JPH08106822A - Superconductive wire - Google Patents

Superconductive wire

Info

Publication number
JPH08106822A
JPH08106822A JP6259625A JP25962594A JPH08106822A JP H08106822 A JPH08106822 A JP H08106822A JP 6259625 A JP6259625 A JP 6259625A JP 25962594 A JP25962594 A JP 25962594A JP H08106822 A JPH08106822 A JP H08106822A
Authority
JP
Japan
Prior art keywords
layer
oxide
superconducting wire
material layer
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6259625A
Other languages
Japanese (ja)
Other versions
JP3397474B2 (en
Inventor
Norio Kaneko
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25962594A priority Critical patent/JP3397474B2/en
Publication of JPH08106822A publication Critical patent/JPH08106822A/en
Application granted granted Critical
Publication of JP3397474B2 publication Critical patent/JP3397474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To provide superior superconductivity by forming a superconductive wire of a four-layer structure, forming the superconductive layer in such a formation condition as providing superior superconductive characteristics, and preventing reaction of an oxide superconductive layer with a material layer sandwiching it. CONSTITUTION: A superconductive wire has a four-layer structure, a conductive material layer 1 consisting of stainless steel, an oxide material layer 2 consisting of MgO, an oxide superconductive layer 3 consisting of YBa2 Cu3 Oy , and an insulating material layer 4 consisting of teflon. The stainless steel is, for example, a wire of 100μm in diameter, has solid circular section, and is applied wire drawing using a plurality of dies. The MgO layer is formed by heating the stainless steel, for example, to approximately 200 deg.C and evaporated into, for example, the thickness of 200nm by electron beam evaporation method. Secondarily, temperature of the stainless steel is set to approximately 500 deg.C and YBa2 Cu3 Oy is fixed into the thickness of 1000nm by a cluster ion beam method so that the oxide superconductive layer is formed. It is cooled down and covered with an insulating material layer so that reaction with a material layer sandwiching the oxide superconductive layer can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導マグネット、エ
ネルギー貯蔵用の超伝導コイル、超伝導コイルに電力を
供給する為の電流リード等、各種の超伝導機器に使用す
る超伝導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire used for various superconducting devices such as a superconducting magnet, a superconducting coil for energy storage, and a current lead for supplying electric power to the superconducting coil.

【0002】[0002]

【従来の技術】従来、超伝導線は酸化物超伝導体の外周
に導電性材料を取り付けた形態(以下、タイプ1と呼
ぶ)及び導電性材料のテープ上に超伝導体を取り付けた
形態(以下、タイプ2と呼ぶ)のものが一般的に知られ
ている。超伝導体として酸化物超伝導体を使用したもの
としては、特開平5−6716号公報に銀パイプの中に
酸化物超伝導体を挿入したタイプ1の超伝導線が、又、
タイプ2の超伝導線が特開平5−62546号公報に示
されている。そして、何れのタイプの超伝導線も特性が
改善され、例えば、特開平5−6716号公報では、約
0.1mm程度の厚さの板状に加工した超伝導線で3,
000A/cm2程度(長さは1cm程度で計測)の臨
界電流密度を有する物が開示されている。タイプ1の変
形として、特開平1−165680号公報では、低熱伝
導性の補強材の外周に酸化物超伝導体を取り付け、最外
周に良導電性金属を配したもの(以下、タイプ3と呼
ぶ)が示されている。
2. Description of the Related Art Conventionally, a superconducting wire has a form in which a conductive material is attached to the outer periphery of an oxide superconductor (hereinafter referred to as type 1) and a form in which the superconductor is attached to a tape of the conductive material ( Hereinafter, type 2) is generally known. As an oxide superconductor used as a superconductor, a type 1 superconducting wire in which an oxide superconductor is inserted into a silver pipe is disclosed in JP-A-5-6716.
A type 2 superconducting wire is disclosed in JP-A-5-62546. The characteristics of any type of superconducting wire are improved. For example, in JP-A-5-6716, a superconducting wire processed into a plate shape having a thickness of about 0.1 mm is 3,
A material having a critical current density of about 000 A / cm 2 (the length is measured at about 1 cm) is disclosed. As a modification of type 1, in JP-A-1-165680, an oxide superconductor is attached to the outer periphery of a reinforcing material having low thermal conductivity, and a good conductive metal is arranged on the outermost periphery (hereinafter referred to as type 3). )It is shown.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のタイプ
1の超伝導線では、酸化物超伝導体の特性が材料中の酸
素量により大きく変化してしまう為に、安定化材として
して機能する導電性材料が限定されてしまうという問題
がある。即ち、酸化物超伝導体が発見されるまでは、タ
イプ1の超伝導線の安定化材としては、銅、アルミニウ
ムやそれらの合金が代表的な材料であったが、これらの
材料を酸化物超伝導体の場合に使用すると、これらが酸
化物超伝導体と反応して超伝導特性を低下させ、更には
安定化材としての機能をも消失してしまうことが生じ
る。
However, in the conventional type 1 superconducting wire, since the characteristics of the oxide superconductor largely change depending on the amount of oxygen in the material, it functions as a stabilizer. There is a problem that the conductive material to be used is limited. That is, until the discovery of oxide superconductors, copper, aluminum and their alloys were typical materials as stabilizers for type 1 superconducting wires. When used in the case of a superconductor, these may react with the oxide superconductor to deteriorate the superconducting properties, and also lose the function as a stabilizer.

【0004】又、酸化物超伝導線を作製する工程におい
て、酸素を該超伝導体に補給する為には安定化材に酸素
の透過性が要求されるが、上記した銅等では酸素の透過
性はない。この為に、現状では、導電性材料として高温
になると酸素の透過性が生じる銀が安定化材として使わ
れている。銀は、電気伝導度、熱伝導度、機械的加工
性、酸素に対する化学的安定性等、酸化物超伝導体の安
定化材としての要求を満足するものである。しかし、融
点が酸素との平衡状態では950℃(真空中で960.
5℃)であり、引っ張り強度が7.5kg/mm2であ
る為に、例えば、銀パイプに酸化物超伝導体を入れて熱
処理する場合には、上記の温度よりも低い温度で処理す
ることが必要となるという問題がある。即ち、現在、知
られている酸化物超伝導体の中で、950℃以下の温度
で合成することが出来る材料は少なく、タイプ1の超伝
導線を得る為には、1,000℃以上の熱処理を必要と
するものも多い。この為、使用することが出来る超伝導
体材料が限定されてしまうという問題がある。更に、酸
化物超伝導体は金属の様に引き伸ばすことが出来ない為
に、銀パイプに挿入した粉体の粒径によって超伝導線の
断面積が決まってしまい、又、大きな力で加工しようと
すると、銀が切断してしまうという問題もある。
Further, in the step of producing an oxide superconducting wire, the stabilizing material is required to have oxygen permeability in order to supply oxygen to the superconductor. There is no sex. For this reason, at present, as a conductive material, silver is used as a stabilizing material, which is permeable to oxygen at high temperatures. Silver satisfies the requirements as a stabilizer for oxide superconductors such as electrical conductivity, thermal conductivity, mechanical workability, and chemical stability against oxygen. However, when the melting point is in equilibrium with oxygen, it is 950 ° C. (960.
5 ° C.) and the tensile strength is 7.5 kg / mm 2 , for example, when heat-treating an oxide superconductor in a silver pipe, treat it at a temperature lower than the above temperature. There is a problem that is required. That is, among the currently known oxide superconductors, there are few materials that can be synthesized at a temperature of 950 ° C. or lower, and in order to obtain a type 1 superconducting wire, a temperature of 1,000 ° C. or higher is required. Many require heat treatment. Therefore, there is a problem that the usable superconductor material is limited. Furthermore, oxide superconductors cannot be stretched like metals, so the cross-sectional area of the superconducting wire is determined by the particle size of the powder inserted into the silver pipe, and it is also necessary to process with a large force. Then, there is also a problem that the silver is cut off.

【0005】タイプ2の超伝導線は、銀等のテープ上の
基体にドクターブレード法等で超伝導体の厚膜を形成
し、これをレーザー光で溶融後冷却することにより作製
される。しかし、この方法では、レーザー光が安定に照
射されないと酸化物超伝導体や銀の温度が変動してしま
い、結果として均一な品質の超伝導線が得られないとい
う問題がある。更に、この様な酸化物超伝導体の断面積
は、溶融体の粘性度によって影響を受けるが、一般に、
酸化物超伝導体の溶融体の粘性度は水と同程度である為
に、断面積の制御は非常に困難であるという問題もあ
る。
The type 2 superconducting wire is produced by forming a thick film of a superconductor by a doctor blade method or the like on a substrate on a tape of silver or the like, melting this with a laser beam and then cooling it. However, this method has a problem that the temperature of the oxide superconductor and silver fluctuates unless the laser beam is stably irradiated, and as a result, a superconducting wire of uniform quality cannot be obtained. Moreover, the cross-sectional area of such oxide superconductors is affected by the viscosity of the melt,
Since the viscosity of the melt of the oxide superconductor is about the same as that of water, there is a problem that it is very difficult to control the cross-sectional area.

【0006】タイプ3の超伝導線は、機械的強度にも優
れているが、中心に配した補強材はステンレス鋼やチタ
ン鋼であり、この様な材料に直接酸化物超伝導体を密着
して取り付けることは現実にはほとんど不可能であると
いう問題がある。つまり、超伝導体の特性を十分に発揮
させる為には、出来るだけ低い温度で作成する必要があ
るが、現状では作製温度が最も低いと思われるスパッタ
法でも600℃以上の高い温度が必要であり、この様な
温度で酸化物超伝導体を形成すると、補強材と酸化物超
伝導体とが反応してしまい、超伝導特性が失われてしま
うこともしばしば起きてしまう。更に、タイプ3の超伝
導線は、良導電性金属が酸化物超伝導体の外側に密着し
ている為に、クエンチ時等に酸化物超伝導体中の酸素が
良導電性金属中に拡散してしまう可能性もあり、長期の
安定性にも問題がある。
The type 3 superconducting wire is also excellent in mechanical strength, but the reinforcing material placed in the center is stainless steel or titanium steel, and the oxide superconductor is directly adhered to such a material. There is a problem that it is practically impossible to install it by attaching it. In other words, in order to fully exhibit the characteristics of the superconductor, it is necessary to create it at a temperature as low as possible, but at present the sputtering method, which seems to be the lowest in manufacturing temperature, requires a high temperature of 600 ° C or higher. However, when the oxide superconductor is formed at such a temperature, the reinforcing material reacts with the oxide superconductor, and the superconducting property is often lost. Furthermore, in the type 3 superconducting wire, the oxygen in the oxide superconductor diffuses into the good conductive metal during quenching, etc., because the good conductive metal adheres to the outside of the oxide superconductor. There is a possibility that it will happen, and there is a problem with long-term stability.

【0007】以上の様に、現状では、酸化物超伝導体を
使用した超伝導線は、数cmから数10cm程度の長さ
では、ある程度特性の優れたものが得られる様になって
きているが、実用になる為には、約1km以上の長さに
わたって優れた特性を有する均質な超伝導線が必要であ
る。しかし、未だ実用になる様な超伝導線は得られてお
らず、その原因は、上記した様に、超伝導線を構成する
材料に制限が多く、又、製造方法にも制約が多い為であ
る。
As described above, at present, a superconducting wire using an oxide superconductor can be obtained with excellent characteristics to some extent in a length of several cm to several tens of cm. However, for practical use, a homogeneous superconducting wire having excellent characteristics over a length of about 1 km or more is required. However, a superconducting wire that can be put to practical use has not yet been obtained, and the reason is that there are many restrictions on the materials that make up the superconducting wire and many restrictions on the manufacturing method, as described above. is there.

【0008】従って、本発明の目的は、上記の従来技術
の問題点を解決し、使用する材料の組み合わせや製造方
法の制限が少なく、且つ所望の断面積を有する様に超伝
導線を加工してからでも十分に超伝導体中の酸素量を調
整することの出来る、優れた超伝導特性を有し、且つ広
い用途で使用することの出来る多様性ある超伝導線を提
供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to process the superconducting wire so that the combination of materials to be used and the manufacturing method are not limited and the desired cross-sectional area is obtained. It is an object of the present invention to provide a variety of superconducting wires which have excellent superconducting properties and can be used for a wide range of purposes, by which the amount of oxygen in the superconductor can be adjusted sufficiently even after a long time.

【0009】[0009]

【課題を解決する為の手段】上記目的は、以下の本発明
により達成される。即ち、本発明は、機械的強度に優れ
た導電性材料からなる中心層の表面に酸化物材料層が設
けられ、且つ該酸化物材料層の外周に超伝導体層が設け
られ、更に該超伝導体層の外周に絶縁材料層が設けられ
ていることを特徴とする超伝導線である。
The above object can be achieved by the present invention described below. That is, according to the present invention, an oxide material layer is provided on the surface of a central layer made of a conductive material having excellent mechanical strength, and a superconductor layer is provided on the outer periphery of the oxide material layer. The superconducting wire is characterized in that an insulating material layer is provided on the outer periphery of the conductor layer.

【0010】[0010]

【作用】本発明によれば、中心が機械的強度に優れた導
電性材料からなる層であり、その表面に熱膨張係数が該
導電性材料よりも超伝導体に近い酸化物材料層が形成さ
れ、更にその外周に酸化物超伝導体層が形成され、最外
周に絶縁材料層が形成されて超伝導線の断面が4層構造
から成っている為、酸化物超伝導体層を形成する際に、
優れた超伝導特性が得られる形成条件で超伝導体層を形
成することが出来、又、酸化物超伝導体とそれを挟む材
料との反応が防止される結果、酸化物超伝導体の超伝導
特性を十分に発揮することの出来る超伝導線が提供され
る。又、各構成材料が、製造方法に限定されることなく
夫々の役割を果たすことが出来る結果、信頼性に優れた
超伝導線が提供され、更に、超伝導線の最内周又は最外
周にシールド材や光導波路を設ける等の必要な処置を簡
単に施すことが出来る結果、超伝導線の殆ど全ての用途
に使用することの出来る多様性のある超伝導線が提供さ
れる。
According to the present invention, the center is a layer made of a conductive material having excellent mechanical strength, and an oxide material layer having a thermal expansion coefficient closer to that of a superconductor than that of the conductive material is formed on the surface thereof. Further, an oxide superconductor layer is formed on the outer periphery thereof, an insulating material layer is formed on the outermost periphery thereof, and the cross section of the superconducting wire has a four-layer structure, so that the oxide superconductor layer is formed. When
The superconductor layer can be formed under the formation conditions that provide excellent superconducting properties, and the reaction between the oxide superconductor and the material sandwiching it can be prevented. Provided is a superconducting wire capable of sufficiently exhibiting the conduction characteristics. In addition, each constituent material can play a role without being limited to the manufacturing method, and as a result, a superconducting wire with excellent reliability is provided, and further, the innermost circumference or the outermost circumference of the superconducting wire is provided. As a result of being able to easily perform necessary treatments such as providing a shield material and an optical waveguide, a versatile superconducting wire that can be used for almost all applications of the superconducting wire is provided.

【0011】[0011]

【好ましい実施態様】以下に好ましい実施態様を挙げ
て、本発明を更に詳しく説明する。本発明の超伝導線は
断面が4層構造から成り、中心層が導電性材料からな
り、その表面に酸化物材料からなる層、更にその外周に
酸化物超伝導体からなる層、そして最外周に絶縁材料か
らなる層が順次取り付けられている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following preferred embodiments. The superconducting wire of the present invention has a four-layer structure in cross section, the central layer is made of a conductive material, the surface thereof is made of an oxide material, the outer circumference thereof is made of an oxide superconductor, and the outermost circumference is made. Layers of insulating material are sequentially attached to.

【0012】本発明の超伝導線を構成する中心層を形成
する導電性材料としては、丸棒、角柱、板状、中空等の
線材を使用する。具体的には、機械的強度に優れた銅、
アウミニウム、銀、及びそれらの中から選ばれた1種を
主成分とする合金、ハステロイ、ステンレス鋼、マンガ
ン鋼、ニクロム鋼、チタン鋼の中から選ばれた1種等か
らなる線材が挙げられる。
As the conductive material forming the central layer constituting the superconducting wire of the present invention, a round rod, a prism, a plate, a hollow wire or the like is used. Specifically, copper with excellent mechanical strength,
Examples of the wire material include aluminum, silver, and an alloy mainly containing one selected from them, Hastelloy, stainless steel, manganese steel, nichrome steel, and one selected from titanium steel.

【0013】更に、上記の導電性材料層の表面に取り付
けられる層は、酸化物材料からなり、使用される材料と
しては、例えば、サファイア、アルミナ、酸化マグネシ
ウム、酸化イットリウム、酸化セリウム、酸化ジルコニ
ウム及びそれらの混合物、積層物或いは共融物の中から
選ばれた1種が挙げられる。この様な酸化物材料層の厚
さは、上記した導電性材料層及び次に述べる酸化物超伝
導体からなる層の厚さに比べて十分に薄く、一般的に
は、1〜1,000nmの範囲内とする。これらの酸化
物材料層は、上記した導電性材料層表面に300℃程度
以下の温度で取り付けることが可能であり、且つその上
に酸化物超伝導体を形成した際に、酸化物超伝導体と導
電性材料とが反応しない様に用いられるものである。
又、酸化物材料であるから熱膨張率が導電性材料よりも
超伝導体に近い為に、超伝導体層を形成し、冷却する過
程での熱応力を少なくすることが出来る。一般的には、
酸化物超伝導体層を形成する為には、クラスターイオン
ビーム法、スパッタ法やレーザーアブレーション法等で
は500〜800℃、塗付法等では900〜1,000
℃の温度が必要であるが、上記した酸化物材料層が存在
している為に、酸化物超伝導体層を形成した場合に、酸
化物超伝導体と導電性材料とが反応して超伝導特性の低
下や消失等が起きることがない。
Further, the layer attached to the surface of the above-mentioned conductive material layer is made of an oxide material, and examples of the material used include sapphire, alumina, magnesium oxide, yttrium oxide, cerium oxide, zirconium oxide and One of them selected from a mixture, a laminate or a eutectic. The thickness of such an oxide material layer is sufficiently smaller than the thickness of the above-mentioned conductive material layer and a layer formed of an oxide superconductor described below, and generally 1 to 1,000 nm. Within the range of. These oxide material layers can be attached to the surface of the above-mentioned conductive material layer at a temperature of about 300 ° C. or lower, and when the oxide superconductor is formed thereon, the oxide superconductor It is used so as not to react with the conductive material.
Further, since it is an oxide material, its coefficient of thermal expansion is closer to that of a superconductor than that of a conductive material, so that it is possible to reduce the thermal stress in the process of forming and cooling the superconductor layer. In general,
In order to form the oxide superconductor layer, the cluster ion beam method, the sputtering method, the laser ablation method or the like is 500 to 800 ° C., and the coating method or the like is 900 to 1,000.
Although a temperature of ℃ is required, when the oxide superconductor layer is formed due to the existence of the oxide material layer described above, the oxide superconductor reacts with the conductive material and the The conduction characteristics will not be deteriorated or lost.

【0014】酸化物超伝導体層の上に取り付けられる本
発明の超伝導線の最外周の層を構成する絶縁材料として
は、絶縁性を有する材料であれば特に限定されるもので
はないが、例えば、ポリプロピレン、エチレンとプロピ
レンの共重合体、テフロン、エポキシ樹脂、アラミド樹
脂等やガラス繊維で強化された強化プラスチック等が適
している。これらの絶縁材料層は、超伝導線間の絶縁
と、酸化物超伝導体層が導電性材料層から剥離すること
を防止する役割を果たす。そして、これらの絶縁材料
は、隣接する酸化物超伝導体と反応することもない。
The insulating material constituting the outermost layer of the superconducting wire of the present invention attached on the oxide superconductor layer is not particularly limited as long as it is an insulating material. For example, polypropylene, a copolymer of ethylene and propylene, Teflon, an epoxy resin, an aramid resin and the like, a reinforced plastic reinforced with glass fiber and the like are suitable. These insulating material layers play a role of insulating between the superconducting wires and preventing the oxide superconductor layer from being separated from the conductive material layer. And these insulating materials do not react with the adjacent oxide superconductor.

【0015】以上の様な構成にすることにより、本発明
の超伝導線は、酸化物超伝導体層を形成する際に、優れ
た超伝導特性が得られる形成条件で超伝導体層を形成す
ることが出来、更に、最外周の絶縁材料層を形成する温
度は、200℃程度以下であるから、超伝導線を製造す
る過程で真空雰囲気を採用した場合においても超伝導特
性が低下することはない。更に、BiSrCaCuO系
の超伝導材料に代表されるが、酸化物超伝導体の中には
磁場の存在により超伝導特性が劣化するものがある。こ
の様な材料を使用する場合には、最外周の絶縁材料層の
外側に更に銅やハステロイ等の電磁シールド機能を有す
る材料を取り付けてもよいのは勿論である。
With the above-mentioned structure, the superconducting wire of the present invention has a superconducting layer formed under the forming conditions capable of obtaining excellent superconducting properties when forming the oxide superconducting layer. In addition, since the temperature for forming the outermost insulating material layer is about 200 ° C. or less, the superconducting property is deteriorated even when a vacuum atmosphere is adopted in the process of manufacturing the superconducting wire. There is no. Further, as typified by a BiSrCaCuO-based superconducting material, there are some oxide superconductors whose superconducting properties are deteriorated by the presence of a magnetic field. When such a material is used, it goes without saying that a material having an electromagnetic shield function such as copper or hastelloy may be attached to the outside of the outermost insulating material layer.

【0016】又、中心の導電性材料からなる層に、中空
形状の導電性材料を使用した場合には、中空管の内側に
アルミニウムの様な光の反射率の高い材料をコーティン
グしてもよく、光ファイバー等の光の導波路となるもの
を挿入してもよい。この様な構成にすることにより、酸
化物超伝導体のクエンチ発生を光学的に検出することが
出来る。この様な構造の超伝導線は、中空内部に冷媒を
流すことも出来るので、超伝導線の冷却効率が改善さ
れ、更に冷媒を流しながら前記の光によるクエンチ検出
も可能である。
When a hollow conductive material is used for the central conductive layer, a material having a high light reflectance such as aluminum may be coated inside the hollow tube. Of course, an optical fiber or the like that serves as a light guide may be inserted. With such a configuration, it is possible to optically detect the quench generation of the oxide superconductor. In the superconducting wire having such a structure, a cooling medium can be flown inside the hollow, so that the cooling efficiency of the superconducting wire can be improved, and further quench detection by the light can be performed while flowing the cooling medium.

【0017】[0017]

【実施例】以下、実施例を挙げて本発明を更に具体的に
に説明する。尚、以下の実施例では、酸化物超伝導体と
してYBa2Cu3yを、酸化物材料としてCeO2(酸
化セリウム)又はMgO(酸化マグネシウム)を、絶縁
材料としてテフロンをそれぞれ使用した場合について述
べるが、本発明はこれらに限定されるものではない。
又、酸化物超伝導体等の形成方法は、主として真空を利
用した薄膜形成方法について述べるが、本発明の超伝導
線は、塗付、溶射法等各種の製造方法で作製することが
出来、各製造方法の組み合わせにも制限はない。
EXAMPLES The present invention will be described more specifically with reference to examples. In the examples below, YBa 2 Cu 3 O y is used as the oxide superconductor, CeO 2 (cerium oxide) or MgO (magnesium oxide) is used as the oxide material, and Teflon is used as the insulating material. However, the present invention is not limited thereto.
The method for forming the oxide superconductor and the like will be described mainly with respect to a thin film forming method using vacuum. The superconducting wire of the present invention can be produced by various manufacturing methods such as coating and thermal spraying. There is no limitation on the combination of the manufacturing methods.

【0018】実施例1 図1に本実施例の超伝導線の断面構成図を示す。1はス
テンレス鋼からなる導電性材料層であり、2はMgOか
らなる酸化物材料層であり、3はYBa2Cu3yから
なる酸化物超伝導体層、4はテフロンからなる絶縁材料
層であり、本実施例の超伝導線は、断面が異なる材料か
らなる4層構造を有している。本実施例で用いたステン
レス鋼は、直径が100μmのワイヤーであり、断面は
中実の円形であり、複数のダイスを利用して線引きした
ものを使用した。次に、MgO層は、上記のステンレス
鋼を約200℃に加熱した後、この上に電子ビーム蒸着
法により200nmの厚さに蒸着した。その後、ステン
レス鋼の温度を約500℃として、クラスターイオンビ
ーム法によりYBa2Cu3yを1,000nmの厚さ
に取り付けて酸化物超伝導体層を形成した。更に、ステ
ンレス鋼の温度を100℃以下に冷却してから、クラス
ターイオンビーム法でテフロンを1,000nmの厚さ
に取り付けて絶縁材料層を形成して、本発明の超伝導線
を作製した。
Example 1 FIG. 1 is a sectional view of the superconducting wire of this example. 1 is a conductive material layer made of stainless steel, 2 is an oxide material layer made of MgO, 3 is an oxide superconductor layer made of YBa 2 Cu 3 O y , and 4 is an insulating material layer made of Teflon. The superconducting wire of this example has a four-layer structure made of materials having different cross sections. The stainless steel used in this example was a wire with a diameter of 100 μm, the cross section was a solid circle, and the wire drawn using a plurality of dies was used. Next, the MgO layer was formed by heating the above stainless steel to about 200 ° C., and then depositing the MgO layer to a thickness of 200 nm by the electron beam evaporation method. Then, the temperature of the stainless steel was set to about 500 ° C., and YBa 2 Cu 3 O y was attached to a thickness of 1,000 nm by a cluster ion beam method to form an oxide superconductor layer. Furthermore, after cooling the temperature of the stainless steel to 100 ° C. or lower, Teflon was attached to a thickness of 1,000 nm by the cluster ion beam method to form an insulating material layer, and the superconducting wire of the present invention was produced.

【0019】図3に、上記と同じ条件でステンレス鋼の
板(2cm×2cm)の上に形成したMgOとYBa2
Cu3yの積層体のX線回折図形を示した。この図から
わかる様に、得られた酸化物超伝導体は、c軸がステン
レス鋼に対して垂直に配向しており、電気抵抗の温度特
性(図4)より臨界温度が92Kの酸化物超伝導体であ
ることが確認された。更に、ステンレス鋼線に取り付け
たMgOとYBa2Cu3yの積層体、及び本実施例で
作製した超伝導線から最外周の絶縁材料層であるテフロ
ンを機械的に剥離させたものから長さ10cmの試料を
ランダムに10個選び、これらの電気抵抗の温度依存性
を測定した結果、図4とほぼ同じで、臨界温度は全て9
0〜92Kの範囲内であった。又、臨界電流密度(77
Kで測定)も全て約35,000A/cm2であり、バ
ラツキも1%以内であった。
FIG. 3 shows MgO and YBa 2 formed on a stainless steel plate (2 cm × 2 cm) under the same conditions as above.
It showed X-ray diffraction pattern of the laminate of Cu 3 O y. As can be seen from this figure, the obtained oxide superconductor has the c-axis oriented perpendicular to the stainless steel, and the temperature characteristic of electric resistance (Fig. 4) shows that the critical temperature of the oxide superconductor is 92K. It was confirmed to be a conductor. In addition, a laminate of MgO and YBa 2 Cu 3 O y attached to a stainless steel wire, and a superconducting wire manufactured in this example, from which Teflon, which is the outermost insulating material layer, is mechanically peeled, 10 samples of 10 cm in length were randomly selected and the temperature dependence of these electrical resistances was measured. As a result, it was almost the same as in FIG.
It was in the range of 0 to 92K. Also, the critical current density (77
(Measured by K) was about 35,000 A / cm 2 , and the variation was within 1%.

【0020】この様に構成された超伝導線は、中心のス
テンレス鋼の機械的強度が優れている為に、外部からの
機械的応力にも強く、又、酸化物超伝導体よりもステン
レス鋼の熱伝導度がよい為に、クエンチ時の熱の放出等
にも対応出来る。更に、酸化物超伝導体の外周には絶縁
材料が取り付けられているので、そのままコイル等の用
途に使用することが出来る。超伝導線に流せる電流量
は、超伝導体の厚さを変えることにより任意に設定出
来、絶縁特性もテフロンの厚さを変えることにより制御
出来る。又、磁場による影響が問題となる場合には、テ
フロンの外周に電磁シールド機能のある材料を取り付け
ることも可能である。
The superconducting wire thus constructed is strong against external mechanical stress because the central stainless steel is excellent in mechanical strength, and the stainless steel is superior to the oxide superconductor in the stainless steel. Since it has good thermal conductivity, it can handle heat release during quenching. Furthermore, since an insulating material is attached to the outer periphery of the oxide superconductor, it can be used as it is for applications such as coils. The amount of current that can flow in the superconducting wire can be set arbitrarily by changing the thickness of the superconductor, and the insulation characteristics can be controlled by changing the thickness of Teflon. When the influence of the magnetic field poses a problem, a material having an electromagnetic shield function can be attached to the outer circumference of the Teflon.

【0021】実施例2 図2に本実施例の超伝導線の断面構成図を示す。中心の
導電性材料からなる層1は銀であり、直径1mmの丸線
を圧延して厚さ0.3mmの偏平板にしたものである。
この偏平板状の銀線に、CeO2からなる厚さ100n
mの酸化物材料層2、YBa2Cu3yからなる厚さ
2,000nmの酸化物超伝導体層3、テフロンからな
る2,000nmの絶縁材料層3を順次取り付けること
によって、本実施例の超伝導線を作製した。この際、C
eO2 層2及びYBa2Cu3y 層3はレーザーアブレ
ーション法により、テフロン層4は抵抗加熱法により形
成した。形成温度は夫々、CeO2層が150℃、YB
2Cu3y層が760℃であり、テフロン層が50〜
70℃である。
Embodiment 2 FIG. 2 shows a sectional view of the superconducting wire of this embodiment. The layer 1 made of a conductive material at the center is silver, and a round wire having a diameter of 1 mm is rolled into a flat plate having a thickness of 0.3 mm.
This flat plate-shaped silver wire is made of CeO 2 and has a thickness of 100 n.
m oxide material layer 2, YBa 2 Cu 3 O y , the oxide superconductor layer 3 having a thickness of 2,000 nm, and the insulating material layer 3 having a thickness of 2,000 nm made of Teflon. The superconducting wire of was produced. At this time, C
The eO 2 layer 2 and the YBa 2 Cu 3 O y layer 3 were formed by a laser ablation method, and the Teflon layer 4 was formed by a resistance heating method. The formation temperature is 150 ° C. for the CeO 2 layer and YB, respectively.
The a 2 Cu 3 O y layer has a temperature of 760 ° C., and the Teflon layer has a thickness of 50 to 50 ° C.
It is 70 ° C.

【0022】厚さ1mmの銀板(2cm×2cm)に、
上記と同じ条件でCeO2とYBa2Cu3yとを積層形
成し、酸化物超伝導体層のX線回折図形を測定したとこ
ろ、c軸の格子定数が1.177nmのc配向膜であ
り、電気抵抗測定の結果、臨界温度が92Kの酸化物超
伝導体であった。又、EPMAによる組成分析を行う
と、酸化物超伝導体層の組成はY:Ba:Cu=1.0
0:2.01:3.02であり、理論組成であるY:B
a:Cu=1:2:3とほぼ一致した。更に、SIMS
分析により、厚さ方向の組成分析を行った結果が図5で
あるが、CeO2とYBa2Cu3yの界面付近までは、
Y、Ba及びCuの信号強度は極めて安定しているが、
図5のLで示した部分で各原子の信号強度が減少し、逆
にCeの信号が強くなっている。測定時間から考えて、
Lの部分の厚さは15nmである。そして、この部分で
はAgの信号は全く観測されない。従って、CeO2
の存在により、酸化物超伝導体と銀の相互拡散を完全に
防止することが出来ていることがわかる。尚、銀以外の
導電性材料を用いた場合においても、酸化物材料として
酸化セリウムを用いた場合には、50nm程度の厚さの
層であれば導電性材料とYBa2Cu3O以外の酸化物超
伝導材料との相互拡散は防止することが出来る。
On a silver plate (2 cm × 2 cm) having a thickness of 1 mm,
CeO 2 and YBa 2 Cu 3 O y were laminated under the same conditions as above, and the X-ray diffraction pattern of the oxide superconductor layer was measured. As a result, a c-oriented film having a c-axis lattice constant of 1.177 nm was obtained. As a result of electric resistance measurement, the oxide superconductor had a critical temperature of 92K. Moreover, when the composition analysis by EPMA is performed, the composition of the oxide superconductor layer is Y: Ba: Cu = 1.0.
0: 2.01: 3.02, which is the theoretical composition of Y: B.
It almost coincided with a: Cu = 1: 2: 3. Furthermore, SIMS
The result of the composition analysis in the thickness direction is shown in FIG. 5 by the analysis, but up to near the interface between CeO 2 and YBa 2 Cu 3 O y ,
The signal strengths of Y, Ba and Cu are extremely stable,
At the portion indicated by L in FIG. 5, the signal intensity of each atom is decreased, and conversely, the Ce signal is increased. Considering from the measurement time,
The thickness of the L portion is 15 nm. Then, no Ag signal is observed in this portion. Therefore, it is understood that the presence of the CeO 2 layer can completely prevent the interdiffusion of the oxide superconductor and silver. Even when a conductive material other than silver is used, when cerium oxide is used as an oxide material, a conductive material and an oxide other than YBa 2 Cu 3 O can be used as long as the layer has a thickness of about 50 nm. Mutual diffusion with a superconducting material can be prevented.

【0023】この様な超伝導線は、臨界電流密度が77
Kにおいて104A/cm2以上であり、多くの用途に
使用出来るだけの性能を有している。そして、実際に流
せる電流値は、酸化物超伝導体の厚さを変えることによ
り任意に設定することが出来る。又、本実施例では、レ
ーザーアブレーション法では760℃で酸化物超伝導体
層を形成したが、本発明の構成であれば、中心に位置し
ている導電性材料層をを銀よりも融点の高い材料にした
としても980℃程度であれば酸化物材料層CeO2
厚さが50〜100nmでよく、これを更に厚くすれば
より高い温度においても酸化物超伝導体と導電性材料と
の相互拡散を防止することが出来る。
Such a superconducting wire has a critical current density of 77.
The value of K is 104 A / cm 2 or more, and the performance is sufficient for many purposes. Then, the current value that can be actually flown can be arbitrarily set by changing the thickness of the oxide superconductor. Further, in this example, the oxide superconductor layer was formed at 760 ° C. by the laser ablation method, but in the case of the constitution of the present invention, the conductive material layer located at the center has a melting point higher than that of silver. Even if it is made of a high material, the thickness of the oxide material layer CeO 2 may be 50 to 100 nm at about 980 ° C., and if it is further increased, the oxide superconductor and the conductive material can be formed even at a higher temperature. Mutual diffusion can be prevented.

【0024】実施例3 図6に本実施例の超伝導線の断面構成図を示す。導電性
材料層1として中空のニクロム鋼を使用し、その上に有
機セリウム化合物を塗付し、これを500℃以上で熱分
解させてCeO2からなる酸化物材料層2を形成した。
その後、その上にレーザーアブレーション法で酸化物超
伝導体YBa2Cu3yからなる層3を820℃で形成
し、更に、その上に50℃以下の温度でテフロンからな
る絶縁材料層4をクラスターイオンビーム法で形成して
本実施例の超伝導線を作製した。この様な線内に中空部
分を有する態様の本発明の超伝導線では、中心の中空部
分に冷却物質を流して超伝導線を冷却することが出来
る。又、導電性材料として銀やアルミニウムの様な光の
反射率の高い材料を用いたり、中空部分の内側にコーテ
ィングしたものについて、中空部分に光を入射させて光
の入口と出口での光の透過率の変化、或いはラマン効果
より、超伝導線のクエンチを検出し、必要な処置を採る
ことも可能である。
Example 3 FIG. 6 shows a cross sectional view of the superconducting wire of this example. Hollow nichrome steel was used as the conductive material layer 1, an organic cerium compound was applied onto the hollow nichrome steel, and this was thermally decomposed at 500 ° C. or higher to form an oxide material layer 2 made of CeO 2 .
After that, a layer 3 made of the oxide superconductor YBa 2 Cu 3 O y is formed thereon at 820 ° C. by a laser ablation method, and an insulating material layer 4 made of Teflon is further formed thereon at a temperature of 50 ° C. or lower. The superconducting wire of this example was produced by forming by the cluster ion beam method. In the superconducting wire of the present invention having a hollow portion in such a wire, a cooling substance can be caused to flow in the central hollow portion to cool the superconducting wire. Also, as a conductive material, a material having a high light reflectance such as silver or aluminum is used, or a material coated on the inside of the hollow portion is made to enter the light into the hollow portion and It is also possible to detect the quenching of the superconducting wire from the change in transmittance or the Raman effect and take the necessary treatment.

【0025】更に、超伝導線の断面形状は、例えば、図
7の様な偏平楕円形状でもよく、更に図示してないが、
正方形や長方形或いは多角形の断面形状でもよいことは
言うまでもない。又、絶縁材料層の外周に電磁シールド
材料や熱伝導性材料、或いはそれらの積層体等を取り付
けてもよい。
Further, the cross-sectional shape of the superconducting wire may be, for example, a flat elliptical shape as shown in FIG. 7, and although not shown,
It goes without saying that the cross-sectional shape may be square, rectangular or polygonal. Further, an electromagnetic shield material, a heat conductive material, or a laminated body thereof may be attached to the outer periphery of the insulating material layer.

【0026】酸化物超伝導体層は、十分な超伝導特性を
発揮させる為に、出来るだけ単結晶に近いことが望まし
いし、その結晶方位も一様であることが望ましい。しか
し、導電性材料層と超伝導材料層との間の酸化物材料層
としては、その結晶性に大きな制限はない。例えば、ク
ラスターイオンビーム法の様に、基板との格子定数が異
なった場合にも優れた結晶性の超伝導体層を作製するこ
とが出来る様な方法を採用する場合には、酸化物材料層
の結晶性は殆ど問題とはならない。しかし、MBEの様
に基板の結晶性が問題となる様な製法を採用する場合に
は、酸化物材料層も酸化物超伝導体層と同様に、配向し
た結晶性の優れたものであることが必要である。従っ
て、本発明で使用することが望ましい材料としては、例
えば、サファイア、酸化マグネシウム、酸化イットリウ
ム、酸化セリウム、酸化ジルコニウム及びそれらの混合
物又は共融物の中から選ばれた1種である。これらの材
料は、作製する温度を選ぶことによって、結晶性の優れ
た配向性の薄膜が得られるものであるから、これらを用
いることによりMBE法等でも本発明の超伝導線を作製
することが出来る。つまり、使用する材料の種類と採用
する製法により、酸化物材料層の結晶性を選べばよい。
It is desirable that the oxide superconductor layer be as close to a single crystal as possible in order to exhibit sufficient superconducting properties, and that its crystal orientation is also uniform. However, the crystallinity of the oxide material layer between the conductive material layer and the superconducting material layer is not particularly limited. For example, when adopting a method such as a cluster ion beam method capable of producing a superconducting layer having excellent crystallinity even when the lattice constant differs from that of the substrate, the oxide material layer is used. The crystallinity of is not a problem. However, when adopting a manufacturing method such as MBE in which the crystallinity of the substrate becomes a problem, the oxide material layer should have an oriented crystallinity as well as the oxide superconductor layer. is necessary. Therefore, the material preferably used in the present invention is, for example, one selected from sapphire, magnesium oxide, yttrium oxide, cerium oxide, zirconium oxide, and a mixture or eutectic thereof. These materials are capable of producing an oriented thin film having excellent crystallinity by selecting the temperature at which they are produced. Therefore, the superconducting wire of the present invention can be produced by the MBE method or the like by using these materials. I can. That is, the crystallinity of the oxide material layer may be selected depending on the type of material used and the manufacturing method adopted.

【0027】[0027]

【発明の効果】以上説明した様に、本発明によれば、超
伝導線を4層構造にすることにより、酸化物超伝導体層
を形成する際に、優れた超伝導特性が得られる形成条件
で超伝導体層を形成することが出来、且つ酸化物超伝導
体層とそれを挟む材料層との反応が防止される為、優れ
た超伝導特性を示す超伝導線が提供される。又、本発明
により提供される超伝導線は、4層を構成する各構成材
料が、製造方法に限定されることなく夫々の役割、例え
ば、導電性材料層では、熱及び電気的安定化材としての
役割を果たすことが出来る為に、得られる超伝導線は信
頼性にも優れたものとなり、更に、超伝導線の外周又は
内周にシールド材や光導波路を設ける等の必要な処置を
簡単に施すことが出来る結果、超伝導線の殆ど全ての用
途に使用することの出来る多様性ある超伝導線が提供さ
れる。
As described above, according to the present invention, by forming a superconducting wire into a four-layer structure, excellent superconducting properties can be obtained when forming an oxide superconductor layer. Since the superconductor layer can be formed under the conditions and the reaction between the oxide superconductor layer and the material layers sandwiching the oxide superconductor layer is prevented, a superconducting wire exhibiting excellent superconducting properties is provided. In addition, in the superconducting wire provided by the present invention, each constituent material forming the four layers has respective roles without being limited to the manufacturing method. For example, in the conductive material layer, the thermal and electrical stabilizers are used. Therefore, the obtained superconducting wire has excellent reliability, and necessary measures such as providing a shield material or an optical waveguide on the outer or inner circumference of the superconducting wire are required. As a result of being easy to apply, it provides a versatile superconducting wire that can be used for almost all applications of superconducting wires.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の超伝導線の断面構成原理図である。FIG. 1 is a cross-sectional configuration principle diagram of a superconducting wire of Example 1.

【図2】実施例2の超伝導線の断面構成原理図である。FIG. 2 is a cross-sectional configuration principle diagram of a superconducting wire of Example 2.

【図3】実施例1の酸化物超伝導体のX線回折図形であ
る。
3 is an X-ray diffraction pattern of the oxide superconductor of Example 1. FIG.

【図4】実施例1の酸化物超伝導体の電気抵抗の温度依
存性である。
4 is a temperature dependence of electric resistance of the oxide superconductor of Example 1. FIG.

【図5】実施例2のSIMS分析結果である。5 is a SIMS analysis result of Example 2. FIG.

【図6】実施例3の超伝導線の断面構成原理図である。FIG. 6 is a principle diagram of a cross-sectional structure of a superconducting wire of Example 3.

【図7】実施例3の他の超伝導線の断面構成原理図であ
る。
FIG. 7 is a cross-sectional configuration principle diagram of another superconducting wire of Example 3.

【符号の説明】[Explanation of symbols]

1:導電性材料 2:酸化物材料 3:酸化物超伝導体 4:絶縁材料 5:中空部分 1: Conductive material 2: Oxide material 3: Oxide superconductor 4: Insulating material 5: Hollow part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01B 13/00 565 D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機械的強度に優れた導電性材料からなる
中心層の表面に酸化物材料層が設けられ、且つ該酸化物
材料層の外周に超伝導体層が設けられ、更に該超伝導体
層の外周に絶縁材料層が設けられていることを特徴とす
る超伝導線。
1. An oxide material layer is provided on the surface of a central layer made of a conductive material having excellent mechanical strength, and a superconductor layer is provided on the outer periphery of the oxide material layer. A superconducting wire, wherein an insulating material layer is provided on the outer periphery of the body layer.
【請求項2】 導電性材料が銅、アルミニウム、銀及び
それらの中から選ばれた1種を主成分とする合金、ハス
テロイ、ステンレス鋼、マンガン鋼、ニクロム鋼、チタ
ン鋼の中から選ばれた1種であり、且つ酸化物材料がサ
ファイア、アルミナ、酸化マグネシウム、酸化イットリ
ウム、酸化セリウム、酸化ジルコニウム及びそれらの混
合物、積層物或いは共融物の中から選ばれた1種であ
り、更に超伝導体が酸化物超伝導体である請求項1に記
載の超伝導線。
2. The conductive material is selected from copper, aluminum, silver and alloys containing one or more of them as a main component, hastelloy, stainless steel, manganese steel, nichrome steel and titanium steel. And the oxide material is one selected from sapphire, alumina, magnesium oxide, yttrium oxide, cerium oxide, zirconium oxide and mixtures, laminates or eutectic materials thereof, and further superconductivity The superconducting wire according to claim 1, wherein the body is an oxide superconductor.
【請求項3】 導電性材料が中空形状の導電性材料であ
る請求項1に記載の超伝導線。
3. The superconducting wire according to claim 1, wherein the conductive material is a hollow conductive material.
JP25962594A 1994-09-30 1994-09-30 Superconducting wire Expired - Fee Related JP3397474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25962594A JP3397474B2 (en) 1994-09-30 1994-09-30 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25962594A JP3397474B2 (en) 1994-09-30 1994-09-30 Superconducting wire

Publications (2)

Publication Number Publication Date
JPH08106822A true JPH08106822A (en) 1996-04-23
JP3397474B2 JP3397474B2 (en) 2003-04-14

Family

ID=17336681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25962594A Expired - Fee Related JP3397474B2 (en) 1994-09-30 1994-09-30 Superconducting wire

Country Status (1)

Country Link
JP (1) JP3397474B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106043A (en) * 1998-07-30 2000-04-11 Sumitomo Electric Ind Ltd Oxide superconductive element wire and its aggregate oxide superconductor and their manufacture
JP2008130550A (en) * 2006-11-17 2008-06-05 Nexans Method for manufacturing superconductor
JP2009295579A (en) * 2008-06-02 2009-12-17 Nexans Method for manufacturing shaped substrate for coated conductor and coated conductor using the substrate
JP2012059403A (en) * 2010-09-06 2012-03-22 Fujikura Ltd Method for manufacturing enamel-coated superconducting wire rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106043A (en) * 1998-07-30 2000-04-11 Sumitomo Electric Ind Ltd Oxide superconductive element wire and its aggregate oxide superconductor and their manufacture
JP4513142B2 (en) * 1998-07-30 2010-07-28 住友電気工業株式会社 Oxide superconducting wire, oxide superconducting conductor assembled therewith, and manufacturing method of oxide superconducting wire
JP2008130550A (en) * 2006-11-17 2008-06-05 Nexans Method for manufacturing superconductor
JP2009295579A (en) * 2008-06-02 2009-12-17 Nexans Method for manufacturing shaped substrate for coated conductor and coated conductor using the substrate
JP2012059403A (en) * 2010-09-06 2012-03-22 Fujikura Ltd Method for manufacturing enamel-coated superconducting wire rod

Also Published As

Publication number Publication date
JP3397474B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
JP2013535083A (en) Multifilament superconductor with reduced AC loss and its formation method
JPH07335051A (en) Oxide superconductive tape with stabilizing layer and manufacture thereof
US5189260A (en) Strain tolerant microfilamentary superconducting wire
CN102598156A (en) Low ac-loss multi-filament type superconductive wire material, and manufacturing method thereof
US4743713A (en) Aluminum-stabilized NB3SN superconductor
Tomita et al. Generation of 21.5 T by a superconducting magnet system using a Bi2Sr2CaCu2O x/Ag coil as an insert magnet
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP3397474B2 (en) Superconducting wire
JP2003206134A (en) High temperature superconducting thick film member and method for producing the same
JP3944573B2 (en) Manufacturing method of Nb3Al superconducting wire and Nb3Al superconducting wire obtained by the method
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
Buta et al. Short-sample quenching of Nb/sub 3/Al precursor strand in support of reel-to-reel process development
JPH03156809A (en) Application of oxide superconductive conductor
JPH01275434A (en) Production of high temperature superconducting oxide film
JP3061634B2 (en) Oxide superconducting tape conductor
JPH0393110A (en) Superconducting wire-rod
JP2651018B2 (en) High magnetic field magnet
JPH01189813A (en) Oxide superconductive wire material
JPH08106827A (en) Manufacture of superconductive wire
JPH06290933A (en) Oxide superconducting double-pancake coil
US6240620B1 (en) Making of bismuth 2212 superconducting wire or tape
JPS63271816A (en) Superconductive wire
Ting et al. Development of current leads using dip coated BSCCO-2212 tape
RU2124775C1 (en) Method for producing long high-temperature superconducting parts

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees