JP2647277B2 - Manufacturing method of laminated film - Google Patents

Manufacturing method of laminated film

Info

Publication number
JP2647277B2
JP2647277B2 JP3103955A JP10395591A JP2647277B2 JP 2647277 B2 JP2647277 B2 JP 2647277B2 JP 3103955 A JP3103955 A JP 3103955A JP 10395591 A JP10395591 A JP 10395591A JP 2647277 B2 JP2647277 B2 JP 2647277B2
Authority
JP
Japan
Prior art keywords
thin film
oxide superconducting
superconducting thin
oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3103955A
Other languages
Japanese (ja)
Other versions
JPH04310504A (en
Inventor
博史 稲田
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3103955A priority Critical patent/JP2647277B2/en
Priority to EP92401006A priority patent/EP0509886B1/en
Priority to DE69216138T priority patent/DE69216138T2/en
Priority to CA002065625A priority patent/CA2065625C/en
Priority to US07/865,498 priority patent/US5326747A/en
Publication of JPH04310504A publication Critical patent/JPH04310504A/en
Application granted granted Critical
Publication of JP2647277B2 publication Critical patent/JP2647277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、積層膜の作製方法に関
する。より詳細には、酸化物超電導薄膜と、該酸化物超
電導薄膜上の一部に積層された、絶縁体膜、常電導体膜
または前記酸化物超電導薄膜と結晶の状態が異なる酸化
物超電導薄膜等、特定の形状の上層の薄膜を具備する積
層膜の作製方法に関する。
The present invention relates to a method for manufacturing a laminated film. More specifically, an oxide superconducting thin film, an insulator film, a normal conductor film, or an oxide superconducting thin film having a different crystal state from the oxide superconducting thin film laminated on a part of the oxide superconducting thin film And a method of manufacturing a laminated film including an upper thin film having a specific shape.

【0002】[0002]

【従来の技術】酸化物超電導体は、従来の金属系超電導
体に比較して臨界温度が高く、実用性がより高いと考え
られている。例えば、Y−Ba−Cu−O系酸化物超電導体
の臨界温度は80K以上であり、Bi−Sr−Ca−Cu−O系酸
化物超電導体およびTl−Ba−Ca−Cu−O系酸化物超電導
体の臨界温度は 100K以上と発表されている。
2. Description of the Related Art An oxide superconductor has a higher critical temperature than conventional metal-based superconductors, and is considered to be more practical. For example, the critical temperature of a Y-Ba-Cu-O-based oxide superconductor is 80 K or more, and a Bi-Sr-Ca-Cu-O-based oxide superconductor and a Tl-Ba-Ca-Cu-O-based oxide It is reported that the critical temperature of superconductor is 100K or more.

【0003】酸化物超電導体を各種電子デバイス等に応
用する場合、酸化物超電導体を薄膜化し、積層すること
が必要となる。例えば、トンネル型ジョセフソン接合と
称される超電導接合を酸化物超電導体を使用して実現す
る場合、第1の酸化物超電導薄膜、非超電導体の薄膜お
よび第2の酸化物超電導薄膜を順次積層しなければなら
ない。
When an oxide superconductor is applied to various electronic devices, it is necessary to make the oxide superconductor thinner and stack it. For example, when a superconducting junction called a tunnel type Josephson junction is realized using an oxide superconductor, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film are sequentially laminated. Must.

【0004】上記のジョセフソン接合を利用したジョセ
フソン素子は2端子の素子であり、論理回路を構成しよ
うとすると回路が複雑となる。そのため、各種の3端子
の超電導素子が考えられている。3端子の超電導素子の
うちで、超電導体と半導体とを組み合わせた超電導トラ
ンジスタの構成に関しては、各種のものが発表されてい
る。この超電導トランジスタに酸化物超電導体を使用す
る場合には、半導体薄膜上に酸化物超電導薄膜を積層す
る必要性が生じることがある。さらに、超電導体と常電
導体を組み合わせた超電導素子も考えられているが、こ
の超電導素子に酸化物超電導体を使用する場合には、酸
化物超電導薄膜上に金属等の常電導体の薄膜を積層する
ことがある。
The above-mentioned Josephson element utilizing the Josephson junction is a two-terminal element, and if a logical circuit is to be constructed, the circuit becomes complicated. For this reason, various three-terminal superconducting elements have been considered. Among the three-terminal superconducting elements, various types of superconducting transistors combining a superconductor and a semiconductor have been disclosed. When an oxide superconductor is used for this superconducting transistor, it may be necessary to stack an oxide superconducting thin film on a semiconductor thin film. Further, a superconducting element combining a superconductor and a normal conductor has been considered, but when an oxide superconductor is used for this superconducting element, a thin film of a normal conductor such as a metal is formed on the oxide superconducting thin film. May be stacked.

【0005】上記の積層膜を使用して、超電導素子、超
電導集積回路を作製する場合、各薄膜の機能、特性によ
り、それぞれの薄膜の大きさおよび形状を変えなければ
ならない。例えば、酸化物超電導薄膜に外部から電流を
供給する電極となる、例えばボンディングパッドのよう
な金属膜は、酸化物超電導薄膜上の一部の所定の位置に
形成される。また、超電導集積回路等で、酸化物超電導
薄膜に接する抵抗体となる金属膜も酸化物超電導薄膜上
の一部の所定の位置に形成されなければならない。この
ような金属膜は、 100nm以下の厚さでもよいが、酸化物
超電導薄膜との間に不要な電気抵抗を生じることなく形
成されていなければならない。さらに、電流路に酸化物
超電導薄膜を使用した素子、集積回路等を作製する場合
には、酸化物超電導薄膜を所定の電流路の形状にしなけ
ればならない。酸化物超電導体は、組成、結晶構造が容
易に変化し、それにより超電導特性が大幅に低下するの
で、酸化物超電導薄膜を使用した上記の積層膜を作製す
る場合には、酸化物超電導薄膜に悪影響を与えないよう
にしなければならない。
When fabricating a superconducting element or a superconducting integrated circuit using the above-mentioned laminated film, the size and shape of each thin film must be changed depending on the function and characteristics of each thin film. For example, a metal film, such as a bonding pad, serving as an electrode for supplying a current from the outside to the oxide superconducting thin film, is formed at a predetermined position on a part of the oxide superconducting thin film. In a superconducting integrated circuit or the like, a metal film serving as a resistor in contact with the oxide superconducting thin film must also be formed at a predetermined position on a part of the oxide superconducting thin film. Such a metal film may have a thickness of 100 nm or less, but must be formed without causing unnecessary electric resistance between the metal film and the oxide superconducting thin film. Further, in the case of manufacturing an element, an integrated circuit, or the like using an oxide superconducting thin film for a current path, the oxide superconducting thin film must have a predetermined current path shape. Oxide superconductors are easily changed in composition and crystal structure, thereby significantly lowering the superconducting properties.Therefore, when producing the above-mentioned laminated film using an oxide superconducting thin film, the oxide superconducting thin film It must not be adversely affected.

【0006】[0006]

【発明が解決しようとする課題】一般に複数の薄膜を積
層する場合、下層の薄膜の表面を清浄にしてから上層の
薄膜を成長させる。下層の薄膜の表面を清浄にしない
と、下層の薄膜の表面に堆積した汚染物質、下層の薄膜
の表面に形成された自然酸化物等により境界に不必要な
弱結合が発生したり、これらの異物により一様な成長が
行われず、上層の薄膜と下層の薄膜との界面の一部が不
連続となってしまう。従って、素子、集積回路の性能が
所定の値にならなかったり、動作しなかったりすること
がある。
Generally, when a plurality of thin films are stacked, the surface of the lower thin film is cleaned before growing the upper thin film. If the surface of the underlying thin film is not cleaned, unnecessary weak bonds may occur at the boundary due to contaminants deposited on the surface of the underlying thin film, natural oxides formed on the surface of the underlying thin film, etc. Uniform growth is not performed due to foreign matter, and a part of the interface between the upper thin film and the lower thin film becomes discontinuous. Therefore, the performance of the element or the integrated circuit may not reach a predetermined value or may not operate.

【0007】特に酸化物超電導体は、コヒーレンス長が
非常に短いので、酸化物超電導薄膜を下層の薄膜として
その上にさらに薄膜を積層する場合には、酸化物超電導
薄膜の表面状態に特に注意を払わなければならない。即
ち、下層の薄膜として使用する酸化物超電導薄膜の表面
は、清浄であり、結晶性、超電導性に優れていることが
要求される。
In particular, since the coherence length of an oxide superconductor is very short, when the oxide superconducting thin film is used as a lower layer and a thin film is further laminated thereon, special attention should be paid to the surface condition of the oxide superconducting thin film. I have to pay. That is, the surface of the oxide superconducting thin film used as the lower thin film is required to be clean, excellent in crystallinity and superconductivity.

【0008】従来の半導体を使用した素子、集積回路等
では、下層の薄膜の表面を清浄にするために、純水洗
浄、化学洗浄、ドライエッチング、ウェットエッチング
等の方法が使用されていたが、酸化物超電導体は反応性
が高いので上記の各方法は適用できない。酸化物超電導
薄膜の表面を上記の方法で処理すると、酸化物超電導薄
膜の表面で反応が起こり、かえって薄膜表面の清浄性、
結晶性、超電導性が失われてしまう。
In conventional devices and integrated circuits using semiconductors, methods such as pure water cleaning, chemical cleaning, dry etching, and wet etching have been used to clean the surface of the underlying thin film. Since the oxide superconductor has high reactivity, the above methods cannot be applied. When the surface of the oxide superconducting thin film is treated by the above method, a reaction occurs on the surface of the oxide superconducting thin film, and on the contrary, the cleanliness of the thin film surface,
Crystallinity and superconductivity are lost.

【0009】また、上層の薄膜の材料、上層の薄膜を形
成する条件によっては、下層の酸化物超電導薄膜中に上
層の薄膜に含まれる元素が拡散し、界面が急峻に形成さ
れないだけでなく、酸化物超電導薄膜が劣化してしま
う。さらに、積層膜を構成する薄膜をそれぞれ異なる形
状にする場合にも、酸化物超電導薄膜を劣化させないよ
うに注意しなければならない。特に、酸化物超電導薄膜
の直上の薄膜を、この酸化物超電導薄膜上の一部に形成
された構成とする場合に、酸化物超電導薄膜を劣化させ
る危険性が高い。即ち、リフトオフ法ではフォトレジス
ト、エッチング液等の影響を受け、また、反応性イオン
エッチングではClイオン等により、電子ビーム、イオン
ビーム等で酸化物超電導薄膜上に形成された薄膜を加工
する方法では、電子ビーム、イオンビーム等により、酸
化物超電導薄膜が侵されてしまう。
Further, depending on the material of the upper thin film and the conditions for forming the upper thin film, the elements contained in the upper thin film diffuse into the lower oxide superconducting thin film, so that not only the interface is not formed steeply, The oxide superconducting thin film deteriorates. Furthermore, even when the thin films constituting the laminated film are formed in different shapes, care must be taken so as not to deteriorate the oxide superconducting thin film. In particular, when the thin film immediately above the oxide superconducting thin film is formed on a part of the oxide superconducting thin film, there is a high risk of deteriorating the oxide superconducting thin film. That is, the lift-off method is affected by a photoresist, an etchant, and the like, and the reactive ion etching is a method of processing a thin film formed on an oxide superconducting thin film with an electron beam, an ion beam, or the like using Cl ions or the like. The oxide superconducting thin film is attacked by an electron beam, an ion beam, or the like.

【0010】そこで、本発明の目的は、上記従来技術の
問題点を解決した、酸化物超電導薄膜と、該酸化物超電
導薄膜上の一部に積層された所定の形状の上層の薄膜と
を具備する積層膜を作製する方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide an oxide superconducting thin film which solves the above-mentioned problems of the prior art, and an upper thin film of a predetermined shape laminated on a part of the oxide superconducting thin film. To provide a method for manufacturing a laminated film.

【0011】[0011]

【課題を解決するための手段】本発明に従うと、酸化物
超電導体で構成された酸化物超電導薄膜と、該酸化物超
電導薄膜上の一部に積層された所定の形状の第2の薄膜
とを具備する積層膜を作製する方法において、前記酸化
物超電導薄膜を成膜した後、該酸化物超電導薄膜の温度
を、該酸化物超電導薄膜を構成する酸化物超電導体に特
有の酸素を取り込みやすい状態となる温度以下で、該温
度との差が100 ℃以内の温度にして、該酸化物超電導薄
膜を10 -9 Torr以上の超高真空中に保持し、前記第2の薄
膜を連続して成膜し、該第2の薄膜を前記所定の形状に
加工することを特徴とする積層膜の作製方法が提供され
る。
According to the present invention, there is provided an oxide superconducting thin film composed of an oxide superconductor, and a second thin film having a predetermined shape laminated on a part of the oxide superconducting thin film. a method of making a multilayer film comprising a after forming the oxide superconducting thin film, especially the temperature of the oxide superconducting thin film, the oxide superconductor constituting the oxide superconductor thin film
The oxide superconducting thin film is kept in an ultra-high vacuum of 10 -9 Torr or more at a temperature not higher than the temperature at which the oxygen is easily taken in and at a temperature difference of not more than 100 ° C. Wherein the thin film is continuously formed, and the second thin film is processed into the predetermined shape.

【0012】本発明では、上記の酸化物超電導薄膜を上
記の第2の薄膜と共に所定の形状に加工することも好ま
しい。
In the present invention, it is also preferable that the above-mentioned oxide superconducting thin film is processed into a predetermined shape together with the above-mentioned second thin film.

【0013】[0013]

【作用】本発明では、酸化物超電導薄膜と、この酸化物
超電導薄膜上の一部に積層された所定の形状の第2の薄
膜とを具備する積層膜を作製する方法として、以下の方
法が提供される。即ち、上記の積層膜を作製する場合
に、下層の酸化物超電導薄膜を成膜後、この酸化物超電
導薄膜の温度をこの酸化物超電導薄膜を構成する酸化物
超電導体が酸素を取り込む温度以下で、該温度との差が
100 ℃以内の温度にして、該酸化物超電導薄膜を高真空
中に保持して第2の薄膜を連続して成膜し、この第2の
薄膜を前記所定の形状に加工するところにそれぞれ主要
な特徴がある方法である。本発明の方法は、例えば、酸
化物超電導薄膜上に、絶縁体薄膜、常電導体薄膜または
下層の酸化物超電導薄膜と結晶の状態が異なる酸化物超
電導薄膜を積層して超電導素子を作製する場合に適用で
きる。
According to the present invention, the following method is used as a method for producing a laminated film including an oxide superconducting thin film and a second thin film having a predetermined shape laminated on a part of the oxide superconducting thin film. Provided. That is, when forming the above-mentioned laminated film, after forming the lower oxide superconducting thin film, the temperature of the oxide superconducting thin film is set at a temperature not higher than the temperature at which the oxide superconductor constituting the oxide superconducting thin film takes in oxygen. , The difference from the temperature
The temperature is kept within 100 ° C., the oxide superconducting thin film is kept in a high vacuum, a second thin film is continuously formed, and the second thin film is processed into the predetermined shape. This is a method with special features. The method of the present invention is, for example, a case where a superconducting element is manufactured by laminating an oxide superconducting thin film having a crystal state different from that of an insulator thin film, a normal conductor thin film or a lower oxide superconducting thin film on an oxide superconducting thin film Applicable to

【0014】上記本発明の方法では、下層の酸化物超電
導薄膜を成膜した後、同一の装置内で連続して上層の薄
膜を成膜するので、下層の酸化物超電導薄膜が空気に触
れたりすることがない。従って、下層の酸化物超電導薄
膜の表面が汚染されたり、空気中の水分等と反応して劣
化することがない。また、上記本発明の方法では、下層
の酸化物超電導薄膜を成膜後、この酸化物超電導薄膜を
構成する酸化物超電導体が酸素を取り込む温度以下で、
該温度との差が100 ℃以内の温度にして、上層の薄膜を
成膜する。この温度で上層の薄膜の成膜を行うと、下層
の酸化物超電導薄膜から酸素が抜けることがなく、且つ
上層の薄膜に含まれる元素が下層の酸化物超電導薄膜内
に拡散するのを抑制することができる。例えば、下層の
酸化物超電導薄膜が、Y−Ba−Cu−O系酸化物超電導体
で構成されている場合、Y−Ba−Cu−O系酸化物超電導
薄膜を350〜400℃にして上層の薄膜を成膜する。
In the above method of the present invention, after the lower oxide superconducting thin film is formed, the upper thin film is continuously formed in the same apparatus, so that the lower oxide superconducting thin film may come into contact with air. Never do. Therefore, the surface of the underlying oxide superconducting thin film does not become contaminated or degrade due to reaction with moisture in the air. Further, in the method of the present invention, after forming the lower oxide superconducting thin film, at a temperature not higher than the temperature at which the oxide superconductor constituting the oxide superconducting thin film takes in oxygen,
An upper thin film is formed at a temperature within 100 ° C. of the difference from the temperature. When the upper thin film is formed at this temperature, oxygen does not escape from the lower oxide superconducting thin film, and elements contained in the upper thin film are prevented from diffusing into the lower oxide superconducting thin film. be able to. For example, when the lower oxide superconducting thin film is composed of a Y-Ba-Cu-O-based oxide superconductor, the Y-Ba-Cu-O-based oxide superconducting thin film is heated to 350 to 400 ° C to form the upper layer. A thin film is formed.

【0015】本発明では、上記の方法で酸化物超電導薄
膜上に第2の薄膜を積層した後、第2の薄膜を所定の形
状に加工する。また、このとき、酸化物超電導薄膜を第
2の薄膜と共に所定の形状に加工することも好ましい。
本発明の方法では、加工時に酸化物超電導薄膜の表面が
露出していないので、酸化物超電導薄膜が劣化すること
がない。また、酸化物超電導薄膜と第2の薄膜との間の
界面の状態が良好であるので、本発明の積層膜を使用し
て素子、集積回路を作製すると、安定した動作を行う。
さらに、この界面における接触抵抗が低減されており、
機械的強度も向上している。
In the present invention, after laminating a second thin film on the oxide superconducting thin film by the above method, the second thin film is processed into a predetermined shape. At this time, it is also preferable to process the oxide superconducting thin film into a predetermined shape together with the second thin film.
In the method of the present invention, the surface of the oxide superconducting thin film is not exposed during processing, so that the oxide superconducting thin film does not deteriorate. In addition, since the state of the interface between the oxide superconducting thin film and the second thin film is good, a stable operation is performed when an element or an integrated circuit is manufactured using the laminated film of the present invention.
Furthermore, the contact resistance at this interface has been reduced,
The mechanical strength has also improved.

【0016】本発明は、任意の酸化物超電導体に適用す
ることが可能であるが、特にY−Ba−Cu−O系酸化物超
電導体、Bi−Sr−Ca−Cu−O系酸化物超電導体、Tl−Ba
−Ca−Cu−O系酸化物超電導体に適用することが好まし
い。これらの酸化物超電導体は、臨界温度を始めとする
各種の超電導特性が現在のところ最も優れているからで
ある。
The present invention can be applied to any oxide superconductor, but in particular, Y-Ba-Cu-O-based oxide superconductor, Bi-Sr-Ca-Cu-O-based oxide superconductor Body, Tl-Ba
It is preferably applied to a -Ca-Cu-O-based oxide superconductor. This is because these oxide superconductors are currently most excellent in various superconducting properties including the critical temperature.

【0017】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following disclosure is merely an example of the present invention, and does not limit the technical scope of the present invention.

【0018】[0018]

【実施例】本発明の方法により、Y1Ba2Cu37-X酸化物
超電導薄膜上にAu薄膜が積層された積層膜を作製した。
図1を参照して本発明の方法で積層膜を作製する手順を
説明する。
EXAMPLE A laminated film in which an Au thin film was laminated on a Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was produced by the method of the present invention.
With reference to FIG. 1, a procedure for manufacturing a laminated film by the method of the present invention will be described.

【0019】まず、図1(a)に示すようなMgO(10
0)基板3を超高真空チャンバ内に入れ、1×10-6Torr
まで排気する。次いで、チャンバ内に酸素およびArを導
入し、MgO(100)基板3の表面に図1(b)に示すよ
う厚さ 300nmのc軸配向のY1Ba2Cu37-X酸化物超電導
薄膜1をオフアクシススパッタリング法、レーザアブレ
ーション法、反応性蒸着法、MBE法、CVD法等の方
法で成膜する。オフアクシススパッタリング法で酸化物
超電導薄膜を成膜する場合の成膜条件を以下に示す。
First, as shown in FIG.
0) Put the substrate 3 in the ultra-high vacuum chamber and 1 × 10 -6 Torr
Exhaust until Next, oxygen and Ar are introduced into the chamber, and a c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconductor having a thickness of 300 nm is formed on the surface of the MgO (100) substrate 3 as shown in FIG. The thin film 1 is formed by a method such as an off-axis sputtering method, a laser ablation method, a reactive evaporation method, an MBE method, and a CVD method. The conditions for forming the oxide superconducting thin film by the off-axis sputtering method are described below.

【0020】成膜後、基板温度を400 ℃にしてY
1Ba2Cu37-X酸化物超電導薄膜1を構成するY1Ba2Cu3
7-X酸化物超電導体に酸素を取り込ませる熱処理を行
ってもよい。この熱処理の後、Y1Ba2Cu37-X酸化物超
電導薄膜1の温度を375 ℃にし、チャンバ内を1×10-9
Torrまで排気する。次いで、Y1Ba2Cu37-X酸化物超電
導薄膜1上に図1(c)に示すよう厚さ 200nmのAu薄膜2
を蒸着法で成膜する。次に、図1(d)に示すようAu薄膜
2上に、加工するパターンに合わせてフォトレジスト5
を積層し、図1(e)に示すようAu薄膜2とY1Ba2Cu3
7-X薄膜1とを反応性イオンエッチング法で加工する。
ここまでの工程は全て同一のチャンバ内で連続的に処理
した。上記本発明の方法により作製された積層膜は、加
工後も各薄膜の結晶性が優れているだけでなく、界面に
おける整合性がよいことがわかった。また、界面におい
て、相互拡散は生じていなかった。
After film formation, the substrate temperature is set to 400 ° C. and Y
1 Ba 2 Cu 3 O 7-X Y 1 Ba 2 Cu 3 constituting oxide superconducting thin film 1
A heat treatment for incorporating oxygen into the O 7 -X oxide superconductor may be performed. After this heat treatment, the temperature of the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 1 was set to 375 ° C., and the inside of the chamber was set to 1 × 10 −9.
Exhaust to Torr. Next, a 200 nm thick Au thin film 2 was formed on the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 1 as shown in FIG.
Is formed by a vapor deposition method. Next, as shown in FIG. 1D, a photoresist 5 is formed on the Au thin film 2 in accordance with a pattern to be processed.
Are laminated, and as shown in FIG. 1 (e), the Au thin film 2 and Y 1 Ba 2 Cu 3 O
The 7-X thin film 1 is processed by a reactive ion etching method.
All the steps so far were continuously performed in the same chamber. It has been found that the laminated film produced by the method of the present invention has not only excellent crystallinity of each thin film after processing but also good consistency at the interface. No interdiffusion occurred at the interface.

【0021】[0021]

【発明の効果】以上説明したように、本発明に従えば、
酸化物超電導薄膜上に所定の形状の第2の薄膜が積層さ
れた積層膜の作製方法が提供される。本発明の方法によ
り作製される積層膜は、超電導特性が優れているだけで
なく、界面における整合性も優れている。本発明を超電
導素子、超電導集積回路の作製に応用することにより、
従来得られなかった高性能な超電導装置が作製可能であ
る。
As described above, according to the present invention,
A method for manufacturing a stacked film in which a second thin film having a predetermined shape is stacked on an oxide superconducting thin film is provided. The laminated film produced by the method of the present invention has not only excellent superconducting properties but also excellent matching at the interface. By applying the present invention to the production of superconducting elements and superconducting integrated circuits,
A high-performance superconducting device that has not been obtained conventionally can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法で、積層膜を作製する工程を説明
する図である。
FIG. 1 is a diagram illustrating a step of manufacturing a laminated film by a method of the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超電導薄膜 2 Au薄膜 3 基板 5 フォトレジスト 1 Oxide superconducting thin film 2 Au thin film 3 Substrate 5 Photoresist

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超電導体で構成された酸化物超電
導薄膜と、該酸化物超電導薄膜上の一部に積層された所
定の形状の第2の薄膜とを具備する積層膜を作製する方
法において、前記酸化物超電導薄膜を成膜した後、該酸
化物超電導薄膜の温度を、該酸化物超電導薄膜を構成す
る酸化物超電導体に特有の酸素を取り込みやすい状態と
なる温度以下で、該温度との差が100 ℃以内の温度にし
て、該酸化物超電導薄膜を10 -9 Torr以上の超高真空中に
保持し、前記第2の薄膜を連続して成膜し、該第2の薄
膜を前記所定の形状に加工することを特徴とする積層膜
の作製方法。
1. A method for producing a laminated film including an oxide superconducting thin film composed of an oxide superconductor and a second thin film having a predetermined shape laminated on a part of the oxide superconducting thin film. In the above, after forming the oxide superconducting thin film, the temperature of the oxide superconducting thin film, a state where it is easy to take in oxygen specific to the oxide superconductor constituting the oxide superconducting thin film
At a temperature not higher than a certain temperature, a temperature difference from the temperature is set within 100 ° C., the oxide superconducting thin film is held in an ultra- high vacuum of 10 −9 Torr or more , and the second thin film is continuously formed. And processing the second thin film into the predetermined shape.
【請求項2】 前記酸化物超電導薄膜を前記第2の薄膜
と共に加工することを特徴とする請求項1に記載の積層
膜の作製方法。
2. The method according to claim 1, wherein the oxide superconducting thin film is processed together with the second thin film.
JP3103955A 1991-04-09 1991-04-09 Manufacturing method of laminated film Expired - Lifetime JP2647277B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3103955A JP2647277B2 (en) 1991-04-09 1991-04-09 Manufacturing method of laminated film
EP92401006A EP0509886B1 (en) 1991-04-09 1992-04-09 Process for patterning layered thin films including a superconductor layer
DE69216138T DE69216138T2 (en) 1991-04-09 1992-04-09 Process for structuring multilayer thin films with a superconducting layer
CA002065625A CA2065625C (en) 1991-04-09 1992-04-09 Process for patterning layered thin films including a superconductor layer
US07/865,498 US5326747A (en) 1991-04-09 1992-04-09 Process for patterning layered thin films including a superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103955A JP2647277B2 (en) 1991-04-09 1991-04-09 Manufacturing method of laminated film

Publications (2)

Publication Number Publication Date
JPH04310504A JPH04310504A (en) 1992-11-02
JP2647277B2 true JP2647277B2 (en) 1997-08-27

Family

ID=14367832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103955A Expired - Lifetime JP2647277B2 (en) 1991-04-09 1991-04-09 Manufacturing method of laminated film

Country Status (1)

Country Link
JP (1) JP2647277B2 (en)

Also Published As

Publication number Publication date
JPH04310504A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
EP0506582B1 (en) Process for preparing layered thin films
US5539215A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
EP0419361B2 (en) Method for forming an electrode for electrical connection to oxide superconductor
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
JP2647277B2 (en) Manufacturing method of laminated film
JP2647279B2 (en) Manufacturing method of laminated film
JP2647278B2 (en) Manufacturing method of laminated film
JP2647280B2 (en) Manufacturing method of laminated film
US5462919A (en) Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region and device utilizing the superconducting thin film
US5326747A (en) Process for patterning layered thin films including a superconductor
JP2773456B2 (en) Manufacturing method of laminated film
JP2773455B2 (en) Manufacturing method of laminated film
JP2883464B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
EP0506573B1 (en) Process for cleaning a surface of thin film of oxide superconductor
JP2908346B2 (en) Superconducting structure
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JP2647251B2 (en) Superconducting element and fabrication method
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JP2599500B2 (en) Superconducting element and fabrication method
JP2710870B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2773453B2 (en) Method of laminating oxide superconducting thin film
JP2773454B2 (en) Method of laminating oxide superconducting thin film
JP2976904B2 (en) Superconducting field effect element and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408