JPH04315705A - Superconducting tape wire material - Google Patents

Superconducting tape wire material

Info

Publication number
JPH04315705A
JPH04315705A JP3082494A JP8249491A JPH04315705A JP H04315705 A JPH04315705 A JP H04315705A JP 3082494 A JP3082494 A JP 3082494A JP 8249491 A JP8249491 A JP 8249491A JP H04315705 A JPH04315705 A JP H04315705A
Authority
JP
Japan
Prior art keywords
tape
film
thin film
superconducting
tape wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3082494A
Other languages
Japanese (ja)
Inventor
Yoshito Fukumoto
吉人 福本
Hiroshi Kajikawa
梶川 弘
Rikuro Ogawa
小川 陸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3082494A priority Critical patent/JPH04315705A/en
Publication of JPH04315705A publication Critical patent/JPH04315705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Laminated Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a practical superconduct tape wire material excellent in a superconductive characteristic by application of film forming technology. CONSTITUTION:After a laminated body of an amorphous thin film 12 and a stabilizing material thin film 3 both to be a base of a superconducting thin film 2 is laminated for forming a tape wire material source 11 on an organic substance tape 5 having relatively small surface roughness and thermally decomposed under a temperature (about 800 deg.C or higher) within a crystallizing temperature to a superconductor, the organic substance tape 5 and a laminated body thereon are heated under a temperature of 800 deg.C or higher to decompose and burn the organic substance tape 5, thus producing a superconducting tape wire material. Consequently, the amorphous thin film 12 is crystallized to a superconducting thin film 2 of a relatively excellent quality. In addition, adjustment of thickness of the stabilizing material thin film 3 can make a ratio of thickness of the superconducting film 2 to the total thickness a practical value of 0.2 or more.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,例えば送電ケーブル,
超電導マグネット用パワーリード,小型超電導マグネッ
ト等に好適に用いることのできる超電導テープ線材に係
り,特に成膜手法により形成される酸化物超電導体膜を
備えた超電導テープ線材に関する。
[Industrial Application Field] The present invention is applicable to power transmission cables, for example.
The present invention relates to a superconducting tape wire that can be suitably used for power leads for superconducting magnets, small superconducting magnets, etc., and particularly relates to a superconducting tape wire provided with an oxide superconductor film formed by a film-forming method.

【0002】0002

【従来の技術】上記したような超電導テープ線材として
は,従来Y系あるいはBi系酸化物超電導体を用いたリ
ボンシース線材がある。上記リボンシース線材は,通常
所望の組成の酸化物粉末を銀や銅等の金属性パイプに充
填し,このパイプを半径方向に圧延することにより内部
の酸化物結晶を配向させ,更にこのパイプに最終的に熱
処理を施すことによって作製される。上記リボンシース
線材によれば,比較的低温(4.2K)にしなければな
らないが,現在のところ良好な超電導特性(超電導材料
の良否の指標となる臨界電流密度(Jc)≧104 A
/cm2   at  1T)が得られている。
2. Description of the Related Art As the above-mentioned superconducting tape wire, there is conventionally a ribbon sheath wire using a Y-based or Bi-based oxide superconductor. The above-mentioned ribbon sheath wire is usually produced by filling a metal pipe made of silver, copper, etc. with oxide powder of a desired composition, and rolling the pipe in the radial direction to orient the oxide crystals inside. It is finally produced by applying heat treatment. According to the above-mentioned ribbon sheath wire, although it has to be kept at a relatively low temperature (4.2 K), it currently has good superconducting properties (critical current density (Jc), which is an indicator of the quality of superconducting material) ≧104 A
/cm2 at 1T) was obtained.

【0003】0003

【発明が解決しようとする課題】上記リボンシース線材
では,超電導体の原料粉末として仮焼粉が用いられ,最
終的な熱処理によりこれらの結晶粒間の接合(超電導的
な結合)が図られている。しかしながら,上記したよう
な接合手法によっては上記超電導的な結合が必ずしも十
分なものにならず,これによって上記臨界電流密度Jc
あるいは臨界磁場Hcが高いものを得ることができない
。これは,上記リボンシース線材の結合粒間の接合が不
十分なためであって,図8に示す交流帯磁率の温度依存
性にも現れている。このように,酸化物超電導体は複雑
な結晶構造をしており,上記したような仮焼粉から熱処
理によって粒界に非超電導相をなくすことは極めて困難
である。従って,かなり低温であっても上記臨界電流密
度Jcが105 A/cm2 を超えるリボンシース線
材を作製することが困難であった。ところで,比較的高
温で且つ超電導特性が優れた材料を生産する手法として
,真空成膜技術を用いて薄膜を形成する成膜プロセスが
ある。この成膜プロセスでは,例えばY系酸化物超電導
体を用いてMgOやSrTiO3 等の単結晶基板(表
面粗さがRmax≦10nm以下に研磨された基板)上
にリボンシース線材よりも遙に優れた超電導特性(成膜
中に結晶化させたエピタキシャル膜でJc≧105 A
/cm2  at  1T,77K,アモルファス(非
晶質)上に成膜した後に熱処理によって結晶化させた高
配向多結晶膜でJc≧104 〜105A/cm2  
 at  1T,77K)の薄膜が得られている。上記
成膜プロセスにおいて,基板の物性及び表面形状は超電
導特性を大きく左右する。例えば(1)表面が銅よりも
酸化されにくいこと,(2)表面粗さがRmaxで10
nm以下,できれば5nm以下であること,(3)基板
の成分と酸化物超電導体の成分が成膜中あるいは熱処理
中に相互に拡散しにくいこと,(4)両者の熱膨張率が
近いこと等が要求される。これらの条件を満たさない基
板(例えばSi単結晶基板の場合,上記(3)と(4)
の内容が満たされない)を使用した場合,超電導薄膜の
超電導特性が著しく悪化しひいては超電導にならない場
合もある。
[Problem to be solved by the invention] In the above-mentioned ribbon sheath wire, calcined powder is used as the raw material powder for the superconductor, and bonding (superconducting bonding) between these crystal grains is achieved through final heat treatment. There is. However, depending on the bonding method described above, the superconducting bond is not necessarily sufficient, and as a result, the critical current density Jc
Alternatively, it is not possible to obtain a high critical magnetic field Hc. This is due to insufficient bonding between the bonded grains of the ribbon sheath wire, and this is also reflected in the temperature dependence of AC magnetic susceptibility shown in FIG. As described above, oxide superconductors have complex crystal structures, and it is extremely difficult to eliminate non-superconducting phases at grain boundaries from the above-mentioned calcined powder by heat treatment. Therefore, it has been difficult to produce a ribbon sheath wire having a critical current density Jc exceeding 105 A/cm2 even at a considerably low temperature. By the way, as a method for producing a material with excellent superconducting properties at a relatively high temperature, there is a film forming process in which a thin film is formed using vacuum film forming technology. In this film formation process, for example, a Y-based oxide superconductor is used to deposit a film on a single-crystal substrate such as MgO or SrTiO3 (a substrate polished to a surface roughness of Rmax≦10 nm) that is far superior to a ribbon sheath wire. Superconducting properties (Jc≧105 A for epitaxial films crystallized during film formation)
/cm2 at 1T, 77K, highly oriented polycrystalline film formed on amorphous (non-crystalline) and crystallized by heat treatment, Jc≧104 ~ 105A/cm2
At 1T, 77K) thin films were obtained. In the film formation process described above, the physical properties and surface shape of the substrate greatly affect the superconducting properties. For example, (1) the surface is less likely to be oxidized than copper, (2) the surface roughness is Rmax 10
nm or less, preferably 5 nm or less, (3) the components of the substrate and the oxide superconductor are difficult to diffuse into each other during film formation or heat treatment, (4) the thermal expansion coefficients of both are similar, etc. is required. In the case of a substrate that does not meet these conditions (for example, a Si single crystal substrate), the above (3) and (4)
If the above conditions are not met), the superconducting properties of the superconducting thin film will deteriorate significantly and the superconducting thin film may not become superconducting.

【0004】上記成膜プロセスを用いて作製される超電
導線を実用的なものにするためには,即ちコイルにした
場合に必要であって実効的に大きな臨界電流を維持する
ためには,超電導体膜の厚さと,この超電導体膜が常電
導転移したときに電流のバイパスの役目をする安定化材
や絶縁材料も含めた超電導線全体の厚さとの比を20%
以上にする必要がある。一方,テープ線材を作成するた
めには,可撓性の小さな超電導体膜のみでは足りず,可
撓性のあるテープ状の基板材料が必要になる。酸化物超
電導体膜の場合,上記したように酸化物基板において良
好な超電導特性が得られているが,上記表面粗さがRm
ax≦100nmで厚さが50μm以下の酸化物テープ
(基材)は現在のところ入手することができない。また
,上記基材として金属箔を用いる場合,上記金属箔とし
て,厚さが10μm前後のものは容易に入手できるが,
表面粗さがRmax≧0.1μmである。従って,上記
金属箔上に良質の酸化物超電導体膜を形成することは困
難である。そのため,上記成膜手法を適用した超電導テ
ープ線材は実現化されていないのが現状である。なお,
上記超電導体膜の厚さを大きくすることが考えられるが
,上記真空成膜技術によれば成膜速度は大きくても10
μm/h以下であり,高品質なエピタキシャル超電導体
膜を必要とすれば,上記成膜速度を0.5μm/hにす
る必要がある。また,上記基材上に超電導体のアモルフ
ァス酸化物を成膜しておいて,後工程で熱処理により上
記超電導体膜として結晶化させる方法によっても,成膜
速度2μm/h以下で成膜する必要がある。更に,上記
基材が酸化物単結晶であっても,その上に積層された超
電導体膜は上記基材からの距離が大きくなるほど配向性
,均質性等の膜質が低下するため,図9に示すように,
超電導体膜の膜厚を厚くすることにより,大きな臨界電
流を得ようとすることは得策でない。即ち,上記超電導
体膜をできるだけ薄くし,しかも上記膜厚の比が大きな
超電導テープ線材が望まれる。従って,本発明の目的と
するところは,成膜技術を適用することにより超電導特
性に優れ,実用的な超電導テープ線材を提供することに
ある。具体的には,磁場強度1Tのもとで,超電導体単
体の臨界電流密度Jcが104 A/cm2 以上,オ
ーバーオールでの電流密度Jocが103 A/cm2
 以上,臨界電流が5A以上である超電導テープ線材を
提供することを目的とする。
[0004] In order to make the superconducting wire produced using the above film forming process practical, that is, in order to maintain an effectively large critical current that is necessary when it is made into a coil, it is necessary to The ratio of the thickness of the superconducting film to the thickness of the entire superconducting wire, including the stabilizing and insulating materials that serve as a current bypass when the superconducting film transitions to normal conductivity, is 20%.
It is necessary to do more than that. On the other hand, in order to create a tape wire, a small flexible superconductor film alone is not enough; a flexible tape-shaped substrate material is required. In the case of oxide superconductor films, good superconducting properties are obtained on the oxide substrate as described above, but the surface roughness is Rm
Oxide tapes (substrates) with ax≦100 nm and a thickness of 50 μm or less are not available at present. In addition, when using metal foil as the base material, metal foil with a thickness of around 10 μm is easily available;
The surface roughness is Rmax≧0.1 μm. Therefore, it is difficult to form a high quality oxide superconductor film on the metal foil. Therefore, at present, a superconducting tape wire to which the above film formation method is applied has not been realized. In addition,
It is conceivable to increase the thickness of the superconductor film, but according to the vacuum film-forming technology described above, the film-forming speed is at most 10
μm/h or less, and if a high-quality epitaxial superconductor film is required, the film formation rate needs to be 0.5 μm/h. Also, by forming an amorphous superconductor oxide film on the above substrate and crystallizing it as the superconductor film through heat treatment in a post-process, it is necessary to form the film at a film formation rate of 2 μm/h or less. There is. Furthermore, even if the base material is an oxide single crystal, the film quality of the superconductor film laminated thereon, such as orientation and homogeneity, deteriorates as the distance from the base material increases; As shown,
It is not a good idea to try to obtain a large critical current by increasing the thickness of the superconductor film. That is, a superconducting tape wire in which the superconductor film is made as thin as possible and the film thickness ratio is large is desired. Therefore, an object of the present invention is to provide a practical superconducting tape wire with excellent superconducting properties by applying film forming technology. Specifically, under a magnetic field strength of 1 T, the critical current density Jc of the superconductor alone is 104 A/cm2 or more, and the current density Joc of the overall is 103 A/cm2.
The above object is to provide a superconducting tape wire having a critical current of 5A or more.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,少なくとも酸化物超電導体膜と,該酸化物超電
導体膜に隣接して設けられる安定化材膜とを積層してな
る超電導テープ線材において,上記酸化物超電導体膜の
厚さと上記積層体の厚さの比が0.2以上である点に係
る超電導テープ線材として構成されている。そして,上
記超電導テープ線材を製造する手段としては,上記酸化
物超電導体膜へ結晶化する結晶化温度範囲内の温度下で
熱分解する有機物テープ上に上記結晶化温度未満の温度
下で上記積層体を積層した後,上記有機物テープ及びこ
れに積層された上記積層体を上記結晶化温度範囲内の温
度下に加熱することにより上記有機物テープを分解・除
去する点に係る超電導テープ線材の製造方法として構成
されている。
[Means for Solving the Problems] In order to achieve the above object, the main means adopted by the present invention is to provide at least an oxide superconductor film and an oxide superconductor film adjacent to the oxide superconductor film. A superconducting tape wire formed by laminating a stabilizing material film provided therein, wherein the ratio of the thickness of the oxide superconductor film to the thickness of the laminate is 0.2 or more. ing. As a means for manufacturing the superconducting tape wire, the above-described lamination is performed at a temperature below the crystallization temperature on an organic tape that thermally decomposes at a temperature within the crystallization temperature range to crystallize into the oxide superconductor film. A method for manufacturing a superconducting tape wire, which comprises laminating the organic tape and the laminate laminated thereon to a temperature within the crystallization temperature range to decompose and remove the organic tape. It is configured as.

【0006】[0006]

【作用】本発明の超電導テープ線材は酸化物超電導体膜
へ結晶化する結晶化温度範囲内の温度下で熱分解する有
機物テープ上に上記結晶化温度未満の温度下で,少なく
とも酸化物超電導体膜と該酸化物超電導体膜に隣接して
設けられる安定化材膜とよりなる積層体を積層した後,
上記有機物テープ及びこれに積層された上記積層体を上
記結晶化温度範囲内の温度下に加熱することにより上記
有機物テープを分解・除去する製造方法によって製造さ
れる。従って,超電導特性が良く,しかも上記酸化物超
電導体膜の厚さと上記積層体の厚さの比が0.2以上で
ある実用的な超電導テープ線材を実現することができる
[Function] The superconducting tape wire of the present invention is coated on an organic tape that thermally decomposes at a temperature within the crystallization temperature range that crystallizes into an oxide superconductor film at a temperature below the crystallization temperature. After laminating a laminate consisting of a film and a stabilizing material film provided adjacent to the oxide superconductor film,
It is manufactured by a manufacturing method in which the organic tape and the laminate laminated thereon are heated to a temperature within the crystallization temperature range to decompose and remove the organic tape. Therefore, it is possible to realize a practical superconducting tape wire having good superconducting properties and having a ratio of the thickness of the oxide superconductor film to the thickness of the laminate of 0.2 or more.

【0007】[0007]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここに
,図1は本発明の一実施例に係るテープ線材を製造する
ための成膜装置を示す概略斜視図,図2は上記成膜装置
の概略平面図,図3(a)はテープ線材源の第1の例を
示すものであって,図3(b)は同図(a)のテープ線
材源から製造されたテープ線材をそれぞれ示す外観図,
図4(a)はテープ線材源の第2の例を示すものであっ
て,図4(b)は同図(a)のテープ線材源から製造さ
れたテープ線材をそれぞれ示す外観図,図5(a)はテ
ープ線材源の第3の例を示すものであって,図5(b)
は同図(a)のテープ線材源から製造されたテープ線材
をそれぞれ示す外観図,図6(a)はテープ線材源の第
4の例を示すものであって,図6(b)は同図(a)の
テープ線材源から製造されたテープ線材をそれぞれ示す
外観図,図7は磁場強度に対する臨界電流密度又は臨界
電流の変化を示すグラフ図である。本実施例のテープ線
材を製造するための成膜装置20は,図1及び図2に示
すように,双方向に回転駆動して有機物テープ5を巻き
取り又は送り出す一組のテープリール22,23と,上
記一組のテープリール22,23の間に配備され上記有
機物テープ5を所定温度以下に冷却するテープ冷却ドラ
ム21と,Y系酸化物,酸化マグネシウム,銀合金をそ
れぞれ上記有機物テープ5上に積層状に成膜させるため
のスパッタガン24,25,26と,各スパッタガン2
4,25,26の周囲に配備され他のスパッタガンの成
膜動作への影響を防止する仕切板30とを備えてなるマ
グネトロンスパッタ装置である。上記各スパッタガン2
4,25,26のターゲット27,28,29の組成は
それぞれ順に,Y1 Ba2 Cu3 Ox ,MgO
,Ag−15%Pdである。また,酸化物のスパッタを
行う場合酸素(原子,分子,負イオン)による再スパッ
タを避けるために,これらの酸化物のターゲット27,
28の面はテープ冷却ドラム21上のテープ5の面と互
いに垂直になるように配置されている。また,安定化材
としての銀−パラジウム合金のターゲット29はその面
がテープ冷却ドラム21上の有機物テープ5の面と平行
になるように配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following examples are examples of embodying the present invention, and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic perspective view showing a film forming apparatus for producing a tape wire rod according to an embodiment of the present invention, FIG. 2 is a schematic plan view of the film forming apparatus, and FIG. 3(a) is a tape wire rod. FIG. 3(b) is an external view showing a tape wire manufactured from the tape wire source shown in FIG. 3(a).
FIG. 4(a) shows a second example of the tape wire source, and FIG. 4(b) is an external view showing the tape wire manufactured from the tape wire source shown in FIG. 4(a). (a) shows a third example of the tape wire source, and FIG. 5(b) shows a third example of the tape wire source.
6(a) is an external view showing the tape wire manufactured from the tape wire source shown in FIG. 6(a), and FIG. 6(b) is a fourth example of the tape wire source. FIG. 7 is an external view showing tape wire rods produced from the tape wire source shown in FIG. 7A, and FIG. 7 is a graph showing changes in critical current density or critical current with respect to magnetic field strength. As shown in FIGS. 1 and 2, the film forming apparatus 20 for manufacturing the tape wire of this embodiment includes a set of tape reels 22 and 23 that are rotated in both directions to wind up or feed out the organic tape 5. and a tape cooling drum 21 disposed between the pair of tape reels 22 and 23 to cool the organic tape 5 to a predetermined temperature or lower, and a tape cooling drum 21 that cools the organic tape 5 to a predetermined temperature or lower, and a Y-based oxide, magnesium oxide, and silver alloy respectively onto the organic tape 5. sputter guns 24, 25, 26 for forming a layered film on the
This magnetron sputtering apparatus is equipped with a partition plate 30 that is arranged around sputtering guns 4, 25, and 26 to prevent the film-forming operations of other sputtering guns from being affected. Each of the above sputter guns 2
The compositions of targets 27, 28, and 29 of No. 4, 25, and 26 are Y1 Ba2 Cu3 Ox, MgO, respectively.
, Ag-15%Pd. In addition, when performing oxide sputtering, in order to avoid re-sputtering due to oxygen (atoms, molecules, negative ions), these oxide targets 27,
The surface 28 is arranged perpendicular to the surface of the tape 5 on the tape cooling drum 21. Further, a silver-palladium alloy target 29 serving as a stabilizing material is arranged so that its surface is parallel to the surface of the organic tape 5 on the tape cooling drum 21.

【0008】上記有機物テープ5は,後述するテープ線
材源の第1基板材として用いられ,本実施例では強化延
伸処理の施されたポリエステルフィルムが用いられる。 上記有機物テープ5としては,ポリアセテート,ポリプ
ロピレン,ポリイミド,ポリアミドイミド,ポリエチレ
ン,ポリエチレンテレフタレート,ポリカーボネート,
ポリ塩化ビニル,ポリ塩化ビフェニル,ポリプロピレン
,ポリスチレン,ポリ弗化エチレン等の,分解温度が5
00℃以下の有機高分子材料を用いることもできる。 例えば,強化延伸処理の施されたポリエステルフィルム
,ポリエチレンテレフタレートフィルムは市販のディジ
タルカセットテープやビデオテープのベース材として使
用されており,これらは機械的強度に優れ可燃性であっ
て表面粗さRmaxが5nm以下のものを容易に入手可
能であり,本発明の超電導テープ線材を製造するための
材料として適している。また,上記安定化材は,テープ
線材源の第2基板材として用いられ,酸化性雰囲気内で
酸化物超電導体の構成要素のひとつである銅よりも酸化
されにくく,導電率が高く,且つ機械的強度が十分であ
って可撓性のあるものが必要であり,例えば銀,プラチ
ナ,パラジウム,銀−パラジウム合金等の貴金属または
その合金が適当である。そして,酸化物超電導体膜の原
料としては,Y系123相,Y系124相,Y系Caド
ープ124相,Bi系2212相,Bi系2223相の
他,Tl系等全ての酸化物超電導体を使用することがで
きる。そして,上記成膜装置20の各ターゲット27,
28,29による成膜条件を次の表1に示す。
[0008] The organic tape 5 is used as a first substrate material of a tape wire source to be described later, and in this embodiment, a polyester film subjected to a reinforcement stretching process is used. The organic tape 5 may be made of polyacetate, polypropylene, polyimide, polyamideimide, polyethylene, polyethylene terephthalate, polycarbonate,
The decomposition temperature of polyvinyl chloride, polychlorinated biphenyl, polypropylene, polystyrene, polyfluoroethylene, etc. is 5.
An organic polymer material having a temperature of 00° C. or lower can also be used. For example, reinforced and stretched polyester films and polyethylene terephthalate films are used as base materials for commercially available digital cassette tapes and video tapes, and these have excellent mechanical strength, are flammable, and have a low surface roughness Rmax. Those with a diameter of 5 nm or less are easily available and are suitable as a material for manufacturing the superconducting tape wire of the present invention. In addition, the above-mentioned stabilizing material is used as the second substrate material of the tape wire source, and is less likely to be oxidized than copper, which is one of the constituent elements of oxide superconductors, in an oxidizing atmosphere, has high electrical conductivity, and is a mechanical material. A material with sufficient physical strength and flexibility is required, and noble metals such as silver, platinum, palladium, and silver-palladium alloys or alloys thereof are suitable. The raw materials for the oxide superconductor film include Y-based 123 phase, Y-based 124 phase, Y-based Ca-doped 124 phase, Bi-based 2212 phase, Bi-based 2223 phase, and all oxide superconductors such as Tl-based. can be used. Each target 27 of the film forming apparatus 20,
The film forming conditions according to Nos. 28 and 29 are shown in Table 1 below.

【表1】 なお,成膜時のテープ温度は上記テープ冷却ドラム21
によっていずれも100℃以下に保持されている。
[Table 1] The tape temperature during film formation is the same as that of the tape cooling drum 21 mentioned above.
Both are maintained below 100°C.

【0009】本実施例の成膜装置20は上記したように
構成されている。そこで,上記成膜装置20を用いて超
電導体薄膜が形成されてなるテープ線材を製造する動作
につき,図1乃至図3(b)を用いて以下説明する。ま
ず,テープリール22から送り出されテープリール23
に巻き取られる厚さ20μmの有機物テープ5がテープ
冷却ドラム21上を通過するとき,スパッタガン24が
作用して,有機物テープ5上に上記Y系酸化物のアモル
ファス薄膜12を形成する。次のスパッタガン25は作
動休止中であって,上記有機物テープ5が引き続くスパ
ッタガン26を通過するとき,先に積層されたアモルフ
ァス薄膜12上にスパッタガン26によって安定化材薄
膜3が積層される。これによって,上記有機物テープ5
上に,図3(a)に示すようなアモルファス薄膜12と
安定化材薄膜3よりなる積層体が積層され,この積層体
と上記有機物テープ5によってテープ線材源11が作成
される。このテープ線材源11は上記テープリール23
に巻き取られる。このときの安定化材薄膜3の厚さは5
μmであって,Y系酸化物のアモルファス薄膜12の厚
さは2μmである。続いて,上記テープ線材源11は成
膜装置20とは別の電気炉に移され,圧力105 N/
m2 において酸素雰囲気中で880℃で30分保持さ
れた後500℃で2時間保持されることにより熱処理を
受ける。上記Y系酸化物が超電導体へ結晶化する温度は
約800℃以上である。また,上記有機物テープ5は5
00℃未満で熱分解する。従って,上記テープ線材源1
1が上記熱処理を施されることにより,上記アモルファ
ス薄膜12が多結晶の超電導体薄膜2に結晶化すると共
に,上記有機物テープ5が分解・焼却されて,図3(b
)に示す超電導体薄膜を備えたテープ線材1が製造され
る。 このとき製造されたテープ線材1において,超電導体薄
膜2の厚さは2μmであって,上記超電導体薄膜2に隣
接して設けられた安定化材薄膜3の厚さは5μmである
ので上記超電導体薄膜2の厚さと上記超電導体薄膜2及
び安定化材薄膜3(積層体)の厚さの比は約0.29(
2/(2+5))であって,20%以上になる。従って
,上記テープ線材1は実用的である。また,上記したよ
うに比較的平坦な有機物テープ5上に積層されたアモル
ファス薄膜12及び安定化材薄膜3は,上記熱処理の前
後で平坦性を保っており,上記アモルファス薄膜12か
ら結晶化した後の超電導体薄膜2は高い配向性を示し,
この超電導体薄膜2単体で臨界温度Tc=85K,臨界
電流密度Jc(77K,1T)≧104 〜105 A
/cm2 であり,テープ線材1全体としてのオーバー
オール臨界電流密度Joc(77K,1T)≧103 
〜104 A/cm2 を達成することができた。
The film forming apparatus 20 of this embodiment is constructed as described above. Therefore, the operation of manufacturing a tape wire on which a superconductor thin film is formed using the film forming apparatus 20 will be described below with reference to FIGS. 1 to 3(b). First, the tape is fed out from the tape reel 22 and reeled to the tape reel 23.
When the organic tape 5 having a thickness of 20 μm is passed over the tape cooling drum 21, the sputter gun 24 acts to form the amorphous thin film 12 of the Y-based oxide on the organic tape 5. The next sputter gun 25 is not in operation, and when the organic tape 5 passes through the subsequent sputter gun 26, the stabilizing material thin film 3 is laminated by the sputter gun 26 on the previously laminated amorphous thin film 12. . As a result, the organic tape 5
A laminate consisting of an amorphous thin film 12 and a stabilizing material thin film 3 as shown in FIG. This tape wire source 11 is the tape reel 23
It is wound up. The thickness of the stabilizing material thin film 3 at this time is 5
.mu.m, and the thickness of the amorphous thin film 12 of Y-based oxide is 2 .mu.m. Subsequently, the tape wire source 11 is transferred to an electric furnace separate from the film forming apparatus 20, and is heated to a pressure of 105 N/
The sample was heat treated by being held at 880°C for 30 minutes and then at 500°C for 2 hours in an oxygen atmosphere. The temperature at which the Y-based oxide crystallizes into a superconductor is approximately 800° C. or higher. In addition, the organic tape 5 is 5
Thermal decomposition occurs below 00°C. Therefore, the tape wire source 1
1 is subjected to the above heat treatment, the amorphous thin film 12 is crystallized into a polycrystalline superconductor thin film 2, and the organic tape 5 is decomposed and incinerated, as shown in FIG. 3(b).
A tape wire 1 having a superconductor thin film shown in ) is manufactured. In the tape wire 1 manufactured at this time, the thickness of the superconductor thin film 2 is 2 μm, and the thickness of the stabilizing material thin film 3 provided adjacent to the superconductor thin film 2 is 5 μm. The ratio of the thickness of the body thin film 2 to the thickness of the superconductor thin film 2 and the stabilizing material thin film 3 (laminate) is approximately 0.29 (
2/(2+5)), which is 20% or more. Therefore, the tape wire 1 is practical. Furthermore, as described above, the amorphous thin film 12 and the stabilizing material thin film 3 laminated on the relatively flat organic tape 5 maintain flatness before and after the heat treatment, and after crystallization from the amorphous thin film 12, The superconductor thin film 2 exhibits high orientation,
Critical temperature Tc = 85K, critical current density Jc (77K, 1T)≧104 ~ 105 A for this superconductor thin film 2 alone
/cm2, and the overall critical current density of the tape wire 1 as a whole Joc (77K, 1T)≧103
~104 A/cm2 could be achieved.

【0010】そして,テープ線材源の作製時に有機物テ
ープ5の走行方向の指定やスパッタガン24,25,2
6の作動順序を予め設定することにより,図4(a),
図5(a),図6(a)にそれぞれ示すような4層以上
のテープ線材源11a ,11b ,11c を製造す
ることができる。なお,アモルファス薄膜14は,Mg
Oの非晶質であって,上記熱処理によって結晶化された
絶縁体薄膜4になる。これらの場合においても,上記超
電導体薄膜2の基となるアモルファス薄膜12と少なく
とも1層の安定化材薄膜3とを隣接して積層しておけば
,他の層の組み合わせは自由である。引き続き,上記各
テープ線材源11a ,11b ,11c に上記した
と同様の熱処理を施すことにより,図4(b),図5(
b),図6(b)にそれぞれ示すようなテープ線材1a
 ,1b ,1cが製造される。なお,上記有機物テー
プ5が焼却されるとき,CO等の還元性ガスが発生し,
このガスのために酸化が不十分になって上記超電導体薄
膜2の一部が還元され,超電導特性が劣化する場合があ
る。そこで,テープ線材源11a (図4(a))のよ
うに,アモルファス薄膜12を安定化材薄膜3と上記ア
モルファス薄膜14とで挟設することにより,上記有機
物テープ5の焼却時に上記アモルファス薄膜12と上記
還元性ガスとが接触するのを防ぐことができる。また,
このテープ線材源11a から製造されたテープ線材1
a は,後工程でコイルとして巻かれるときテープ線材
間の絶縁層を省略することができ,これによってオーバ
ーオール臨界電流密度Jocを高く保持することができ
る。例えば,上記アモルファス薄膜14として厚さ0.
5μmのMgOを用いた場合,上記超電導体薄膜2単体
において臨界温度Tc=88K,Jc(77K,1T)
≧2×104 〜3×105 A/cm2 ,Joc(
77K,1T)≧2×103 〜3×104 A/cm
2 を達成することができた。上記テープ線材1a に
おいても上記膜厚の比は20%を超えている。
[0010] When producing the tape wire source, the running direction of the organic tape 5 is specified and the sputtering guns 24, 25, 2
By setting the operation order of 6 in advance, Fig. 4(a),
Tape wire sources 11a, 11b, 11c having four or more layers as shown in FIGS. 5(a) and 6(a), respectively, can be manufactured. Note that the amorphous thin film 14 is made of Mg
The insulating thin film 4 is made of O amorphous and crystallized by the heat treatment described above. Even in these cases, as long as the amorphous thin film 12 serving as the base of the superconductor thin film 2 and at least one layer of the stabilizing material thin film 3 are laminated adjacent to each other, other layer combinations are free. Subsequently, the tape wire sources 11a, 11b, and 11c are subjected to the same heat treatment as described above, thereby producing the results shown in FIGS. 4(b) and 5(
b), tape wire rod 1a as shown in FIG. 6(b), respectively.
, 1b, 1c are manufactured. Note that when the organic tape 5 is incinerated, reducing gases such as CO are generated.
This gas may cause insufficient oxidation and reduce a portion of the superconductor thin film 2, resulting in deterioration of superconducting properties. Therefore, by sandwiching the amorphous thin film 12 between the stabilizing material thin film 3 and the amorphous thin film 14 as shown in the tape wire source 11a (FIG. 4(a)), the amorphous thin film 12 is removed when the organic tape 5 is incinerated. This can prevent contact between the reducing gas and the reducing gas. Also,
Tape wire material 1 manufactured from this tape wire material source 11a
a can omit the insulating layer between the tape wires when wound as a coil in a later process, thereby making it possible to maintain a high overall critical current density Joc. For example, the amorphous thin film 14 may have a thickness of 0.
When 5 μm of MgO is used, the critical temperature Tc = 88K, Jc (77K, 1T) for the superconductor thin film 2 alone.
≧2×104 ~3×105 A/cm2, Joc(
77K, 1T) ≧2×103 ~3×104 A/cm
I was able to achieve 2. Also in the tape wire 1a, the film thickness ratio exceeds 20%.

【0011】そして,上記テープ線材1b (図5(b
))は,超電導体薄膜2及び安定化材薄膜3の両側に絶
縁体薄膜4が積層された例であって,各絶縁体薄膜4の
厚さは0.5μmであり,超電導体薄膜2の厚さは2μ
mであり,安定化材薄膜3の厚さは6μmであって上記
厚さの比は20%を超えている。そしてこのテープ線材
1b においても,超電導体薄膜2単体のTc=83K
,Jc(77K,1T)≧104 〜105 A/cm
2 ,Joc(77K,1T)≧103 〜104 A
/cm2 であった。上記テープ線材1b は,その両
面が絶縁層であるため後工程でコイルに巻かれるときテ
ープ線材間の絶縁がより良好になる。また,図6(b)
のテープ線材1c では,超電導体薄膜2単体のTc=
84〜88K,Jc(77K,1T)≧2×104 〜
2×105 A/cm2 であって,Joc(77K,
1T)≧2×103 〜2×104 A/cm2 を達
成することができた。この場合も,上記厚さの比は20
%以上である。また,臨界電流Icは15A以上であっ
て実用的なテープ線材を実現することができた。上記し
たようなテープ線材1〜1c はいずれも安定化材薄膜
3の厚さを調整することにより,上記厚さの比を20%
以上にし,且つ調節することができる。上記した2層構
造(図3(b)),3層構造(図4(b)),4〜5層
構造(図5(b)〜図6(b))の各テープ線材1〜1
c のそれぞれの超電導体薄膜2単体における磁場強度
B(T)に対する臨界電流密度Jcは図7に示す通りで
あって,いずれも実用的なテープ線材を実現することが
できた。なお,上記有機物テープ5上に成膜する手法と
しては,真空成膜法のひとつであるマグネトロンスパッ
タリング法を適用したが,これに替えて他の真空成膜法
を用いてもよく,更には薄膜塗布法によって薄膜を積層
してもよい。
[0011] Then, the tape wire rod 1b (Fig. 5(b)
)) is an example in which insulator thin films 4 are laminated on both sides of a superconductor thin film 2 and a stabilizing material thin film 3, and the thickness of each insulator thin film 4 is 0.5 μm. Thickness is 2μ
m, and the thickness of the stabilizing material thin film 3 is 6 μm, and the above thickness ratio exceeds 20%. Also in this tape wire 1b, Tc of the superconductor thin film 2 alone is 83K.
, Jc (77K, 1T)≧104 ~105 A/cm
2, Joc (77K, 1T) ≧103 ~ 104 A
/cm2. Since both sides of the tape wire 1b are insulating layers, the insulation between the tape wires becomes better when the wire tape is wound into a coil in a subsequent process. Also, Figure 6(b)
For the tape wire 1c, Tc of the superconductor thin film 2 alone =
84~88K, Jc (77K, 1T)≧2×104~
2×105 A/cm2, Joc (77K,
1T)≧2×103 to 2×104 A/cm2 could be achieved. In this case as well, the above thickness ratio is 20
% or more. Furthermore, the critical current Ic was 15 A or more, making it possible to realize a practical tape wire. For each of the tape wire rods 1 to 1c described above, the thickness ratio of the above thickness can be reduced to 20% by adjusting the thickness of the stabilizing material thin film 3.
It is possible to do more than that and adjust it. Each tape wire rod 1 to 1 of the above-described two-layer structure (FIG. 3(b)), three-layer structure (FIG. 4(b)), and four- to five-layer structure (FIGS. 5(b) to 6(b))
The critical current density Jc with respect to the magnetic field strength B(T) in each of the superconducting thin films 2 of c is as shown in FIG. 7, and it was possible to realize a practical tape wire in each case. Although magnetron sputtering, which is one of the vacuum film forming methods, was used to form a film on the organic tape 5, other vacuum film forming methods may be used instead. Thin films may be laminated by a coating method.

【0012】0012

【発明の効果】本発明は上記したように構成されている
ので,超電導テープ線材の製造に成膜技術を適用するこ
とができる。これによって,超電導特性に優れ,極めて
実用的な超電導テープ線材を提供することができる。
[Effects of the Invention] Since the present invention is constructed as described above, film forming technology can be applied to the production of superconducting tape wires. This makes it possible to provide an extremely practical superconducting tape wire with excellent superconducting properties.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の一実施例に係るテープ線材を製造
するための成膜装置を示す概略斜視図。
FIG. 1 is a schematic perspective view showing a film forming apparatus for manufacturing a tape wire according to an embodiment of the present invention.

【図2】  上記成膜装置の概略平面図。FIG. 2 is a schematic plan view of the film forming apparatus.

【図3】  同図(a)はテープ線材源の第1の例を示
すものであって,同図(b)は(a)のテープ線材源か
ら製造されたテープ線材をそれぞれ示す外観図。
FIG. 3(a) shows a first example of the tape wire source, and FIG. 3(b) is an external view of each tape wire manufactured from the tape wire source in FIG. 3(a).

【図4】  同図(a)はテープ線材源の第2の例を示
すものであって,同図(b)は(a)のテープ線材源か
ら製造されたテープ線材をそれぞれ示す外観図。
FIG. 4(a) shows a second example of the tape wire source, and FIG. 4(b) is an external view of the tape wire manufactured from the tape wire source of FIG. 4(a).

【図5】  同図(a)はテープ線材源の第3の例を示
すものであって,同図(b)は(a)のテープ線材源か
ら製造されたテープ線材をそれぞれ示す外観図。
FIG. 5(a) shows a third example of the tape wire source, and FIG. 5(b) is an external view of each tape wire manufactured from the tape wire source of FIG. 5(a).

【図6】  同図(a)はテープ線材源の第4の例を示
すものであって,同図(b)は(a)のテープ線材源か
ら製造されたテープ線材をそれぞれ示す外観図。
FIG. 6(a) shows a fourth example of the tape wire source, and FIG. 6(b) is an external view of the tape wire manufactured from the tape wire source of FIG. 6(a).

【図7】  磁場強度に対する臨界電流密度又は臨界電
流の変化を示すグラフ図。
FIG. 7 is a graph showing changes in critical current density or critical current with respect to magnetic field strength.

【図8】  リボンシース線材における温度と交流帯磁
率との関係を示すグラフ図。
FIG. 8 is a graph diagram showing the relationship between temperature and AC magnetic susceptibility in a ribbon sheath wire.

【図9】  単結晶基板上の超電導膜における膜厚と臨
界電流密度との関係を示すグラフ図。
FIG. 9 is a graph diagram showing the relationship between film thickness and critical current density in a superconducting film on a single crystal substrate.

【符号の説明】[Explanation of symbols]

1,1a ,1b ,1c …テープ線材2…超電導体
薄膜 3…安定化材薄膜 4…絶縁体薄膜 5…有機物テープ 11,11a ,11b ,11c …テープ線材源1
2,14…アモルファス薄膜 20…成膜装置 21…テープ冷却ドラム 22,23…テープリール 24,25,26…スパッタガン 27,28,29…ターゲット 30…仕切板
1, 1a, 1b, 1c...Tape wire 2...Superconductor thin film 3...Stabilizing material thin film 4...Insulator thin film 5...Organic tape 11, 11a, 11b, 11c...Tape wire source 1
2, 14... Amorphous thin film 20... Film forming device 21... Tape cooling drum 22, 23... Tape reel 24, 25, 26... Sputter gun 27, 28, 29... Target 30... Partition plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも酸化物超電導体膜と,該酸
化物超電導体膜に隣接して設けられる安定化材膜とを積
層してなる超電導テープ線材において,上記酸化物超電
導体膜の厚さと上記積層体の厚さの比が0.2以上であ
ることを特徴とする超電導テープ線材。
Claim 1: A superconducting tape wire formed by laminating at least an oxide superconductor film and a stabilizing material film provided adjacent to the oxide superconductor film, wherein the thickness of the oxide superconductor film and the A superconducting tape wire characterized in that the thickness ratio of the laminate is 0.2 or more.
【請求項2】  上記積層体が酸化物超電導体膜及び/
若しくは安定化材膜に隣接した絶縁体膜を備えてなる請
求項1記載の超電導テープ線材。
Claim 2: The laminate includes an oxide superconductor film and/or an oxide superconductor film.
The superconducting tape wire according to claim 1, further comprising an insulating film adjacent to the stabilizing material film.
【請求項3】  上記酸化物超電導体膜へ結晶化する結
晶化温度範囲内の温度下で熱分解する有機物テープ上に
上記結晶化温度未満の温度下で上記積層体を積層した後
,上記有機物テープ及びこれに積層された上記積層体を
上記結晶化温度範囲内の温度下に加熱することにより上
記有機物テープを分解・除去することを特徴とする請求
項1若しくは請求項2記載の超電導テープ線材の製造方
法。
3. After laminating the laminate at a temperature below the crystallization temperature on an organic tape that thermally decomposes at a temperature within the crystallization temperature range that crystallizes into the oxide superconductor film, the organic material is The superconducting tape wire according to claim 1 or 2, wherein the organic tape is decomposed and removed by heating the tape and the laminate laminated thereon to a temperature within the crystallization temperature range. manufacturing method.
JP3082494A 1991-04-15 1991-04-15 Superconducting tape wire material Pending JPH04315705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082494A JPH04315705A (en) 1991-04-15 1991-04-15 Superconducting tape wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082494A JPH04315705A (en) 1991-04-15 1991-04-15 Superconducting tape wire material

Publications (1)

Publication Number Publication Date
JPH04315705A true JPH04315705A (en) 1992-11-06

Family

ID=13776048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082494A Pending JPH04315705A (en) 1991-04-15 1991-04-15 Superconducting tape wire material

Country Status (1)

Country Link
JP (1) JPH04315705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2009215636A (en) * 2008-03-12 2009-09-24 Dymco:Kk Apparatus for and method of manufacturing amorphous cylinder
CN103985479A (en) * 2014-04-28 2014-08-13 赵遵成 Low-cost preparing method for high-temperature superconductive coated conductor strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2009215636A (en) * 2008-03-12 2009-09-24 Dymco:Kk Apparatus for and method of manufacturing amorphous cylinder
CN103985479A (en) * 2014-04-28 2014-08-13 赵遵成 Low-cost preparing method for high-temperature superconductive coated conductor strip

Similar Documents

Publication Publication Date Title
AU2006275564B2 (en) Architecture for high temperature superconductor wire
JP5101779B2 (en) Structure for high critical current superconducting tape
JP6873320B2 (en) Laminated high-temperature superconducting wire with increased engineering current density
JP4268645B2 (en) Rare earth tape oxide superconductor and composite substrate used therefor
CA2622384A1 (en) High temperature superconducting wires and coils
JP2007516353A (en) Method for generating biaxially textured buffer layers and related articles, devices and systems
US8431515B2 (en) Tape-shaped oxide superconductor
JPH07335051A (en) Oxide superconductive tape with stabilizing layer and manufacture thereof
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
JP5415696B2 (en) Thick film superconducting film with improved functions
CA2715891A1 (en) Method of forming an hts article
JP2008514545A5 (en)
Ohmatsu et al. Development of in-plane aligned YBCO tapes fabricated by inclined substrate deposition
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
JP2003206134A (en) High temperature superconducting thick film member and method for producing the same
US7445808B2 (en) Method of forming a superconducting article
US6998028B1 (en) Methods for forming superconducting conductors
JPH04315705A (en) Superconducting tape wire material
JP2002075079A (en) High-temperature superconducting thick-layer material and method for manufacturing the same
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JP3061634B2 (en) Oxide superconducting tape conductor
US20090203529A1 (en) Superconducting material
JP2813287B2 (en) Superconducting wire
Hanyu et al. Progress in Scale-Up of RE-123 Coated Conductors With $ I_ {c} $ of 300 A/cm by IBAD/PLD Process
JPH08106822A (en) Superconductive wire