JP2908346B2 - Superconducting structure - Google Patents
Superconducting structureInfo
- Publication number
- JP2908346B2 JP2908346B2 JP8247087A JP24708796A JP2908346B2 JP 2908346 B2 JP2908346 B2 JP 2908346B2 JP 8247087 A JP8247087 A JP 8247087A JP 24708796 A JP24708796 A JP 24708796A JP 2908346 B2 JP2908346 B2 JP 2908346B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- layer
- oxide superconductor
- oxide
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002887 superconductor Substances 0.000 claims description 75
- 238000000354 decomposition reaction Methods 0.000 claims description 42
- 230000000977 initiatory effect Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 150000002602 lanthanoids Chemical class 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 167
- 239000010408 film Substances 0.000 description 64
- 238000000034 method Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 21
- 239000000758 substrate Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000000992 sputter etching Methods 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 229910002826 PrBa Inorganic materials 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910002367 SrTiO Inorganic materials 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910002480 Cu-O Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 241000954177 Bangana ariza Species 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の酸化物超電
導体層と非超電導酸化物層との積層膜を具備する超電導
構造体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting structure having a laminated film of a plurality of oxide superconducting layers and a non-superconducting oxide layer.
【0002】[0002]
【従来の技術】酸化物超電導体は、ジョセフソン接合素
子、超電導トランジスタ、LSI配線等への応用が期待
されている。これらを実現するためには、酸化物超電導
体薄膜を多層積層化することが不可欠である。例えばジ
ョセフソン接合素子においては、非超電導層を介して少
なくとも 2層の酸化物超電導体層を積層形成し、酸化物
超電導体層と非超電導層との接合が形成される。このよ
うな酸化物超電導体層の多層積層構造を有する超電導素
子を作製するにあたっては、多層積層化後あるいはその
途中で各種の加工プロセスを経るが、従来の薄膜形成技
術や加工プロセス技術では以下に示すような問題があっ
た。2. Description of the Related Art Oxide superconductors are expected to be applied to Josephson junction devices, superconducting transistors, LSI wiring and the like. In order to realize these, it is indispensable to laminate the oxide superconductor thin films in multiple layers. For example, in a Josephson junction device, at least two oxide superconductor layers are laminated with a non-superconductor layer interposed therebetween, and a junction between the oxide superconductor layer and the non-superconductor layer is formed. When fabricating a superconducting element having a multilayer laminated structure of such an oxide superconductor layer, various processing processes are performed after or during the multilayer lamination, but the conventional thin film forming technology and the processing process technology are as follows. There was a problem as shown.
【0003】すなわち、酸化物超電導体としては、RE
−Βa−Cu−O(REはYおよびランタナイド元素
(ただしREが全てPrである場合を除く)を示す)
系、Βi−Sr−Ca−Cu−O系、Tl−Ba−Ca
−Cu−O系、(Βa,K)ΒiO3 系等が用いられて
いる。また、成膜方法としては、スパッタ法、レーザー
アブレーション法、ΜΒE法、ΜOCVD法等があり、
いずれの場合も基板としてはSrTiO3 、ΜgO、N
dGaO3 、LaAlO3 、YSΖ等を用いるのが一般
的である。[0003] That is, as the oxide superconductor, RE
-Βa-Cu-O (RE indicates Y and lanthanide elements (except when RE is all Pr))
, I-Sr-Ca-Cu-O, Tl-Ba-Ca
-Cu-O system, (Βa, K) ΒiO 3 system and the like are used. Examples of the film forming method include a sputtering method, a laser ablation method, a ΔE method, and a ΔOCVD method.
In each case, the substrate was SrTiO 3 , ΔgO, N
It is common to use dGaO 3 , LaAlO 3 , YSΖ or the like.
【0004】上述したような方法で酸化物超電導体層と
非超電導層との接合を形成する場合、まず下部超電導電
極と必要に応じて層間絶縁膜等を形成する。多くの場合
これを室温に冷却して大気中に取り出した後、電極部分
に加工プロセスを施す必要がある。加工プロセスとして
は、通常のフォトリソグラフィーを用いて、イオンミリ
ング等により電極部分にドライエッチングを施したり、
液体のエッチャントを用いてウエットエッチングを施し
たり、あるいはプラズマによる表面処理等を施すことが
一般的である。そして、これらのプロセスを経た後、さ
らに非超電導層および上部超電導電極等を形成するため
に、再度成膜チャンバー内に導入して加熱および成膜プ
ロセスを経ることになる。[0004] In the case of forming a junction between an oxide superconductor layer and a non-superconducting layer by the above-described method, first, a lower superconducting electrode and, if necessary, an interlayer insulating film and the like are formed. In many cases, it is necessary to cool the electrode to room temperature and take it out to the atmosphere, and then to subject the electrode portion to a working process. As a processing process, using normal photolithography, dry etching of the electrode portion by ion milling etc.,
Generally, wet etching is performed using a liquid etchant, or surface treatment using plasma is performed. Then, after passing through these processes, in order to further form a non-superconducting layer, an upper superconducting electrode, and the like, they are again introduced into a film forming chamber and undergo a heating and film forming process.
【0005】この際、例えばドライエッチングプロセス
を経た下部超電導電極の表層部分は、Arイオン等によ
る照射ダメージを受けており、非超電導層を形成する以
前に劣化している。従って、その後の加熱および成膜プ
ロセスによって、下部超電導電極の表層部分は不安定に
なると共に劣化が促進されるため、酸化物超電導体層と
非超電導層との界面の平坦性、格子整合性、急峻性、電
気特性等の物性が低下するという問題があった。At this time, for example, the surface portion of the lower superconducting electrode which has undergone the dry etching process has been damaged by irradiation with Ar ions or the like, and has been deteriorated before forming the non-superconducting layer. Therefore, the surface layer portion of the lower superconducting electrode becomes unstable and accelerates its deterioration by the subsequent heating and film forming process, so that the flatness of the interface between the oxide superconducting layer and the non-superconducting layer, lattice matching, There is a problem that physical properties such as steepness and electrical characteristics are deteriorated.
【0006】また、加工プロセス時に使用する有機溶剤
やエッチャント液等が酸化物超電導体層表面に吸着して
いる状態、さらには大気中への取出し等に伴って水分子
等の外来物質が酸化物超電導体層表面に吸着している状
態で、その後の加熱プロセスを経ると、酸化物超電導体
とそれらの分子との反応が起こり、酸化物超電導体表面
の劣化を促進していた。この表面汚染に伴う酸化物超電
導体表面の劣化も、酸化物超電導体層と非超電導層との
界面の平坦性、格子整合性、急峻性、電気特性等の物性
に悪影響を及ぼしていた。Further, a state in which an organic solvent or an etchant liquid used in the processing process is adsorbed on the surface of the oxide superconductor layer, and furthermore, foreign substances such as water molecules are removed as oxides are taken out into the atmosphere. When a subsequent heating process is performed while being adsorbed on the surface of the superconductor layer, a reaction between the oxide superconductor and those molecules occurs, thereby promoting the deterioration of the oxide superconductor surface. The deterioration of the oxide superconductor surface due to the surface contamination has also adversely affected physical properties such as flatness, lattice matching, steepness, and electrical characteristics of the interface between the oxide superconductor layer and the non-superconducting layer.
【0007】[0007]
【発明が解決しようとする課題】上述したように、従来
の酸化物超電導体層と非超電導層との多層積層構造を有
する超電導素子においては、多段階の成膜プロセスや加
工プロセスが、接合部分において特に重要な酸化物超電
導体層と非超電導層との界面構造や電気特性等の物性に
悪影響を及ぼし、結果として素子特性の低下や特性の再
現性の低下等を招いていた。このような問題は超電導素
子に限らず、例えば超電導グランドプレーン上に非超電
導層を介して形成された超電導配線等においても同様で
ある。As described above, in a conventional superconducting element having a multi-layer structure of an oxide superconducting layer and a non-superconducting layer, a multi-step film forming process and a processing process are performed at a joint portion. In this case, the physical properties such as the interface structure between the oxide superconductor layer and the non-superconducting layer and the electrical characteristics, which are particularly important, are adversely affected, and as a result, the device characteristics are reduced and the reproducibility of the characteristics is reduced. Such a problem is not limited to a superconducting element, but also applies to a superconducting wiring formed on a superconducting ground plane via a non-superconducting layer.
【0008】上記した界面の問題を解決するためには、
特に非超電導層を形成する直前に、下側の酸化物超電導
体層表面における外来物質との反応や超電導相自体の分
解反応等を抑制することが有効であると考えられる。特
に、高温での成膜プロセスを必要とする酸化物超電導体
を用いた超電導構造体においては、界面を形成する直前
の酸化物超電導体層表面の高温での構造的安定性を確保
することが基本的に重要である。In order to solve the above-mentioned problem of the interface,
In particular, it is considered effective to suppress a reaction with a foreign substance or a decomposition reaction of the superconducting phase itself on the surface of the lower oxide superconducting layer immediately before forming the non-superconducting layer. In particular, in a superconducting structure using an oxide superconductor that requires a film formation process at a high temperature, it is necessary to ensure the high-temperature structural stability of the surface of the oxide superconductor layer immediately before forming an interface. Basically important.
【0009】本発明は、このような課題に対処するため
になされたもので、下側の酸化物超電導体層による界面
の構造的な安定性、ひいては電気特性等の物性の安定性
を高めることによって、特性およびその再現性を向上さ
せることを可能にした超電導構造体を提供することを目
的としている。SUMMARY OF THE INVENTION The present invention has been made to address such a problem, and it is an object of the present invention to improve the structural stability of an interface by a lower oxide superconductor layer and, consequently, the stability of physical properties such as electric characteristics. Accordingly, it is an object of the present invention to provide a superconducting structure capable of improving characteristics and reproducibility thereof.
【0010】[0010]
【課題を解決するための手段】本発明の超電導構造体
は、複数の酸化物超電導体層と前記複数の酸化物超電導
体層間に介在された非超電導酸化物層との積層膜を具備
する超電導構造体において、前記非超電導酸化物層を介
して配置された前記複数の酸化物超電導体層は、一般
式:REAE 2 M 3 O y (式中、REはYおよびランタ
ナイド元素から選ばれる少なくとも1種の元素を、AE
はCa、BaおよびSrから選ばれる少なくとも1種の
元素を、Mは70%以上の比率でCuを含む遷移元素を
示し、yは6.2≦y≦7.5を満足する数である)で
表される組成を有し、かつ前記複数の酸化物超電導体層
のうち、下側に位置する酸化物超電導体層を構成する物
質は、上側に位置する酸化物超電導体層を構成する物質
より高い分解反応開始温度を有することを特徴としてい
る。Superconductor structure of the present invention, in order to solve the problems] comprises a laminated film of a non-superconducting oxide layer interposed the plurality of oxide superconductor layers and the oxide superconductor layer of multiple In the superconducting structure, the plurality of oxide superconductor layers disposed via the non-superconducting oxide layer are generally
Formula: REAE 2 M 3 O y (where RE is Y and lanthanum)
At least one element selected from the group consisting of AE
Is at least one kind selected from Ca, Ba and Sr
Element, M is a transition element containing Cu at a ratio of 70% or more.
Where y is a number that satisfies 6.2 ≦ y ≦ 7.5)
Having the composition represented, and the plurality of oxide superconductor layers
Among them, the material constituting the lower oxide superconductor layer has a higher decomposition reaction initiation temperature than the material constituting the upper oxide superconductor layer.
【0011】[0011]
【0012】YΒCOに代表される酸化物超電導体を用
いた超電導素子等の超電導構造体においてはc軸配向膜
が頻繁に利用されており、良質のc軸配向膜の形成温度
はその物質固有の融点あるいは分解温度(以下、分解反
応開始温度と記す)より数100K程度低い温度である場合
が一般的である。また、良質の膜を形成するための最低
温度は、分解反応開始温度が上昇するに従って上昇する
傾向がある。In a superconducting structure such as a superconducting element using an oxide superconductor represented by YΒCO, a c-axis oriented film is frequently used, and the formation temperature of a good quality c-axis oriented film depends on the material-specific temperature. In general, the temperature is several hundred K lower than the melting point or the decomposition temperature (hereinafter, referred to as decomposition reaction start temperature). Further, the minimum temperature for forming a good quality film tends to increase as the decomposition reaction start temperature increases.
【0013】本発明はこの性質を利用し、非超電導酸化
物層を作製する直前に表面を露出している酸化物超電導
体層、すなわち非超電導酸化物層を介して配置された複
数の酸化物超電導体層のうち下側に位置する酸化物超電
導体層に、非超電導酸化物層より後に形成された酸化物
超電導体層、すなわち上側に位置する酸化物超電導体層
より分解反応開始温度が高い物質を使用することによっ
て、下側に位置する酸化物超電導体層の分解反応開始温
度が、後から形成する上側の酸化物超電導体層の形成温
度に対して十分な差を持つようにしている。これによっ
て、下側に位置する酸化物超電導体層表面の不安定性が
抑制されることを利用して、非超電導酸化物層作製直前
における下側に位置する酸化物超電導体層超電導層の表
面の安定性を確保することを可能にしている。The present invention takes advantage of this property to make use of the oxide superconductor layer whose surface is exposed immediately before forming the non-superconducting oxide layer, that is, a plurality of oxides disposed via the non-superconducting oxide layer. In the oxide superconductor layer located on the lower side of the superconductor layer, the decomposition reaction initiation temperature is higher than that of the oxide superconductor layer formed after the non-superconducting oxide layer, that is, the oxide superconductor layer located on the upper side. By using the substance, the decomposition reaction start temperature of the lower oxide superconductor layer is set to have a sufficient difference from the formation temperature of the upper oxide superconductor layer formed later. . By utilizing the fact that the instability of the surface of the lower oxide superconductor layer is suppressed by this, the surface of the lower oxide superconductor layer It is possible to ensure stability.
【0014】特に、いわゆる123構造を持つ酸化物超
電導体においては、金属イオンの種類を変化させること
で、分解反応開始温度を変化させることができる。この
性質を積極的に利用することで、上述した酸化物超電導
体層と非超電導酸化物層との界面の不安定性を具体的に
抑制することができる。[0014] Particularly, in the oxide superconductor having the so-called 123 structure, by changing the type of metal ions, it is possible to change the decomposition reaction starting temperature. By actively utilizing this property, the instability of the interface between the oxide superconductor layer and the non-superconducting oxide layer can be specifically suppressed.
【0015】[0015]
【発明の実施の形態】以下、本発明を実施するための形
態について説明する。Embodiments of the present invention will be described below.
【0016】図1は、本発明の超電導構造体をジョセフ
ソン接合素子の一例であるエッジ型接合素子に適用した
一実施形態の構成を模式的に示す図である。同図におい
て、1は基板であり、この基板1上には下部超電導電極
2として酸化物超電導体層が形成されている。FIG. 1 is a diagram schematically showing a configuration of an embodiment in which the superconducting structure of the present invention is applied to an edge type junction element which is an example of a Josephson junction element. In FIG. 1, reference numeral 1 denotes a substrate, on which an oxide superconductor layer is formed as a lower superconducting electrode 2.
【0017】酸化物超電導体層からなる下部超電導電極
2は、基板面1aに対して角度αで傾斜された端面(傾
斜端面)2aを有している。このような傾斜端面2a
は、例えばレジストのような適当なマスクを用い、エッ
チング端面が基板面1aと角度αを成して露出するよう
に、酸化物超電導体層をイオンミリング等の手段を用い
て選択的にエッチングすることによって、容易に形成す
ることができる。具体的には、下部超電導電極2上に層
間絶縁膜3が設けられており、この層間絶縁膜3の端面
を含めてエッチングを行うことによって、これらの端面
に傾斜端面2aが形成されている。The lower superconducting electrode 2 made of an oxide superconducting layer has an end surface (inclined end surface) 2a inclined at an angle α with respect to the substrate surface 1a. Such an inclined end surface 2a
Is to selectively etch the oxide superconductor layer by means of ion milling or the like so that the etching end surface is exposed at an angle α with the substrate surface 1a using an appropriate mask such as a resist, for example. Thereby, it can be easily formed. Specifically, an interlayer insulating film 3 is provided on lower superconducting electrode 2, and by etching including the end surfaces of interlayer insulating film 3, inclined end surfaces 2 a are formed on these end surfaces.
【0018】上述した酸化物超電導体層からなる下部超
電導電極2上には、その傾斜端面2aを少なくとも覆う
ように、非超電導酸化物からなる非超電導層4が形成さ
れている。この非超電導層4は、具体的には斜端端面2
a上を介して、エッチングにより露出された基板1の表
面1a上から層間絶縁膜3上にかけて形成されている。
この非超電導層4は、絶縁体および常伝導体のいずれで
構成してもよい。そして、非超電導層4上には、下部超
電導電極2と同様に酸化物超電導体層からなる上部超電
導電極5が積層形成されており、これらによってエッジ
型接合素子6が構成されている。A non-superconducting layer 4 made of a non-superconducting oxide is formed on the lower superconducting electrode 2 made of the above-described oxide superconducting layer so as to cover at least the inclined end face 2a. This non-superconducting layer 4 is, specifically, the bevel end face 2
It is formed from the surface 1a of the substrate 1 exposed by the etching to the surface of the interlayer insulating film 3 via the surface a.
This non-superconducting layer 4 may be made of either an insulator or a normal conductor. An upper superconducting electrode 5 composed of an oxide superconducting layer is formed on the non-superconducting layer 4 similarly to the lower superconducting electrode 2, and these form an edge-type junction element 6.
【0019】ここで、非超電導層4上に積層形成される
上部超電導電極5までをエピタキシャル的に成長させる
ことは、良好な特性を持つジョセフソン接合を得る上で
重要である。このために、非超電導層4の形成材料とし
ては、超電導特性を持たない層状ペロブスカイト酸化物
であるPrBa2 Cu3 O7-δや、Co等の不純物元素
をドーピングすることで超電導特性を弱めたREBa2
Cu3 O7-δ、さらには下部超電導電極2と擬似的に格
子整合するSrTiΟ3 等の絶縁性酸化物やCaRuO
3 等の導電性酸化物等の非超電導酸化物を用いることが
好ましい。Here, it is important to epitaxially grow up to the upper superconducting electrode 5 formed on the non-superconducting layer 4 in order to obtain a Josephson junction having good characteristics. For this reason, as a material for forming the non-superconducting layer 4, the superconducting property is weakened by doping an impurity element such as PrBa 2 Cu 3 O 7-δ which is a layered perovskite oxide having no superconducting property or Co. REBa 2
Insulating oxide such as Cu 3 O 7-δ , SrTiΟ 3 or the like which is lattice-matched with the lower superconducting electrode 2 in a pseudo manner, or CaRuO.
It is preferable to use a non-superconducting oxide such as a conductive oxide such as 3 .
【0020】そして、下部超電導電極2/非超電導層4
/上部超電導電極5からなる接合部分として見た場合、
下側に位置する酸化物超電導体層、言い換えると非超電
導層4より先に形成する酸化物超電導体層、すなわち下
部超電導電極2を構成する酸化物超電導体は、その分解
反応が開始する温度(分解反応開始温度)が、上側に位
置し非超電導層4より後に形成される上部超電導電極5
を構成する酸化物超電導体の分解反応開始温度より高く
設定されている。The lower superconducting electrode 2 / non-superconducting layer 4
/ When viewed as a joint consisting of the upper superconducting electrode 5,
The oxide superconductor layer located on the lower side, in other words, the oxide superconductor layer formed before the non-superconducting layer 4, that is, the oxide superconductor forming the lower superconducting electrode 2, has a temperature at which the decomposition reaction starts ( Decomposition reaction start temperature), the upper superconducting electrode 5 formed on the upper side and formed after the non-superconducting layer 4.
Is set higher than the decomposition reaction start temperature of the oxide superconductor constituting the above.
【0021】ここで、下部超電導電極2および上部超電
導電極5としての酸化物超電導体は特に限定されるもの
ではないが、臨界電流密度Jc や成膜性等を考慮して、 一般式:REAE2 Μ3 Oy ……(1) (式中、REはYおよびランタナイド元素(ただしRE
が全てPrである場合を除く)から選ばれる少なくとも
1種の元素を、AEはCa、BaおよびSrから選ばれ
る少なくとも 1種の元素を、Μは 70%以上の比率でCu
を含む遷移金属元素を示し、 yは 6.2≦ y≦ 7.5を満足
する数である)で実質的に表される組成を有する酸化物
超電導体、例えばRE−Ba−Cu−O系酸化物超電導
体を使用することが好ましい。ここで、RE元素が全て
Prである場合を除く理由は、REが全てPrで占めら
れている物質は超電導特性を示さないからである。[0021] Here, although the lower superconducting electrodes 2 and upper superconductive electrode oxide superconductor as 5 is not particularly limited, considering the critical current density J c and film forming property and the like, the general formula: REAE 2 Μ 3 O y (1) (wherein RE is Y and a lanthanide element (RE
Are all Pr))
AE is at least one element selected from Ca, Ba and Sr, and Μ is Cu at a ratio of 70% or more.
Wherein y is a number that satisfies 6.2 ≦ y ≦ 7.5), such as an RE-Ba-Cu-O-based oxide superconductor having a composition substantially represented by: It is preferred to use Here, the reason for excluding the case where all the RE elements are Pr is that a substance in which all of the RE is occupied by Pr does not exhibit superconductivity.
【0022】酸化物超電導体は、溶融分解温度を共晶温
度および包晶温度として定義できる系が多いため、以下
においては共晶温度または包晶温度を用いて分解反応を
議論する。例えば、共晶温度を分解温度と定義すると、
((La,Sr)2CuO4系の分解反応開始温度は約
1423K、YBa2Cu3O7系は約1173K、N
dBa 2Cu3O7系は約1273K、Bi2Sr2C
alCu2Oz系は約1123Kである。これらの温度
を越えた時点で、各系とも溶融が始まり、その物質とは
異なる物質に分解する。Since many oxide superconductors can define the melting and decomposition temperature as a eutectic temperature and a peritectic temperature, the decomposition reaction will be discussed below using the eutectic or peritectic temperature. For example, if the eutectic temperature is defined as the decomposition temperature,
(The decomposition reaction initiation temperature of (La, Sr) 2 CuO 4 system is about 1423 K, that of YBa 2 Cu 3 O 7 system is about 1173 K, N
dBa 2 Cu 3 O 7 system is about 1273 K, Bi 2 Sr 2 C
a l Cu 2 O z system is about 1123 K. Above these temperatures, each system begins to melt and decompose into a different material.
【0023】図2に、YΒa2 Cu3 O7 系の平衡状態
図を示す。図2に表されているように、YΒa2 Cu3
O7 は約 1173Kで組成的にBaおよびCuの豊富な融液
とYΒa2 Cu3 O7 の固体とに分解が始まり、さらに
包晶温度である約 1273Kまで昇温すると、Y2 BaCu
O5 系と融液の混合物へと分解する。この際、分解反応
が始まる温度を、YΒa2 Cu3 O7 が初めて分解し始
める約 1173Kに定義する。この分解反応開始温度は、図
3に示すように、例えばREBa2 Cu3 O7系を例に
とると、YbからNdまでのRE元素のイオン半径が大
きくなるにつれて上昇しており、NdBa2 Cu3 O7
ではYBa2 Cu3 O7 よりも約100K高くなっている。FIG. 2 shows an equilibrium diagram of the Y @ a 2 Cu 3 O 7 system. As shown in FIG. 2, YΒa 2 Cu 3
When O 7 about compositionally decomposition starts in the Ba and Cu rich melt and YΒa 2 Cu 3 O 7 solid 1173K, further heated to about 1273K which is peritectic temperature, Y 2 BaCu
O 5 system decomposes and to mixtures melt. At this time, the temperature at which the decomposition reaction starts is defined as about 1173 K at which YΒa 2 Cu 3 O 7 starts to decompose for the first time. As shown in FIG. 3, taking the REBa 2 Cu 3 O 7 system as an example, the decomposition reaction start temperature increases as the ionic radius of the RE element from Yb to Nd increases, and NdBa 2 Cu 3 O 7
Is about 100K higher than YBa 2 Cu 3 O 7 .
【0024】本発明は下部超電導電極2および上部超電
導電極5となる 2つの酸化物超電導体の上述したような
分解温度の差を利用して、非超電導層4の作製直前まで
の下部超電導電極2としての酸化物超電導体層の構造的
安定性を向上させたものである。例えば、非超電導層4
としてΡrBa2 Cu3 O7 層を使用し、この非超電導
層4より時間的に先に形成される下部超電導電極2にΝ
dBa2 Cu3 O7 層を使用すると共に、時間的に後に
形成される上部超電導電極5にYBa2 Cu3O7 層を
使用することによって、非超電導層4形成直前の下部超
電導電極2としてのNdBa2 Cu3 O7 層の構造的劣
化を防止するものである。The present invention utilizes the above-described difference in the decomposition temperature of the two oxide superconductors, which become the lower superconducting electrode 2 and the upper superconducting electrode 5, to utilize the lower superconducting electrode 2 just before the production of the non-superconducting layer 4. In this case, the structural stability of the oxide superconductor layer is improved. For example, the non-superconducting layer 4
An rBa 2 Cu 3 O 7 layer is used as the lower superconducting conductive electrode 2 formed temporally earlier than the non-superconducting layer 4.
By using the YBa 2 Cu 3 O 7 layer for the upper superconducting electrode 5 formed later in time while using the dBa 2 Cu 3 O 7 layer, the lower superconducting electrode 2 just before the non-superconducting layer 4 is formed This is for preventing structural deterioration of the NdBa 2 Cu 3 O 7 layer.
【0025】上記した下部超電導電極2の構造的劣化防
止について、図4に示すエッジ型接合素子6の製造工程
をふまえて説明する。まず、例えば真空成膜装置の成膜
室内で、基板1上に例えばNdΒa2 Cu3 O7 層から
なる下部超電導電極2とSrTiO3 層等からなる層間
絶縁膜3を順に成膜する(図4−a)。次いで、成膜室
から大気中に取り出す工程を経て、通常のフォトリソグ
ラフィーによりレジスト7を層間絶縁膜3上のエッジ作
製部分に形成する(図4−b)。この状態でイオンミリ
ング装置に導入し、図4(c)に示すように、Arイオ
ン等でイオンミリングを行って傾斜端面2aを形成す
る。The prevention of the structural deterioration of the lower superconducting electrode 2 will be described with reference to the manufacturing process of the edge type junction element 6 shown in FIG. First, in a film forming chamber of, for example, a vacuum film forming apparatus, a lower superconducting electrode 2 made of, for example, an Nd @ a 2 Cu 3 O 7 layer and an interlayer insulating film 3 made of, for example, an SrTiO 3 layer are sequentially formed on a substrate 1 (FIG. 4). -A). Next, a resist 7 is formed at the edge formation portion on the interlayer insulating film 3 by ordinary photolithography through a step of taking out the film from the film formation chamber to the atmosphere (FIG. 4B). In this state, it is introduced into an ion milling device, and as shown in FIG. 4C, ion milling is performed with Ar ions or the like to form an inclined end face 2a.
【0026】この後、再度大気中に取り出してレジスト
7を除去し(図4−d)、真空成膜装置の成膜室内に再
度導入して、バリヤー層として例えばΡrBa2 Cu3
O7層からなる非超電導層4と、YΒa2 Cu3 O7 層
からなる上部超電導電極5を順に成膜する(図4−
e)。この成膜にあたって、基板1および予め形成され
ているNdΒa2 Cu3 O7 層からなる下部超電導電極
2は、ΡrBa2 Cu3 O7 層およびYΒa2 Cu3 O
7 層の成膜温度まで加熱される。Thereafter, the film is taken out again to the atmosphere, the resist 7 is removed (FIG. 4D), and the film is introduced again into the film forming chamber of the vacuum film forming apparatus to form a barrier layer such as ΡrBa 2 Cu 3.
A non-superconducting layer 4 consisting of O 7 layer, sequentially formed an upper superconductive electrode 5 made of YΒa 2 Cu 3 O 7-layer (FIG. 4
e). At the time of this film formation, the substrate 1 and the lower superconducting conductive electrode 2 composed of a pre-formed Nd @ a 2 Cu 3 O 7 layer consisted of a ΡrBa 2 Cu 3 O 7 layer and a YΒa 2 Cu 3 O 7 layer.
It is heated to the film forming temperature of seven layers.
【0027】このように、下部超電導電極2としてのN
dBa2 Cu3 O7 層は、非超電導層4の形成以前に大
気中に取り出され、その後イオンミリング等で傾斜端面
2aを形成するという加工プロセスを経ており、表面で
ある傾斜端面2aは非超電導層4の形成直前までに大量
の異分子を吸着している。また、加工プロセスはイオン
ミリングでNdBa2 Cu3 O7 層を削るものであり、
NdBa2 Cu3 O7層の傾斜端面2aはミリング時の
ダメージにより構造的に劣化しており、またイオンミリ
ング時の加速電圧が高いとアモルファス化する場合もあ
る。As described above, N as the lower superconducting electrode 2
The dBa 2 Cu 3 O 7 layer is taken out into the atmosphere before the formation of the non-superconducting layer 4, and then undergoes a processing process of forming the inclined end face 2 a by ion milling or the like. Immediately before the formation of the layer 4, a large amount of foreign molecules have been adsorbed. The processing process is to cut the NdBa 2 Cu 3 O 7 layer by ion milling.
The inclined end face 2a of the NdBa 2 Cu 3 O 7 layer is structurally degraded due to damage during milling, and may become amorphous if the acceleration voltage during ion milling is high.
【0028】この傾斜端面2aは、界面を構成する最も
重要な部分であるにも関わらず、その後の非超電導層4
および上部超電導電極5の作製時の昇温過程で、上述し
たような理由で不安定となり、さらに著しく反応が促進
されて、界面は構造的に劣化するおそれがある。これに
対して、下部超電導電極2に上部超電導電極5としての
YBa2 Cu3 O7 層より分解反応開始温度が高いΝd
Ba2 Cu3 O7 層を使用した場合、ΝdBa2 Cu3
O7 層は分解反応開始温度がYBa2 Cu3 O7 層より
も約100K高く、このため例えばスパッタ法で基板1上に
良質な膜を形成する際の基板温度は約100K程度高い温度
となる。Although the inclined end face 2a is the most important part constituting the interface, the non-superconducting layer 4
In addition, during the process of raising the temperature when the upper superconducting electrode 5 is manufactured, the upper superconducting electrode 5 becomes unstable for the above-mentioned reason, and the reaction is remarkably accelerated, and the interface may be structurally deteriorated. On the other hand, the decomposition reaction initiation temperature of the lower superconducting electrode 2 is higher than that of the YBa 2 Cu 3 O 7 layer as the upper superconducting electrode 5.
When a Ba 2 Cu 3 O 7 layer is used, ΔdBa 2 Cu 3
The O 7 layer has a decomposition reaction initiation temperature about 100 K higher than the YBa 2 Cu 3 O 7 layer. Therefore, the substrate temperature when forming a good quality film on the substrate 1 by, for example, the sputtering method is about 100 K higher. .
【0029】すなわち、NdBa2 Cu3 O7 層を 112
3Kで形成し、大気中に取り出して傾斜端面2aを形成す
る加工プロセスを施した後、上部超電導電極5としての
YBa2 Cu3 O7 層の良質な薄膜形成温度である 102
3Kまで再度加熱される。この際、NdBa2 Cu3 O7
層は分解温度が約100K高く、 1023Kの再加熱時において
も分解反応は進行せず、良質な表面を保持している。一
方、下部超電導電極2にYBa2 Cu3 O7 層を適用し
た場合には、この再加熱時の高温プロセスで界面は溶融
状態となり、YBa2 Cu3 O7 層は分解してしまうた
め、良質な界面ひいては素子特性に優れた超電導素子を
得ることはできない。That is, the NdBa 2 Cu 3 O 7 layer is
After forming a 3K, taking out into the atmosphere and forming a slanted end face 2a, a process of forming a high-quality thin film of the YBa 2 Cu 3 O 7 layer as the upper superconducting electrode 5 is performed.
Heated again to 3K. At this time, NdBa 2 Cu 3 O 7
The decomposition temperature of the layer is about 100K higher, and the decomposition reaction does not proceed even at the time of reheating at 1023K, and a good surface is maintained. On the other hand, when the YBa 2 Cu 3 O 7 layer is applied to the lower superconducting conductive electrode 2, the interface is in a molten state by the high-temperature process at the time of reheating, and the YBa 2 Cu 3 O 7 layer is decomposed. It is not possible to obtain a superconducting element having excellent interface characteristics and excellent element characteristics.
【0030】上記したNdBa2 Cu3 O7 層からなる
下部超電導電極2上に、非超電導層4としてΡrBa2
Cu3 O7 層を形成した際の界面は、NdBa2 Cu3
O7層表面が安定であることから理想的なものとなり、
かつPrBa2 Cu3 O7 層上に上部超電導電極5とし
てYBa2 Cu3 O7 層を形成する際の温度は 1023Kと
十分に高くすることができるため、非超電導層4と上部
超電導電極5との界面も理想的に形成することができ
る。On the lower superconducting electrode 2 composed of the above-mentioned NdBa 2 Cu 3 O 7 layer, as a non-superconducting layer 4, BrBa 2
When the Cu 3 O 7 layer was formed, the interface was NdBa 2 Cu 3
It is ideal because the O 7 layer surface is stable,
In addition, since the temperature at the time of forming the YBa 2 Cu 3 O 7 layer as the upper superconducting electrode 5 on the PrBa 2 Cu 3 O 7 layer can be made sufficiently high as 1023 K, the non-superconducting layer 4 and the upper superconducting electrode 5 Can also be ideally formed.
【0031】このように、下部超電導電極2に分解反応
開始温度が高い酸化物超電導体を適用することによっ
て、界面での外来分子との反応や酸化物超電導体自体の
分解反応および溶融状態の造出を防止することができ、
界面の構造的な不均一による素子特性の低下や再現性の
低下を回避することが可能となる。従って、界面の平坦
性、格子整合性、急峻性、電気特性等を向上させること
ができ、素子特性およびその再現性を向上させた超電導
素子を得ることが可能となる。As described above, by applying the oxide superconductor having a high decomposition reaction initiation temperature to the lower superconducting electrode 2, the reaction with foreign molecules at the interface, the decomposition reaction of the oxide superconductor itself, and the formation of a molten state are achieved. I can prevent going out,
It is possible to avoid a decrease in device characteristics and a decrease in reproducibility due to structural nonuniformity of the interface. Therefore, the flatness, lattice matching, steepness, electrical characteristics, and the like of the interface can be improved, and a superconducting device with improved device characteristics and its reproducibility can be obtained.
【0032】上述した実施形態においては、下部超電導
電極2にNdBa2 Cu3 O7 層を用いると共に、上部
超電導電極5にYBa2 Cu3 O7 層を使用した場合に
ついて説明したが、本発明はこれらに限られるものでは
なく、下部超電導電極2に上部超電導電極5を構成する
酸化物超電導体層より分解反応開始温度が高い酸化物超
電導体層を用いることによって同様な効果を得ることが
できる。[0032] In the embodiment described above, the lower superconducting electrodes 2 with use of NdBa 2 Cu 3 O 7 layer, has been described using the YBa 2 Cu 3 O 7 layer on top superconducting electrode 5, the present invention is However, the same effect can be obtained by using an oxide superconductor layer having a decomposition reaction start temperature higher than that of the oxide superconductor layer constituting the upper superconducting electrode 5 for the lower superconducting electrode 2.
【0033】ただし、分解反応開始温度の差がほとんど
ない組合せを両超電導電極2、5として用いた場合に
は、上記した分解反応を抑制する効果が有意なものとし
て得られず、非超電導層4および上部超電導電極5の成
膜時に下部超電導電極2の分解反応が起こる可能性があ
ることから、少なくとも両超電導電極2、5間の分解反
応開始温度の差は 30K以上となような組合せを適用する
ことが好ましい。このような組合せとしては、上述した
NdBa2 Cu3 O7 とYBa2 Cu3 O7 との他に、
EuBa2 Cu3 O7 とYBa2 Cu3 O7 との組合せ
等が好ましいものとして挙げられる。However, when a combination having almost no difference in the decomposition reaction initiation temperature is used as the two superconducting electrodes 2 and 5, the above-described effect of suppressing the decomposition reaction is not obtained as significant, and the non-superconducting layer 4 Since the decomposition reaction of the lower superconducting electrode 2 may occur during the film formation of the upper superconducting electrode 5 and the upper superconducting electrode 5, a combination in which at least the difference in the decomposition reaction initiation temperature between the two superconducting electrodes 2 and 5 is 30K or more is applied. Is preferred. As such a combination, in addition to the above-mentioned NdBa 2 Cu 3 O 7 and YBa 2 Cu 3 O 7 ,
Preferred examples include a combination of EuBa 2 Cu 3 O 7 and YBa 2 Cu 3 O 7 .
【0034】なお、酸化物超電導体層としては、前述し
たように臨界電流密度Jcや成膜性等を考慮して、RE
−Ba−Cu−O系等の前述した(1)式で実質的に表
される酸化物超電導体を使用する。 As described above, the oxide superconductor layer is made of RE in consideration of the critical current density Jc and the film forming property.
-Ba-Cu-O foregoing such system (1) that uses an oxide superconductor substantially represented by formula.
【0035】次に、本発明の超電導構造体をジョセフソ
ン接合素子の一例である積層型接合素子に適用した実施
形態について、図5ないし図7を参照して説明する。Next, an embodiment in which the superconducting structure of the present invention is applied to a stacked junction device as an example of a Josephson junction device will be described with reference to FIGS.
【0036】図5に示す積層型接合素子11は、基板1
2上に下部超電導電極13、非超電導層14および上部
超電導電極15が順に積層形成されて構成されている。
この積層型接合素子11においても、前述した実施形態
と同様に、下部超電導電極13には上部超電導電極15
を構成する酸化物超電導体層より分解反応開始温度が高
い酸化物超電導体層が用いられている。なお、具体的な
超電導電極13、15の構成材料や非超電導層14の構
成材料は、前述した実施形態と同様である。The laminated junction element 11 shown in FIG.
2, a lower superconducting electrode 13, a non-superconducting layer 14, and an upper superconducting electrode 15 are sequentially laminated and formed.
In this stacked junction element 11 as well, the lower superconducting electrode 13 is connected to the upper superconducting electrode 15 similarly to the above-described embodiment.
The oxide superconductor layer whose decomposition reaction initiation temperature is higher than that of the oxide superconductor layer constituting the above is used. The specific constituent materials of the superconducting electrodes 13 and 15 and the constituent material of the non-superconducting layer 14 are the same as those in the above-described embodiment.
【0037】このような積層型接合素子11において
も、下部超電導電極13に上部超電導電極15を構成す
る酸化物超電導体層より分解反応開始温度が高い酸化物
超電導体層を用いることによって、非超電導層14およ
び上部超電導電極15を形成する際の下部超電導電極1
3の分解反応および溶融状態の造出を防止することがで
きる。In such a stacked junction element 11 as well, by using the oxide superconductor layer having a higher decomposition initiation temperature than the oxide superconductor layer constituting the upper superconducting electrode 15 for the lower superconducting electrode 13, the non-superconducting layer is used. Lower superconducting electrode 1 when forming layer 14 and upper superconducting electrode 15
3 can be prevented from being decomposed and produced in a molten state.
【0038】特に図6に示すように、基板12上に下部
超電導電極13を形成(図6−a)した後に、一旦大気
中に取り出してイオンミリング装置に導入し、Arイオ
ンにより下部超電導電極13表面の清浄化および平坦化
を行った後(図6−b)、再度真空成膜装置等の成膜室
内に導入して非超電導層14および上部超電導電極15
を形成する場合や、あるいは図7に示すように、非超電
導層14を形成(図7−a)した後に、一旦大気中に取
り出してイオンミリング装置に導入し、Arイオンによ
り非超電導層14表面の清浄化および平坦化を行った後
(図7−b)、再度真空成膜装置等の成膜室内に導入し
て上部超電導電極15を形成する場合に、より一層有効
に下部超電導電極13の分解反応や溶融状態の造出を防
止することができる。In particular, as shown in FIG. 6, after the lower superconducting electrode 13 is formed on the substrate 12 (FIG. 6-a), it is once taken out into the atmosphere and introduced into an ion milling device, and the lower superconducting electrode 13 is formed by Ar ions. After the surface is cleaned and flattened (FIG. 6-b), it is introduced again into a film forming chamber of a vacuum film forming apparatus or the like, and the non-superconducting layer 14 and the upper superconducting electrode 15 are formed.
7 or as shown in FIG. 7, after forming the non-superconducting layer 14 (FIG. 7-a), once take it out to the atmosphere, introduce it into the ion milling device, and use Ar ions to form the surface of the non-superconducting layer 14 After cleaning and flattening (FIG. 7B), when the upper superconducting electrode 15 is formed by being introduced again into a film forming chamber of a vacuum film forming apparatus or the like, the lower superconducting electrode 13 can be more effectively used. Decomposition reaction and creation of a molten state can be prevented.
【0039】これらによって、界面の構造的な不均一に
よる素子特性の低下や再現性の低下を回避することがで
き、界面の平坦性、格子整合性、急峻性、電気特性等を
向上させることが可能となる。従って、超電導素子の素
子特性およびその再現性を向上させることができる。With these, it is possible to avoid a decrease in device characteristics and a decrease in reproducibility due to the structural nonuniformity of the interface, and it is possible to improve the flatness, lattice matching, steepness, and electrical characteristics of the interface. It becomes possible. Therefore, the element characteristics of the superconducting element and the reproducibility thereof can be improved.
【0040】なお、上述した実施形態では、本発明の超
電導構造体をジョセフソン接合素子に適用した形態につ
いて説明したが、本発明はこれに限定されるものではな
く、非超電導酸化物層を介して配置された複数の酸化物
超電導体層を有する積層膜を具備するものであれば、種
々の超電導構造体に適用することができる。In the above-described embodiment, the embodiment in which the superconducting structure of the present invention is applied to a Josephson junction element has been described. However, the present invention is not limited to this. It can be applied to various superconducting structures as long as it has a laminated film having a plurality of oxide superconductor layers arranged in a row.
【0041】例えば、超電導トランジスタのような各種
の超電導素子、さらには超電導配線等においては、下側
に超電導グランドプレーンを形成する場合がある。この
ような場合には、超電導グランドプレーン/非超電導酸
化物層/酸化物超電導体層の積層膜が形成されるが、こ
のような構造においても下側の酸化物超電導体層に上側
の酸化物超電導体層を構成する物質より分解反応開始温
度が高い物質を用いることによって、非超電導酸化物層
および上側の酸化物超電導体層を形成する際の下側の酸
化物超電導体層の分解反応や溶融状態の造出を防止する
ことができ、良好な界面を形成することが可能となる。
また、ジョセフソン接合素子においても超電導グランド
プレーンを形成する場合があり、このような場合には 2
つの接合部分それぞれに本発明を適用してもよいし、ま
た一方のみに適用してもよい。For example, in the case of various superconducting elements such as superconducting transistors, superconducting wires, etc., a superconducting ground plane may be formed below. In such a case, a laminated film of superconducting ground plane / non-superconducting oxide layer / oxide superconducting layer is formed. In such a structure, the upper oxide superconducting layer is added to the lower oxide superconducting layer. By using a substance having a decomposition reaction initiation temperature higher than that of the material constituting the superconductor layer, the decomposition reaction of the lower oxide superconductor layer when forming the non-superconducting oxide layer and the upper oxide superconductor layer can be performed. The production in a molten state can be prevented, and a good interface can be formed.
In some cases, a superconducting ground plane is also formed in a Josephson junction element.
The present invention may be applied to each of the two joining portions, or may be applied to only one of the joining portions.
【0042】[0042]
【実施例】次に、本発明の具体的な実施例について述べ
る。Next, specific examples of the present invention will be described.
【0043】実施例1 まず、スパッタ法で図1に構造を示したNdBa2 Cu
3 O7 /PrBa2 Cu3 O7 /YBa2 Cu3 O7 積
層膜を有するエッジ型接合素子を作製した例について述
べる。Example 1 First, NdBa 2 Cu whose structure was shown in FIG.
An example in which an edge-type junction element having a 3 O 7 / PrBa 2 Cu 3 O 7 / YBa 2 Cu 3 O 7 laminated film is manufactured will be described.
【0044】まず、基板1としてSrTiO3 (100) 基
板を用い、この基板1上に表1に示す条件で下部超電導
電極2としてNdΒa2 Cu3 O7 層を成膜し、その後
in-situプロセスで層間絶縁膜3として900KでSrTi
O3 膜を形成した。各層共に膜厚は 300nmとした。First, an SrTiO 3 (100) substrate was used as the substrate 1, and an Nd @ a 2 Cu 3 O 7 layer was formed as the lower superconducting electrode 2 on the substrate 1 under the conditions shown in Table 1.
SrTi at 900K as interlayer insulating film 3 by in-situ process
An O 3 film was formed. The thickness of each layer was 300 nm.
【0045】次いで、成膜チャンバから大気中に取り出
す行程を経て、通常のフォトリソグラフィーによりレジ
スト7をエッジ作製部分に形成した。この状態でイオン
ミリング装置に導入し、Arイオンを用いたイオンミリ
ングにより傾斜端面2a(角度α=30°)を形成した。Then, through a process of taking out the film from the film forming chamber to the atmosphere, a resist 7 was formed on the edge forming portion by ordinary photolithography. In this state, it was introduced into an ion milling apparatus, and an inclined end face 2a (angle α = 30 °) was formed by ion milling using Ar ions.
【0046】この後、再度大気中に取り出してレジスト
7を除去し、さらに成膜チャンバに再度導入して、バリ
ヤー層となる非超電導層4としてのΡrBa2 Cu3 O
7 層および上部超電導電極5としてのYBa2 Cu3 O
7 層の形成温度である 1023Kまで昇温した。昇温は、ア
ルゴン+酸素の混合ガスを流した状態で行った。表1に
示す条件で非超電導層4としてのΡrBa2 Cu3 O7
層(膜厚:1〜20nm)と上部超電導電極5としてのYBa
2 Cu3 O7 層(膜厚:200nm)を成膜し、次いで酸素ガ
スを 1気圧まで導入して約 1時間の後、大気中に取り出
した。Thereafter, the resist is taken out again to the atmosphere to remove the resist 7, and is again introduced into the film forming chamber, where ΔrBa 2 Cu 3 O as the non-superconducting layer 4 serving as a barrier layer is formed.
YBa 2 Cu 3 O as 7 layers and upper superconducting electrode 5
The temperature was raised to 1023K, which is the formation temperature of the seven layers. The temperature was raised while flowing a mixed gas of argon and oxygen. ΡrBa 2 Cu 3 O 7 as the non-superconducting layer 4 under the conditions shown in Table 1.
Layer (film thickness: 1 to 20 nm) and YBa as upper superconducting electrode 5
A 2 Cu 3 O 7 layer (thickness: 200 nm) was formed, and then oxygen gas was introduced to 1 atm. After about 1 hour, the layer was taken out to the atmosphere.
【0047】[0047]
【表1】 図8に、この実施例1によるエッジ型接合素子の傾斜端
面部分の微細構造の拡大写真(SEM像)を示す。図8
(a)は、バリヤー層形成前のNdΒa2 Cu3 O7 層
とSrTiO3 膜との積層膜の傾斜端面の加熱処理前の
拡大写真であり、図8(b)はその加熱処理後の拡大写
真である。また、図9は本発明との比較例として作製し
た下部超電導電極にもYBa2 Cu3 O7 層を用いたエ
ッジ型接合素子の傾斜端面部分の微細構造の拡大写真
(SEM像)であり、図9(a)はYBa2 Cu3 O7
層とSrTiO3 膜との積層膜の傾斜端面の加熱処理前
の拡大写真であり、図9(b)はその加熱処理後の拡大
写真である。[Table 1] FIG. 8 shows an enlarged photograph (SEM image) of the fine structure of the inclined end face portion of the edge-type junction element according to the first embodiment. FIG.
FIG. 8A is an enlarged photograph of an inclined end face of a laminated film of a Nd @ a 2 Cu 3 O 7 layer and an SrTiO 3 film before a barrier layer is formed, and FIG. 8B is an enlarged photograph after the heat treatment. It is a photograph. FIG. 9 is an enlarged photograph (SEM image) of the fine structure of the inclined end face portion of the edge type junction element using the YBa 2 Cu 3 O 7 layer also for the lower superconducting electrode manufactured as a comparative example with the present invention. FIG. 9A shows YBa 2 Cu 3 O 7.
FIG. 9B is an enlarged photograph of the inclined end surface of the laminated film of the layer and the SrTiO 3 film before the heat treatment, and FIG. 9B is an enlarged photograph after the heat treatment.
【0048】図8および図9から明らかなように、分解
反応開始温度が約100K高いNdΒa2 Cu3 O7 層を下
部超電導電極として用いた場合には、Y系に見られるよ
うなエッジ部分の斜面での溶融分解反応と思われる構造
的な劣化は一切観測されておらず、加熱前のモフォロジ
ーを保っていることが分かる。これにより、分解反応開
始温度が高い酸化物超電導体は、再加熱プロセスにおけ
る溶融分解反応および水等との反応性が著しく低く、高
温まで非加熱と同様の表面性および電気特性を保持する
上で極めて有効であることが判明した。As is apparent from FIGS. 8 and 9, when the Nd @ a 2 Cu 3 O 7 layer having a decomposition reaction starting temperature higher by about 100 K is used as the lower superconducting electrode, the edge portion as seen in the Y system is not affected. No structural degradation that could be attributed to the melt decomposition reaction on the slope was observed, indicating that the morphology before heating was maintained. As a result, the oxide superconductor having a high decomposition reaction start temperature has a remarkably low melt decomposition reaction in the reheating process and reactivity with water, etc., and retains the same surface properties and electrical properties as non-heated up to high temperatures. It has proven to be extremely effective.
【0049】また、この実施例1によるエッジ型接合素
子(バリヤー層の膜厚 5nmの場合)の電流−電圧特性を
図10に、また臨界電流値の磁場依存性を図11に示
す。特性はIc ・Rn 積が 2.0mVの典型的なRSJタイ
プであり、また磁場印加により明瞭なフラウンフォーフ
ァーパターンを示す理想的なジョセフソン接合となって
いた。実施例1により作製したエッジ型接合素子の特性
は、バリヤー層の膜厚が10nm未満ではトンネルおよび共
鳴トンネル的な伝導特性を持ち、膜厚が10nm以上のバリ
ヤー層では絶縁特性しか示さなかった。このように、本
発明によれば素子特性が向上するのみではなく、単位格
子レベルでのバリヤー層作製における構造的な信頼性お
よび再現性が著しく高まることが判明した。FIG. 10 shows the current-voltage characteristics of the edge-type junction element (when the barrier layer has a thickness of 5 nm) according to Example 1, and FIG. 11 shows the magnetic field dependence of the critical current value. The characteristics were a typical RSJ type with an I c · R n product of 2.0 mV, and an ideal Josephson junction showing a clear Fraunhofer pattern when a magnetic field was applied. The characteristics of the edge-type junction element manufactured according to Example 1 were such that when the thickness of the barrier layer was less than 10 nm, it had tunneling and resonance tunneling conduction properties, and when the thickness of the barrier layer was 10 nm or more, only the insulating properties were exhibited. As described above, according to the present invention, it has been found that not only the element characteristics are improved, but also the structural reliability and reproducibility in forming the barrier layer at the unit cell level are remarkably increased.
【0050】実施例2 スパッタ法で図1に構造を示したREBa2 Cu3 O7
/PrBa2 Cu3 O7 /RE′Ba2 Cu3 O7 積層
膜を有するエッジ型接合素子を、実施例1と同様の加工
法を適用して作製した。具体的な膜構成および各膜の成
膜温度(基板温度)は表2に示す通りである。その結
果、全ての接合でRSJ的な特性が得られた。このよう
に分解温度差を持つ酸化物超電導体を両電極として利用
した場合、界面の品質は著しく向上することが判明し
た。Example 2 REBa 2 Cu 3 O 7 whose structure is shown in FIG. 1 by a sputtering method
An edge type junction device having a / PrBa 2 Cu 3 O 7 / RE′Ba 2 Cu 3 O 7 laminated film was produced by applying the same processing method as in the first embodiment. The specific film configuration and the film formation temperature (substrate temperature) of each film are as shown in Table 2. As a result, RSJ-like characteristics were obtained in all the junctions. It has been found that when an oxide superconductor having a decomposition temperature difference is used as both electrodes, the quality of the interface is significantly improved.
【0051】[0051]
【表2】 実施例3 レーザーアブレーション法で図1に構造を示したSmB
a2 Cu3 O7 /PrBa2 Cu3 O7 /HoBa2 C
u3 O7 積層膜を有するエッジ型接合素子を作製した例
について述べる。[Table 2] Example 3 SmB whose structure is shown in FIG. 1 by a laser ablation method
a 2 Cu 3 O 7 / PrBa 2 Cu 3 O 7 / HoBa 2 C
An example in which an edge-type junction element having a u 3 O 7 laminated film is manufactured will be described.
【0052】基板としてSrTiO3 (100)を用いて、
まず表3に示すように、レーザーアブレーション法によ
り 1100KでSm2 Cu3 O7 膜を成膜し、900Kまで降温
した後に層間絶縁膜としてのSrTiO3 膜を形成し
た。膜厚は両者共に 300nmである。次いで、大気中に取
り出して実施例1と同様のプロセスで、下部超電導電極
に傾斜端面を形成した。Using SrTiO 3 (100) as a substrate,
First, as shown in Table 3, an Sm 2 Cu 3 O 7 film was formed at 1100 K by a laser ablation method, and the temperature was lowered to 900 K, and then an SrTiO 3 film as an interlayer insulating film was formed. The film thicknesses are both 300 nm. Next, it was taken out into the atmosphere and the inclined end face was formed on the lower superconducting electrode by the same process as in Example 1.
【0053】この後、成膜チャンバに再度導入し、圧力
65Paの酸素ガスフローにおいて基板温度を 1023Kまで昇
温させ、バリヤー層として膜厚10nmのPrBa2 Cu3
O7膜を形成した。バリヤー層の形成終了と共に、成膜
チャンバ中において基板温度を 1063Kまで昇温し、膜厚
200nmのHoBa2 Cu3 O7 膜を形成した。Thereafter, the film is introduced again into the film forming chamber,
The substrate temperature was raised to 1023 K in an oxygen gas flow of 65 Pa, and PrBa 2 Cu 3 having a thickness of 10 nm was used as a barrier layer.
An O 7 film was formed. At the end of the barrier layer formation, the substrate temperature was raised to 1063K in the deposition chamber,
A 200 nm HoBa 2 Cu 3 O 7 film was formed.
【0054】この実施例3によるエッジ型接合素子は、
Ic ・Rn 積として 2.0mVを持つ、典型的なRSJタイ
プのジョセフソン接合となっていた。また、磁場印加に
よりΙc はフラウンフォーファー的な特性を示し、理想
的なジョセフソン接合となっていることが判明した。The edge type junction device according to the third embodiment is
It was a typical RSJ-type Josephson junction having 2.0 mV as the I c · R n product. Further, iota c by the magnetic field applied to indicate the Fraunhofer properties, it was found that an ideal Josephson junction.
【0055】[0055]
【表3】 実施例4 図5に構造を示したNdBa2 Cu3 O7 /PrBa2
Cu3 O7 /HoBa2 Cu3 O7 積層膜を有する積層
型接合素子を作製した例について述べる。[Table 3] Example 4 NdBa 2 Cu 3 O 7 / PrBa 2 whose structure is shown in FIG.
An example in which a stacked junction device having a Cu 3 O 7 / HoBa 2 Cu 3 O 7 stacked film is manufactured will be described.
【0056】まず、第1の試料については、実施例1と
同様の条件で下部超電導電極としてNdBa2 Cu3 O
7 層を形成した後、大気中に取り出してイオンミリング
チャンバに導入し、図6に示したようにArイオンでN
dBa2 Cu3 O7 層表面の清浄化および平坦化を行
い、この後再度成膜チャンバに導入して、実施例1と同
様の条件でバリヤー層としてPrBa2 Cu3 O7 層と
上部超電導電極としてYΒa2 Cu3 O7 を形成した。First, for the first sample, NdBa 2 Cu 3 O was used as the lower superconducting electrode under the same conditions as in Example 1.
After forming the seven layers, the layers were taken out to the atmosphere and introduced into an ion milling chamber, and N ions were introduced with Ar ions as shown in FIG.
The surface of the dBa 2 Cu 3 O 7 layer was cleaned and flattened, and then introduced again into the film forming chamber. The PrBa 2 Cu 3 O 7 layer and the upper superconducting electrode were used as barrier layers under the same conditions as in Example 1. YΒa 2 Cu 3 O 7 was formed.
【0057】第2の試料については、 1123Kで下部超電
導電極としてのNdBa2 Cu3 O7 層とバリヤー層と
してのPrBa2 Cu3 O7 層を形成した後、大気中に
取り出してイオンミリングでPrBa2 Cu3 O7 層表
面の清浄化および平坦化を行い、この後再度成膜チャン
バに導入して、 1023Kで上部超電導電極としてYΒa 2
Cu3 O7 を形成した。For the second sample, the lower super
NdBa as conductive electrodeTwoCuThreeO7Layers and barrier layers
PrBaTwoCuThreeO7After forming the layer,
Take out and PrBa by ion millingTwoCuThreeO7Layer table
After cleaning and flattening the surface,
YΒa as the upper superconducting electrode at 1023K Two
CuThreeO7Was formed.
【0058】この実施例4に示した 2種類の表面処理を
行った積層型接合素子は、それぞれIc ・Rn 積として
1.0mV、 1.2mVを持つ、典型的なRSJタイプのI−V
特性を示す理想的なジョセフソン素子であった。[0058] multilayer junction devices of two different types were carried out the surface treatment shown in the fourth embodiment, as I c · R n product respectively
Typical RSJ type IV with 1.0mV, 1.2mV
It was an ideal Josephson device exhibiting characteristics.
【0059】[0059]
【発明の効果】以上説明したように、本発明の超電導構
造体によれば、酸化物超電導体層と非超電導酸化物層と
の界面の構造を極めて安定に保つことができることか
ら、界面の特性および物性値が向上する。従って、素子
特性等の向上を図ることができると共に、その再現性を
高めることが可能となる。これによって、超電導素子等
の実用レベルでの信頼性が著しく高まり、酸化物超電導
体のエレクトロニクスヘの貢献が加速される。As described above, according to the superconducting structure of the present invention, the structure of the interface between the oxide superconducting layer and the non-superconducting oxide layer can be kept extremely stable. And the physical property value is improved. Therefore, it is possible to improve the element characteristics and the like, and to improve the reproducibility. As a result, the reliability of the superconducting element or the like at a practical level is significantly increased, and the contribution of the oxide superconductor to electronics is accelerated.
【図1】 本発明の超電導構造体をジョセフソン接合素
子の一例であるエッジ型接合素子に適用した一実施形態
の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment in which a superconducting structure according to the present invention is applied to an edge-type junction element which is an example of a Josephson junction element.
【図2】 Y−Ba−Cu−O系酸化物超電導体の平衡
状態図である。FIG. 2 is an equilibrium diagram of a Y—Ba—Cu—O-based oxide superconductor.
【図3】 RE−Ba一Cu−O系酸化物超電導体の分
解反応開始温度とRE元素のイオン半径との関係を示す
図である。FIG. 3 is a diagram showing the relationship between the decomposition reaction initiation temperature of RE-Ba-Cu-O-based oxide superconductor and the ionic radius of RE element.
【図4】 図1に示すエッジ型接合素子の製造工程の要
部を示す図である。FIG. 4 is a diagram showing a main part of a manufacturing process of the edge-type junction device shown in FIG. 1;
【図5】 本発明の超電導構造体をジョセフソン接合素
子の一例である積層型接合素子に適用した他の実施形態
の構成を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a configuration of another embodiment in which the superconducting structure of the present invention is applied to a stacked junction element as an example of a Josephson junction element.
【図6】 図5に示す積層型接合素子の一製造工程の要
部を示す図である。FIG. 6 is a view showing a main part of one manufacturing process of the stacked junction element shown in FIG. 5;
【図7】 図5に示す積層型接合素子の他の製造工程の
要部を示す図である。FIG. 7 is a diagram showing a main part of another manufacturing process of the stacked junction element shown in FIG. 5;
【図8】 本発明の実施例1で作製したエッジ型接合素
子の傾斜端面部分の微細構造の拡大写真(SEM写真)
であり、(a)は加熱処理前の拡大写真、(b)は加熱
処理後の拡大写真である。FIG. 8 is an enlarged photograph (SEM photograph) of the fine structure of the inclined end face portion of the edge type junction device manufactured in Example 1 of the present invention.
(A) is an enlarged photograph before the heat treatment, and (b) is an enlarged photograph after the heat treatment.
【図9】 本発明との比較例として作製したエッジ型接
合素子の傾斜端面部分の微細構造の拡大写真(SEM写
真)であり、(a)は加熱処理前の拡大写真、(b)は
加熱処理後の拡大写真である。FIG. 9 is an enlarged photograph (SEM photograph) of a fine structure of an inclined end face portion of an edge type junction element manufactured as a comparative example with the present invention, (a) is an enlarged photograph before a heat treatment, and (b) is a heated photograph. It is an enlarged photograph after processing.
【図10】 本発明の実施例1で作製したエッジ型接合
素子の電流−電圧特性の一例を示す図である。FIG. 10 is a diagram showing an example of a current-voltage characteristic of the edge type junction device manufactured in Example 1 of the present invention.
【図11】 本発明の実施例1で作製したエッジ型接合
素子の臨界電流値の磁場依存性の一例を示す図である。FIG. 11 is a diagram showing an example of magnetic field dependence of a critical current value of the edge junction device manufactured in Example 1 of the present invention.
2、13……酸化物超電導体層からなる下部超電導電極 3……層間絶縁膜 4、14……非超電導酸化物からなる非超電導層 5、15……酸化物超電導体層からなる上部超電導電極 2, 13 ... lower superconducting electrode composed of oxide superconductor layer 3 ... interlayer insulating film 4, 14 ... non-superconducting layer composed of non-superconducting oxide 5, 15 ... upper superconducting electrode composed of oxide superconducting layer
フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/24 ZAA H01L 39/24 ZAAJ (58)調査した分野(Int.Cl.6,DB名) H01L 39/02 ZAA C30B 29/22 501 H01L 39/22 ZAA H01L 39/24 ZAA Continued on the front page (51) Int.Cl. 6 identification code FI H01L 39/24 ZAA H01L 39/24 ZAAJ (58) Fields investigated (Int.Cl. 6 , DB name) H01L 39/02 ZAA C30B 29/22 501 H01L 39/22 ZAA H01L 39/24 ZAA
Claims (1)
酸化物超電導体層間に介在された非超電導酸化物層との
積層膜を具備する超電導構造体において、 前記非超電導酸化物層を介して配置された前記複数の酸
化物超電導体層は、 一般式:REAE 2 M 3 O y (式中、REはYおよびランタナイド元素から選ばれる
少なくとも1種の元素を、AEはCa、BaおよびSr
から選ばれる少なくとも1種の元素を、Mは70%以上
の比率でCuを含む遷移元素を示し、yは6.2≦y≦
7.5を満足する数である) で表される組成を有し、か
つ前記複数の酸化物超電導体層のうち、 下側に位置する
酸化物超電導体層を構成する物質は、上側に位置する酸
化物超電導体層を構成する物質より高い分解反応開始温
度を有することを特徴とする超電導構造体。1. A superconducting structure comprising a stacked film of a plurality of oxide superconductor layers and a non-superconducting oxide layer interposed between the plurality of oxide superconductor layers, wherein the non-superconducting oxide layer is The plurality of oxide superconductor layers interposed therebetween have a general formula: REAE 2 M 3 O y (where RE is selected from Y and a lanthanide element)
At least one element, AE is Ca, Ba and Sr
At least one element selected from the group consisting of:
Represents a transition element containing Cu at a ratio of y = 6.2 ≦ y ≦
Which satisfies 7.5) .
The material constituting the lower oxide superconductor layer among the plurality of oxide superconductor layers has a higher decomposition reaction initiation temperature than the material constituting the upper oxide superconductor layer. A superconducting structure characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8247087A JP2908346B2 (en) | 1996-08-29 | 1996-08-29 | Superconducting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8247087A JP2908346B2 (en) | 1996-08-29 | 1996-08-29 | Superconducting structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1074989A JPH1074989A (en) | 1998-03-17 |
JP2908346B2 true JP2908346B2 (en) | 1999-06-21 |
Family
ID=17158240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8247087A Expired - Lifetime JP2908346B2 (en) | 1996-08-29 | 1996-08-29 | Superconducting structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2908346B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6719924B2 (en) | 2000-10-31 | 2004-04-13 | Kabushiki Kaisha Toshiba | Superconducting device and method of manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040032093A (en) * | 2001-08-22 | 2004-04-14 | 재단법인 국제 초전도 산업기술연구 센터 | High Temperature Superconducting Josephson Junction, Superconducting Electronic Device Provided with The Former And Method of Manufacturing High Temperature Superconducting Josephson Junction |
JP2003282981A (en) | 2002-03-26 | 2003-10-03 | Fujitsu Ltd | Josephson junction element and its manufacturing method |
-
1996
- 1996-08-29 JP JP8247087A patent/JP2908346B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6719924B2 (en) | 2000-10-31 | 2004-04-13 | Kabushiki Kaisha Toshiba | Superconducting device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH1074989A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3031884B2 (en) | High temperature SSNS and SNS Josephson junction and manufacturing method thereof | |
EP0430737B1 (en) | A superconducting thin film | |
JP2000150974A (en) | High-temperature superconducting josephson junction and manufacture thereof | |
EP0506582B1 (en) | Process for preparing layered thin films | |
JPH0730161A (en) | Laminated film of insulator thin film and oxide superconducting thin film and its manufacture | |
JP2908346B2 (en) | Superconducting structure | |
EP0534811B1 (en) | Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film | |
JP2902939B2 (en) | Oxide thin film, method of manufacturing the same, and superconducting element using the same | |
EP0509886B1 (en) | Process for patterning layered thin films including a superconductor layer | |
JP2544390B2 (en) | Oxide superconducting integrated circuit | |
EP0506573B1 (en) | Process for cleaning a surface of thin film of oxide superconductor | |
JP3186035B2 (en) | Laminated thin film for field effect element and field effect transistor using the laminated thin film | |
EP0637087A1 (en) | Layered structure comprising insulator thin film and oxide superconductor thin film | |
JPH04285012A (en) | Formation of oxide superconductor thin film | |
JP2883464B2 (en) | Method of laminating thin films of different materials on oxide superconducting thin film | |
JPH06302872A (en) | Method for depositing thin film on superconductive thin oxide | |
JP2825374B2 (en) | Superconducting element | |
JP2710870B2 (en) | Method of laminating thin films of different materials on oxide superconducting thin film | |
JP2773453B2 (en) | Method of laminating oxide superconducting thin film | |
JP2773455B2 (en) | Manufacturing method of laminated film | |
JP2899287B2 (en) | Josephson element | |
JP2931779B2 (en) | Superconducting element | |
JP2730360B2 (en) | Fabrication method of tunnel type Josephson junction device | |
JP2647278B2 (en) | Manufacturing method of laminated film | |
JPH04284632A (en) | Formation of superconductor line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990316 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080402 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080402 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090402 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100402 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100402 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110402 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |