JP3186035B2 - Laminated thin film for field effect element and field effect transistor using the laminated thin film - Google Patents
Laminated thin film for field effect element and field effect transistor using the laminated thin filmInfo
- Publication number
- JP3186035B2 JP3186035B2 JP20339692A JP20339692A JP3186035B2 JP 3186035 B2 JP3186035 B2 JP 3186035B2 JP 20339692 A JP20339692 A JP 20339692A JP 20339692 A JP20339692 A JP 20339692A JP 3186035 B2 JP3186035 B2 JP 3186035B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin film
- field effect
- semiconductor layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な材料の組み合わ
せによる電界効果トランジスター(以下、FETと称す
る)用の積層薄膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated thin film for a field effect transistor (hereinafter referred to as an FET) using a novel combination of materials.
【0002】[0002]
【従来の技術】銅酸化物超伝導体の発見後、ジョセフソ
ン素子作製の試みや、マイクロ波回路が作製されてい
る。2. Description of the Related Art After discovering a copper oxide superconductor, attempts have been made to fabricate a Josephson device and a microwave circuit has been fabricated.
【0003】一方、銅酸化物超伝導体の発見後、これら
の超伝導体(例えば、YBa2 Cu3 O7 、La2-x S
rx CuO4 、Bi2 Sr2 CaCu2 O8+δ)が、化
学的ドーピング(例えば、酸素量をかえる等)により絶
縁体から超伝導体に変化することが示されている。この
ため、電界効果により、これらの超伝導物質で化学ドー
プされていない試料を半導体層とし、これに絶縁層を介
して電界を印加し、半導体層と絶縁層の界面にキャリヤ
を蓄積することにより超伝導が発現する可能性が考えら
れたが、まだ検証されていない。このような試みに類似
するものに、YBa2 Cu3 O6 を半導体層とし、Sr
TiO3 を絶縁体層としてFETを作製した例がある
(A.Levyら, Applied Physics Letter, 1990)。On the other hand, after the discovery of copper oxide superconductors, these superconductors (for example, YBa 2 Cu 3 O 7 , La 2-x S
It has been shown that r x CuO 4 , Bi 2 Sr 2 CaCu 2 O 8 + δ ) changes from an insulator to a superconductor by chemical doping (for example, changing the amount of oxygen). For this reason, a sample that is not chemically doped with these superconducting substances is used as a semiconductor layer by the electric field effect, an electric field is applied to the sample through an insulating layer, and carriers are accumulated at the interface between the semiconductor layer and the insulating layer. Although the possibility of superconductivity was considered, it has not yet been verified. Similar to such an attempt, a semiconductor layer made of YBa 2 Cu 3 O 6 and Sr
There is an example of fabricating an FET using TiO 3 as an insulator layer (A. Levy et al., Applied Physics Letter, 1990).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、ジョセ
フソン素子等の従来の超伝導素子のみでは、十分な機能
をもった集積回路は設計しにくい。特に、ジョセフソン
素子は2端子素子であるという欠点がある。このため、
これらの酸化物超伝導体素子をSiやGaAsなどの従
来の半導体基板上にバッファ層を介して作製するといっ
た試みもなされているが、十分な特性は得られていな
い。However, it is difficult to design an integrated circuit having a sufficient function using only a conventional superconducting element such as a Josephson element. In particular, there is a disadvantage that the Josephson element is a two-terminal element. For this reason,
Attempts have been made to fabricate these oxide superconductor elements on a conventional semiconductor substrate such as Si or GaAs via a buffer layer, but no satisfactory characteristics have been obtained.
【0005】一方、YBa2 Cu3 O6 を半導体層と
し、SrTiO3 を絶縁体層としたFETは、移動度が
室温で700cm2 /V/sec と極めて低いばかりか、低
温になるにつれて移動度が著しく低下していくという欠
点がある。本発明者は、これが半導体層と絶縁体層の界
面の乱れに基づくことを見出し、本発明に至った。On the other hand, an FET having a semiconductor layer of YBa 2 Cu 3 O 6 and an insulating layer of SrTiO 3 not only has a very low mobility of 700 cm 2 / V / sec at room temperature, but also has a low mobility as the temperature decreases. However, there is a drawback that is significantly reduced. The present inventors have found that this is based on the disorder of the interface between the semiconductor layer and the insulator layer, and have reached the present invention.
【0006】以下の解析により、上述のような1000
A(オングストローム、以下同様)以下の界面の乱れが
電界効果に影響する理由がわかる。According to the following analysis, 1000
It can be understood that the interface disturbance below A (angstrom) affects the electric field effect.
【0007】即ち、通常のMIS Diode の理論での空乏層
厚みWは、おおよそ (2εsψs(inv)/qNA )1/2 NA :アクセプター数 q :電荷 ψs(inv):反転層のポテンシャル εs:誘電率 で与えられる。That is, the depletion layer thickness W in the normal MIS Diode theory is approximately (2εsψs (inv) / qN A ) 1/2 N A : the number of acceptors q: the charge ψs (inv): the potential εs of the inversion layer : Given by dielectric constant
【0008】SiやGaAsの典型的アクセプター数
(NA )を上式に代入し、温度300Kの場合に空乏層
厚みWを見積もると、〜1000A程度となる。When the typical number of acceptors (N A ) of Si or GaAs is substituted into the above equation and the depletion layer thickness W is estimated at a temperature of 300 K, it is about 1000 A.
【0009】しかし、上記酸化物超伝導体の半導体相
(例えばLa2 CuO4 、YBa2 Cu3 O6 )では通
常、NA 〜1019cm-3程度あることがホール測定により
実験的にわかった。このため、空乏層厚みWは、〜10
0A程度と極めて薄くなる。このために界面の制御がよ
り一層重要になるのである。[0009] However, the semiconductor phase of the oxide superconductor (for example La 2 CuO 4, YBa 2 Cu 3 O 6) In general, it is the degree N A ~10 19 cm -3 is by hole measurement found experimentally Was. For this reason, the thickness W of the depletion layer is 10 to
It becomes extremely thin at about 0A. For this reason, control of the interface becomes even more important.
【0010】[0010]
【課題を解決するための手段】即ち、本発明において
は、銅酸化物超伝導体素子作製に好適な基板上に、この
基板に適したFETを作製する。即ち、このFETに用
いる材料には、銅酸化物超伝導体と同型の物質を用い
る。これにより、界面の乱れが抑制できて良好な電界効
果が得られる。That is, in the present invention, an FET suitable for this substrate is manufactured on a substrate suitable for manufacturing a copper oxide superconductor element. That is, the same material as that of the copper oxide superconductor is used as the material for the FET. Thereby, disturbance of the interface can be suppressed, and a good electric field effect can be obtained.
【0011】銅酸化物超伝導体には、LnBa2 Cu3
O7 (LnはY,Nd,Dy,YbなどのCeとPrを
除く希土類),Bi2 Sr2 Can-1 Cu2 O6+2n+ δ
(n=1,2,3)またはTl系超伝導体Ln2-x Mx
CuO4+δ(x〜0.05〜0.3)(通常T,T’,
T* 相と呼ばれる。LnはLa,Ndなどの希土類、M
はSr、Ca、Baなどのアルカリ土属もしくはNd、
Pr)がある。LnBa 2 Cu 3 is used as a copper oxide superconductor.
O 7 (Ln is a rare earth element other than Ce and Pr such as Y, Nd, Dy, and Yb), Bi 2 Sr 2 Can -1 Cu 2 O 6 + 2n + δ
(N = 1, 2, 3) or Tl-based superconductor Ln 2-x Mx
CuO 4 + δ (x to 0.05 to 0.3) (usually T, T ′,
Called T * phase. Ln is a rare earth such as La or Nd, M
Is an alkaline earth element such as Sr, Ca, Ba or Nd;
Pr).
【0012】[0012]
【作用】次に、半導体層とこれらの物質について述べ
る。これらの物質の酸素量を減らした物質(例、YBa
2 Cu3 O6 )や、金属元素で化学ドーピングされてい
ない物質(例、Ln2 CuO4 ;Lnは3価の希土)、
または化学的ドーピングにより自由キャリヤをなくした
もの(例、Bi2 Sr2 (Ca1-x Lnx )Cu2 O
8+δ;LnはY,Ndなどの希土、x〜1)または銅酸
化物超伝導体の銅を他の元素、特に遷移金属で置換した
もの(例、YBa2 (Cu1-x Tx )3 O7 ,Bi2 S
r2 Ca(Cu1-x Tx )2 O8+δ,Bi2 Sr2 (C
u1-x Tx )2 O6+δ,La2-y Sry (Cu
1-x Tx )O4 、T=Co,Ni,Mn,Fe,Al、
x>〜0.3)は半導体となり得、以下でも、上述の物
質群を酸化物超伝導体と同型と呼ぶことにする。更に、
これらの物質群の一部では良好な絶縁体を形成し得る。Next, the semiconductor layer and these substances will be described. Substances with reduced oxygen content of these substances (eg, YBa
2 Cu 3 O 6 ) or a substance not chemically doped with a metal element (eg, Ln 2 CuO 4 ; Ln is a trivalent rare earth),
Or that eliminate the free carrier by chemical doping (e.g., Bi 2 Sr 2 (Ca 1 -x Ln x) Cu 2 O
8 + δ ; Ln is a rare earth such as Y or Nd, x to 1) or a copper oxide superconductor in which copper is replaced by another element, particularly a transition metal (eg, YBa 2 (Cu 1-x T x ) 3 O 7 , Bi 2 S
r 2 Ca (Cu 1-x T x ) 2 O 8 + δ , Bi 2 Sr 2 (C
u 1-x T x) 2 O 6 + δ, La 2-y Sr y (Cu
1-x T x ) O 4 , T = Co, Ni, Mn, Fe, Al,
x> 〜0.3) can be a semiconductor, and the above-mentioned group of substances will hereinafter be referred to as the same type as the oxide superconductor. Furthermore,
Some of these substance groups can form good insulators.
【0013】即ち、上記のCuを他元素で置換する。ま
た、アルカリ土属(例えば、Ca)を希土等で置換した
り、酸素量を減らしてキャリア数を減らすことをこれら
に併用してもよい。これらの例としては、Bi2 (S
r,Ca)CoO6+δ,Bi2 (Sr,Ca)2 MnO
6+δ,Bi2 Sr3 Fe2 O9+δ,YBa2 (Cu1- x
(Fe,Co)x )3 O6+δ(x=1〜0.8),Bi
2 Sr2 Cu1-x (Cr,W)x O6+δ,(La2-x S
rx )CoO4 (x=0〜1),(La2-x Srx )F
eO4 (x=0〜1)等のように、Cuを他の遷移金属
で置換したものが有効である。また、Nd2 (Cu,
T)O4 ,Pr2 (Cu,T)O4 (TはCoなどの遷
移金属)も抵抗の高い膜が得やすい。That is, the above-mentioned Cu is replaced with another element. In addition, replacement of alkaline earth (for example, Ca) with rare earth or the like, or reduction of the number of carriers by reducing the amount of oxygen may be used together with these. Examples of these are Bi 2 (S
r, Ca) CoO 6 + δ , Bi 2 (Sr, Ca) 2 MnO
6 + δ , Bi 2 Sr 3 Fe 2 O 9 + δ , YBa 2 (Cu 1- x
(Fe, Co) x ) 3 O 6 + δ (x = 1 to 0.8), Bi
2 Sr 2 Cu 1-x (Cr, W) x O 6 + δ , (La 2-x S
r x ) CoO 4 (x = 0 to 1), (La 2−x Sr x ) F
A material in which Cu is replaced by another transition metal, such as eO 4 (x = 0 to 1), is effective. Nd 2 (Cu,
For T) O 4 and Pr 2 (Cu, T) O 4 (T is a transition metal such as Co), a film having a high resistance can be easily obtained.
【0014】尚、以上の物質群で、希土、アルカリ土
属、銅からなる酸化物超伝導体群、Bi、銅、アルカリ
土属(とTl、銅、アルカリ土属)からなる超伝導体
群、銅を含まないBi酸化物超伝導体群は、製法、構造
に大きな差がある。また、これらの物質群の同型物質群
にも極めて大きな化学的構造的差があり、一般には、こ
れらの異種物質群間の積層は困難である。In the above substance group, oxide superconductors composed of rare earth, alkaline earth and copper, and superconductors composed of Bi, copper and alkaline earth (and Tl, copper and alkaline earth) The group and the Bi oxide superconductor group containing no copper have a large difference in the manufacturing method and structure. In addition, there is also a very large difference in the chemical structure between the same substance groups of these substance groups, and it is generally difficult to stack these different substance groups.
【0015】但し、同一物質群間では、構造が異なって
も、図4(a),(b)の実施例や、YBa2 CuO
6+δ/(La2-x Srx )CoO4 のような積層膜が得
やすい。However, even if the structure is different between the same substance groups, the embodiment shown in FIGS. 4A and 4B and the YBa 2 CuO
It is easy to obtain a laminated film such as 6 + δ / (La 2-x Sr x ) CoO 4 .
【0016】[0016]
【実施例】以下、これらの実施例を図面を用いて詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, these embodiments will be described in detail with reference to the drawings.
【0017】図1は、本発明に用いられるFET構造の
一例を示す。本発明の実施例では、絶縁体層、半導体層
として上述の材料が用いられる。FIG. 1 shows an example of an FET structure used in the present invention. In the embodiment of the present invention, the above-described materials are used for the insulator layer and the semiconductor layer.
【0018】上述のようなよい界面を得るためには、夫
々の膜を基板上にエピタキシャルに成長させることが好
ましい。In order to obtain a good interface as described above, it is preferable that each film is epitaxially grown on a substrate.
【0019】これに用いられる基板としては、図5に示
されるように、SrTiO3 ,NdGaO3 ,MgO,
LaAlO3 など酸化物超伝導体の格子定数との整合性
のよい基板が用いられる。また、基板表面の平坦性を改
善するため、更にSrTiO3 などの基板材料やエピタ
キシャル成長しやすい酸化物超伝導体と類型の物質
(例、PrBa2 Cu3 O7 など)をバッファ層として
形成したものを用いてもよい。As a substrate used for this, as shown in FIG. 5, SrTiO 3 , NdGaO 3 , MgO,
A substrate having good matching with the lattice constant of the oxide superconductor such as LaAlO 3 is used. Further, in order to improve the flatness of the substrate surface, a substrate material such as SrTiO 3 or an oxide superconductor which easily grows epitaxially and a type of substance (eg, PrBa 2 Cu 3 O 7 ) is formed as a buffer layer. May be used.
【0020】また、図3(a)に示されるように、上述
の酸化物超伝導体と同一構造物質の単結晶基板を用いて
もよい。図4(a),(b),(c)の実施例に示した
基板は酸化物超伝導自体よりも得やすく、フラックス法
やフローティングゾーン(またはTZFZ)で大きな結
晶が得られるという利点もある。Further, as shown in FIG. 3A, a single crystal substrate of the same structural material as the above-described oxide superconductor may be used. The substrates shown in the embodiments of FIGS. 4A, 4B and 4C are easier to obtain than the oxide superconductivity itself, and have the advantage that large crystals can be obtained by the flux method or the floating zone (or TZFZ). .
【0021】これらの基板の面は、積層する薄膜の面の
格子定数とのミスマッチが最も小さくなるように選ばれ
る(例えば、銅酸化物超伝導体でc軸配向膜ではSrT
iO3 ,MgOの(100)面)。The surfaces of these substrates are selected so as to minimize the mismatch with the lattice constant of the surface of the thin film to be laminated (for example, SrT in a copper oxide superconductor and a c-axis oriented film).
(100) plane of iO 3 and MgO).
【0022】尚、図4(a),(b)のBi系酸化物単
結晶では(001)面を用いるのが容易である。また、
膜の配向としては、電流はab面内でより流れやすいの
で、半導体層のab軸方向がほぼドレインとソースを結
ぶ方向であることが好ましい。また、絶縁層の配向とし
ては、c軸方向が膜厚方向を向いた方がより一層絶縁性
の高い膜を形成しやすい。In the Bi-based oxide single crystals shown in FIGS. 4A and 4B, it is easy to use the (001) plane. Also,
Regarding the orientation of the film, since the current easily flows in the ab plane, it is preferable that the ab-axis direction of the semiconductor layer be substantially the direction connecting the drain and the source. As for the orientation of the insulating layer, it is easier to form a film having higher insulating properties when the c-axis direction is oriented in the film thickness direction.
【0023】図1に示される一般的なFET構造の他
に、図2に示されるような、通常のFET構造を逆にし
たものでもよい。図3(b)には、この構造で電極層自
体を基板とした場合を示す。In addition to the general FET structure shown in FIG. 1, the normal FET structure shown in FIG. 2 may be reversed. FIG. 3B shows a case where the electrode layer itself is used as a substrate in this structure.
【0024】図6はその実施例である。FIG. 6 shows the embodiment.
【0025】また、ソース、ドレイン、バイアス電極に
は、上述の酸化物超伝導体を用いてもよい。また、従来
より用いられている金、銀などの金属を用いてもよい。The above-mentioned oxide superconductor may be used for the source, drain and bias electrode. Further, conventionally used metals such as gold and silver may be used.
【0026】次に、これらの素子の作製法について述べ
る。Next, a method for manufacturing these devices will be described.
【0027】まず、半導体層は、基板をそのまま半導体
層として用いる場合は、基板表面を十分研磨し、平坦化
する。表面のへき開面が十分平坦である場合には、この
必要はない。但し、研磨した場合には、酸素を含む雰囲
気中でアニールし、好ましくは、そのまま大気にさらす
ことなく絶縁体層を蒸着する。また、絶縁層を蒸着する
前に、イオンビームを基板に対して斜めに入射させてイ
オンミリングすることも有効である。First, when the substrate is used as it is as the semiconductor layer, the surface of the substrate is sufficiently polished and flattened. This is not necessary if the cleavage surface of the surface is sufficiently flat. However, in the case of polishing, annealing is performed in an atmosphere containing oxygen, and preferably, an insulator layer is deposited without exposure to the air. It is also effective to make the ion beam obliquely incident on the substrate and perform ion milling before depositing the insulating layer.
【0028】以上の基板処理は、酸化物超伝導体を基板
として用いる時にも有効である。また、通常のように、
半導体層を酸化物単結晶基板上に形成して得る場合に
は、公知の気相蒸着法、例えばレーザーアブレーション
法、スパッター蒸着法、反応性蒸着法、MO−CVDな
どを用いて、酸素または酸素源(オゾン、N2 O、NO
2 等)の雰囲気下で形成することができる。The above substrate treatment is also effective when using an oxide superconductor as a substrate. Also, as usual,
In the case where the semiconductor layer is formed over an oxide single crystal substrate, oxygen or oxygen can be obtained by a known vapor deposition method, for example, a laser ablation method, a sputter deposition method, a reactive deposition method, or MO-CVD. Sources (ozone, N 2 O, NO
2 ) atmosphere.
【0029】尚、酸素含有量を減らすことで半導体層を
得る場合や、La2 CuO4 ,NdCuO4 ,BiSr
2 CuO6+δのように、Cu−O面の金属元素がCuの
みの場合は、キャリヤを減らすために還元処理が必要で
ある。この温度は通常300〜500℃程度で、不活性
ガスまたは真空中でアニールすることにより行なわれ
る。Incidentally, when a semiconductor layer is obtained by reducing the oxygen content, or when La 2 CuO 4 , NdCuO 4 , BiSr
When the metal element on the Cu—O surface is only Cu, such as 2CuO 6 + δ , a reduction treatment is required to reduce carriers. This temperature is usually about 300 to 500 ° C., and is performed by annealing in an inert gas or vacuum.
【0030】次に、絶縁層も半導体層と同様にして形成
されるが、半導体層薄膜の形成された真空槽から大気に
さらさずに膜形成することがより好ましい。これらは、
FETの半導体−絶縁体界面の乱れを減らし、状態密度
を減らすためである。Next, the insulating layer is formed in the same manner as the semiconductor layer, but it is more preferable to form the film without exposing it to the air from the vacuum chamber where the semiconductor layer thin film is formed. They are,
This is for reducing disorder at the semiconductor-insulator interface of the FET and reducing the state density.
【0031】尚、上述の成膜中にマスクを通して蒸着す
ることにより、図1,2のような形状を得ることができ
る。また、フォトリソグラフィー技術により絶縁層ある
いは伝導層作製後にエッチングを行うことにより、図
1,2の構造を作製する。The shape shown in FIGS. 1 and 2 can be obtained by vapor deposition through a mask during the above-mentioned film formation. Further, the structure shown in FIGS. 1 and 2 is manufactured by performing etching after forming an insulating layer or a conductive layer by photolithography.
【0032】尚、上述のように半導体層、絶縁体層を薄
膜層によって形成する時は、前述の薄膜作製法で、特に
超格子作製技術を応用した薄膜作製法(特願平2−15
2178号)を利用して更に良好な界面を作製してもよ
い。When the semiconductor layer and the insulator layer are formed by a thin film layer as described above, the thin film manufacturing method described in the above-mentioned thin film manufacturing method (particularly, a thin film manufacturing method using a superlattice manufacturing technology (Japanese Patent Application No. 2-15 / 1990))
No. 2178) may be used to produce a better interface.
【0033】このような素子を用いることにより、銅酸
化物超伝導体を用いたジョセフソン素子、マイクロ波受
動素子(位相シフター、フィルター等)を同一基板上に
作製することができる。By using such an element, a Josephson element and a microwave passive element (phase shifter, filter, etc.) using a copper oxide superconductor can be manufactured on the same substrate.
【0034】銅酸化物超伝導体は、キャリヤ濃度により
臨界温度等の超伝導特性が大きく変わる。これを利用し
て電界効果による超伝導特性を変化させる(超伝導FE
T)ことが検討されている。上述の構造をこの目的に用
いることも考えられる。この場合は、本発明半導体層の
銅酸化物は、半導体としてキャリヤが少なくてもよい
し、キャリヤを増やして臨界温度が低めの超伝導体とし
てもよい。The superconducting properties of the copper oxide superconductor, such as the critical temperature, vary greatly depending on the carrier concentration. This is used to change the superconductivity due to the electric field effect (superconducting FE
T) is being considered. It is also conceivable to use the structure described above for this purpose. In this case, the copper oxide of the semiconductor layer of the present invention may have a small number of carriers as a semiconductor or a superconductor having a lower critical temperature by increasing the number of carriers.
【0035】実施例1 YBa2 (Cu0.7 Co0.3 )3 O7 焼結体をターゲッ
トとして、酸素圧100mtorr で、SrTiO3 (00
1)面上に、レーザーアブレーション法により3000
A形成し、100mtorr の酸素雰囲気に5時間保持し
た。これをX線回折したところ、c軸配向のYBa2 C
u3 O7 の構造が得られていることがわかった。この電
気特性を4端子法により評価したところ、室温で105
Ω以上の抵抗値が得られていることがわかった(電圧端
子間隔5mm)。 Example 1 A target of YBa 2 (Cu 0.7 Co 0.3 ) 3 O 7 sintered body was subjected to SrTiO 3 (00
1) 3000 laser ablation on the surface
A was formed and kept in an oxygen atmosphere of 100 mtorr for 5 hours. When this was subjected to X-ray diffraction, c-axis-oriented YBa 2 C
It was found that the structure of u 3 O 7 was obtained. It was evaluated by four-probe method the electrical properties, 105 at room temperature
It was found that a resistance value of Ω or more was obtained (voltage terminal interval: 5 mm).
【0036】実施例2 SrTiO3 (100)面上に、レーザーアブレーショ
ン法により、YBa2 Cu3 O7 をターゲットとして酸
素圧100mtorr 、基板温度720℃で薄膜を200A
堆積した。これを同一真空中で酸素を大気圧まで満た
し、3時間600℃に保持した。次に、同一真空槽中で
500℃に10時間5×10-6torrに保持し、還元し
た。このまま基板温度を650℃まで上昇させ、YBa
2 (Cu0. 7 Co0.3 )3 O7 をターゲットとして、マ
スクを通して酸素圧100mtorr でレーザーアブレーシ
ョン法により3000Aの絶縁層を作製し、500℃に
100mtorr で5時間保持した。これを別の真空槽に
て、マスクを交換してソース、ドレイン、バイアス電極
として2000Aの金を蒸着した。 Example 2 A thin film was formed on a SrTiO 3 (100) surface by laser ablation method using YBa 2 Cu 3 O 7 as a target at an oxygen pressure of 100 mtorr and a substrate temperature of 720 ° C. at 200 A.
Deposited. This was filled with oxygen to the atmospheric pressure in the same vacuum and kept at 600 ° C. for 3 hours. Next, it was kept at 500 ° C. for 10 hours at 5 × 10 −6 torr in the same vacuum chamber and reduced. The substrate temperature is raised to 650 ° C.
The 2 (Cu 0. 7 Co 0.3) 3 O 7 as a target, to prepare an insulating layer 3000A by laser ablation method with an oxygen pressure 100mtorr through a mask and held for 5 hours at 100mtorr to 500 ° C.. This was replaced with a mask in another vacuum chamber, and 2000 A of gold was deposited as a source, drain and bias electrode.
【0037】これをX線回折により測定したところ、Y
Ba2 Cu3 O6+δ、YBa2 (Cu0.7 Co0.3 )3
O7 ±δに対応するc軸配向膜が得られていた。When this was measured by X-ray diffraction, Y
Ba 2 Cu 3 O 6 + δ , YBa 2 (Cu 0.7 Co 0.3 ) 3
A c-axis oriented film corresponding to O 7 ± δ was obtained.
【0038】また、室温にてバイアス電圧を10Vまで
印加したところ、ソース、ドレイン間の抵抗をバイアス
のない場合より下げることができることが確認できた。When a bias voltage was applied up to 10 V at room temperature, it was confirmed that the resistance between the source and the drain could be reduced as compared with the case without a bias.
【0039】[0039]
【発明の効果】以上説明したように、本発明によれば、
前記従来技術のような問題がなく、本素子により、銅酸
化物超伝導体を用いた超伝導素子とFETとを同一基板
上に容易に集積することが可能となる。また、作製プロ
セスの向上により電界効果による超伝導トランジスター
を作製し得る可能性を潜めたデバイスとなり得る。As described above, according to the present invention,
This device has no problem as in the prior art, and the present device makes it possible to easily integrate a superconducting device using a copper oxide superconductor and an FET on the same substrate. In addition, a device which has a possibility of manufacturing a superconducting transistor by an electric field effect by improving a manufacturing process can be obtained.
【図1】本発明に用いられる電界効果トランジスター
(FET)構造の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a field effect transistor (FET) structure used in the present invention.
【図2】本発明に用いられる電界効果トランジスター
(FET)構造の別の例を示す説明図である。FIG. 2 is an explanatory view showing another example of a field effect transistor (FET) structure used in the present invention.
【図3】本発明に用いられる電界効果トランジスター
(FET)構造の更に別の例を示す説明図である。FIG. 3 is an explanatory view showing still another example of a field effect transistor (FET) structure used in the present invention.
【図4】図3(a)の実施例を示す説明図である。FIG. 4 is an explanatory diagram showing the embodiment of FIG.
【図5】図1の実施例を示す説明図である。FIG. 5 is an explanatory diagram showing the embodiment of FIG. 1;
【図6】図3(b)の実施例を示す説明図である。FIG. 6 is an explanatory diagram showing the embodiment of FIG. 3 (b).
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 39/22 - 39/24 H01L 39/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 39/22-39/24 H01L 39/00
Claims (4)
体層、絶縁体層、半導体層をこの順に積層した積層薄膜
であって、 前記絶縁体層は、その結晶構造が銅酸化物超伝導体と同
一結晶であり、かつ銅酸化物超伝導体のCuの少なくと
も一部を他の遷移金属元素で置換した層であり、 前記半導体層は該銅酸化物超伝導体と同一結晶構造の酸
化物層であることを特徴とする電界効果素子用積層薄
膜。1. An oxide conductor layer or a superconducting layer on a substrate.
Laminated thin film with body layer, insulator layer and semiconductor layer laminated in this order
The insulator layer is a layer whose crystal structure is the same as that of the copper oxide superconductor, and in which at least a part of Cu of the copper oxide superconductor is substituted with another transition metal element. Wherein the semiconductor layer is an oxide layer having the same crystal structure as that of the copper oxide superconductor.
半導体層の上に絶縁体層が形成された請求項1記載の電
界効果素子用積層薄膜。2. The semiconductor layer is an oxide single crystal substrate,
The multilayer thin film for a field effect device according to claim 1 , wherein an insulator layer is formed on the semiconductor layer .
からなり、該酸化物導電体層の上に絶縁体層、半導体層
が順に積層され、該酸化物導電体層上に電極が形成され
た請求項1または2記載の電界効果素子用積層薄膜。3. An oxide superconductor single crystal wherein the oxide conductor layer is
Comprising an insulator layer and a semiconductor layer on the oxide conductor layer.
Are sequentially laminated, and an electrode is formed on the oxide conductor layer.
The multilayer thin film for a field effect element according to claim 1 or 2 .
の電界効果素子用積層薄膜を用いた電界効果トランジス
ター。 4. The method according to claim 1, wherein
-Effect Transistors Using Multi-Layered Thin Films for Field-Effect Devices
Tar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20339692A JP3186035B2 (en) | 1991-08-09 | 1992-07-30 | Laminated thin film for field effect element and field effect transistor using the laminated thin film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20026691 | 1991-08-09 | ||
JP3-200266 | 1991-08-09 | ||
JP20339692A JP3186035B2 (en) | 1991-08-09 | 1992-07-30 | Laminated thin film for field effect element and field effect transistor using the laminated thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05190924A JPH05190924A (en) | 1993-07-30 |
JP3186035B2 true JP3186035B2 (en) | 2001-07-11 |
Family
ID=26512062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20339692A Expired - Fee Related JP3186035B2 (en) | 1991-08-09 | 1992-07-30 | Laminated thin film for field effect element and field effect transistor using the laminated thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3186035B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6333543B1 (en) | 1999-03-16 | 2001-12-25 | International Business Machines Corporation | Field-effect transistor with a buried mott material oxide channel |
US6890766B2 (en) | 1999-03-17 | 2005-05-10 | International Business Machines Corporation | Dual-type thin-film field-effect transistors and applications |
-
1992
- 1992-07-30 JP JP20339692A patent/JP3186035B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05190924A (en) | 1993-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2907832B2 (en) | Superconducting device and manufacturing method thereof | |
US5274249A (en) | Superconducting field effect devices with thin channel layer | |
US5266558A (en) | Superconducting circuit elements with metallic substrate and method for manufacturing the same | |
EP0390704B1 (en) | Tunnel junction type Josephson device and method for fabricating the same | |
JPH0834321B2 (en) | Method of manufacturing superconducting field effect transistor having inverted MISFET structure | |
US5256897A (en) | Oxide superconducting device | |
US5250506A (en) | Superconductive switching element with semiconductor channel | |
US5401716A (en) | Method for manufacturing superconducting patterns | |
US5828079A (en) | Field-effect type superconducting device including bi-base oxide compound containing copper | |
JP3186035B2 (en) | Laminated thin film for field effect element and field effect transistor using the laminated thin film | |
JPH0714079B2 (en) | Oxide superconducting three-terminal device | |
JP2500302B2 (en) | Superconducting element and superconducting circuit | |
JP3020524B2 (en) | Oxide superconducting element | |
JP2515947B2 (en) | Superconducting element | |
JPH0278282A (en) | Josephson element | |
JP2908346B2 (en) | Superconducting structure | |
JP2544390B2 (en) | Oxide superconducting integrated circuit | |
JP2907831B2 (en) | Josephson element | |
JP3379533B2 (en) | Method for manufacturing superconducting device | |
JP2976427B2 (en) | Method of manufacturing Josephson device | |
JP2899287B2 (en) | Josephson element | |
JPH10178220A (en) | Tunnel-type superconducting junction element | |
US5362709A (en) | Superconducting device | |
JP2647251B2 (en) | Superconducting element and fabrication method | |
JP2868286B2 (en) | Superconducting element and circuit element having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |