[Explanation of symbols]

1.SrTiO3基板 2.酸化物半導体薄膜 3.非超電導電極(ソース) 4.非超電導電極(ゲート) 5.チャネル 6.絶縁膜 7.電極(ゲート) 8.SrTiO 3 基板 9.酸化物半導体薄膜 10.非超電導電極(ソース) 11.非超電導電極(ゲート)1. SrTiO 3 substrate 2. Oxide semiconductor thin film 3. Non-superconducting conductive electrode (source) 4. Non-superconducting conductive electrode (gate) 5. Channel 6. Insulating film 7. Electrode (gate) 8. SrTiO 3 substrate 9. Oxide semiconductor thin film 10. Non-superconducting conductive electrode (source) 11. Non-superconducting conductive electrode (gate)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深沢 徳海 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 赤松 正一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 塚本 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 樽谷 良信 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高木 一正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平3−228382(JP,A) 特開 平1−276680(JP,A) 特開 昭63−313877(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tokumi Fukasawa, Tokumi Fukasawa 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Shoichi Akamatsu 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory (72) Inventor Akira Tsukamoto 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Institute Ltd. (72) Inventor Yoshinobu Tarutani 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house (72) Inventor Kazumasa Takagi 1-280, Higashi-Kengokubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-3-228382 (JP, A) JP-A-1-276680 (JP, A) JP-A-63-313877 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に形成された銅を含んだ酸化物系の
半導体層と、上記半導体層上に互いに対向するように設
けられた物質の非超電導状態を用いて形成される第1、
第2の電極と、少なくとも上記半導体層上に絶縁膜を介
して上記半導体層内に流れる電流を制御するための制御
電極と、を有することを特徴とする超電導素子。
1. A copper-containing oxide-based material formed on a substrate.
The semiconductor layer and the semiconductor layer are provided so as to face each other.
First formed using the non-superconducting state of the eroded material,
An insulating film is provided on the second electrode and at least the semiconductor layer.
Control for controlling the current flowing in the semiconductor layer
A superconducting element, comprising: an electrode.
【請求項2】特許請求の範囲第1項において、上記第
1、第2の電極は、非超電導物質より成ることを特徴と
する超電導素子。
2. The method according to claim 1, wherein
The first and second electrodes are made of a non-superconducting material.
Superconducting element.
【請求項3】特許請求の範囲第2項において、上記非超
電導物質は、Au, Ag, Bi, Sbのうち少なくとも一つの物
質を含むことを特徴とする超電導素子。
3. The non-superscript according to claim 2
Conductive material is at least one of Au, Ag, Bi, Sb
A superconducting device characterized by containing quality.
【請求項4】特許請求の範囲第1項において、上記第
1、第2の電極は、超電導物質より成ることを特徴とす
る超電導素子。
4. The method according to claim 1, wherein
The first and second electrodes are made of a superconducting material.
Superconducting element.
【請求項5】特許請求の範囲第4項において、上記超電
導物質は、PbBi, Pb, Sn, Zn, Ga,Nb, In, Al, V, Ta,
W のうち少なくとも一つの物質を含むことを特徴とする
超電導素子。
5. The supercharger according to claim 4,
Conductive materials are PbBi, Pb, Sn, Zn, Ga, Nb, In, Al, V, Ta,
Characterized by containing at least one substance of W
Superconducting element.
【請求項6】特許請求の範囲第1項において、上記半導
体層は、R 1+x Ba 2-X Cu 3 y (RはPrを除く希土類
元素、0.3<x<0.8,6<y<8)、 Pr 1+x Ba 2-x Cu 3 y (0≦x≦0.5,6<y<
8)、 1-x Pr x Ba 2 Cu 3 y (0.6≦x≦1,6<y<
8)、 Bi 2 Sr 2 Ca 1-x x Cu 2 y (Rは希土類元素、0.
6≦x≦1, 8<y<8.5)、およびRBa 2 Cu 3 y (RはYま
たは希土類元素、 6.0<y<6.4)のうちいずれかより成ることを特
徴とする超電導素子。
6. The semiconductor device according to claim 1,
The body layer is R 1 + x Ba 2-x Cu 3 O y (R is a rare earth element except Pr)
Element, 0.3 <x <0.8, 6 <y <8), Pr 1 + x Ba 2-x Cu 3 O y (0 ≦ x ≦ 0.5, 6 <y <
8), Y 1-x Pr x Ba 2 Cu 3 O y (0.6 ≦ x ≦ 1, 6 <y <
8), Bi 2 Sr 2 Ca 1-x R x Cu 2 O y (R is a rare earth element, 0.
6 ≦ x ≦ 1, 8 <y <8.5), and RBa 2 Cu 3 O y (R is Y or
Or rare earth element, 6.0 <y <6.4).
A superconducting element to be considered.
JP4138332A 1992-05-29 1992-05-29 Superconducting element Expired - Fee Related JP2515947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4138332A JP2515947B2 (en) 1992-05-29 1992-05-29 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4138332A JP2515947B2 (en) 1992-05-29 1992-05-29 Superconducting element

Publications (2)

Publication Number Publication Date
JPH05335640A JPH05335640A (en) 1993-12-17
JP2515947B2 true JP2515947B2 (en) 1996-07-10

Family

ID=15219436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138332A Expired - Fee Related JP2515947B2 (en) 1992-05-29 1992-05-29 Superconducting element

Country Status (1)

Country Link
JP (1) JP2515947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669702B1 (en) * 2003-11-29 2007-01-16 삼성에스디아이 주식회사 TFT and Flat panel display therewith
JP6026844B2 (en) * 2012-10-17 2016-11-16 株式会社半導体エネルギー研究所 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313877A (en) * 1987-06-17 1988-12-21 Toshiba Corp Superconducting transistor
JP2941811B2 (en) * 1988-04-27 1999-08-30 ソニー株式会社 Superconducting transistor
JPH0636440B2 (en) * 1990-02-02 1994-05-11 株式会社日立製作所 Superconducting switching element

Also Published As

Publication number Publication date
JPH05335640A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US5250506A (en) Superconductive switching element with semiconductor channel
EP0342038B1 (en) Josephson device
JP2515947B2 (en) Superconducting element
JPH0714079B2 (en) Oxide superconducting three-terminal device
JP3020524B2 (en) Oxide superconducting element
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JP2500302B2 (en) Superconducting element and superconducting circuit
JPH104223A (en) Oxide superconducting josephson element
JPH04285012A (en) Formation of oxide superconductor thin film
JP2515930B2 (en) Superconducting element
JP2907831B2 (en) Josephson element
JP3216089B2 (en) Superconducting device manufacturing method and superconducting transistor using the same
JP2976427B2 (en) Method of manufacturing Josephson device
JP2705306B2 (en) Superconducting element
JP2944238B2 (en) Method for forming superconductor and superconducting element
JP2614939B2 (en) Superconducting element and fabrication method
JPH10178220A (en) Tunnel-type superconducting junction element
Tsuge et al. Nb3Sn‐Pb Josephson tunnel junctions using patterned rf sputtered material and rf oxidation
JP2691065B2 (en) Superconducting element and fabrication method
JP2774531B2 (en) Superconductor device
JP2899287B2 (en) Josephson element
JP2868286B2 (en) Superconducting element and circuit element having the same
JP2950958B2 (en) Superconducting element manufacturing method
JPH0338075A (en) Method of manufacturing multi- layer electronic film element
JP2641971B2 (en) Superconducting element and fabrication method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees