JP2714176B2 - Laminated thin film of oxide superconductor and oxide magnetic material - Google Patents

Laminated thin film of oxide superconductor and oxide magnetic material

Info

Publication number
JP2714176B2
JP2714176B2 JP1242070A JP24207089A JP2714176B2 JP 2714176 B2 JP2714176 B2 JP 2714176B2 JP 1242070 A JP1242070 A JP 1242070A JP 24207089 A JP24207089 A JP 24207089A JP 2714176 B2 JP2714176 B2 JP 2714176B2
Authority
JP
Japan
Prior art keywords
oxide
thin film
magnetic material
oxide superconductor
laminated thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1242070A
Other languages
Japanese (ja)
Other versions
JPH03105807A (en
Inventor
俊之 大野
昌弘 葛西
裕三 小園
庸子 菅家
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242070A priority Critical patent/JP2714176B2/en
Publication of JPH03105807A publication Critical patent/JPH03105807A/en
Application granted granted Critical
Publication of JP2714176B2 publication Critical patent/JP2714176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超伝導材料、及び、その応用に関す
る。
The present invention relates to an oxide superconducting material and its application.

〔従来の技術〕[Conventional technology]

銅を含む酸化物超伝導体は臨界温度Tcが従来の金属系
の超伝導体にくらべてはるかに高く、液体窒素を冷媒と
して用いることができるという利点をもつが、臨界電流
密度Jcが低いという欠点がある。一方、この銅を含む酸
化物超伝導体の超伝導状態は反強磁性絶縁体に正孔をド
ープすることにより出現しており、超伝導メカニズムに
おいてもスピン間の磁気的な相互作用が重要な働きを担
つていると考えられている。このことから、銅を含む酸
化物超伝導体のTcを、さらに、高めるための、あるい
は、Jcを改善するための方法として酸化物超伝導体と磁
性体の近接的な相互作用を利用することは有力であると
考えられる。特に、薄膜に酸化物超伝導体と磁性体を積
層することはこの相互作用を利用する上で有力な方法で
あると考えられる。
Oxide superconductors containing copper have the advantage that the critical temperature Tc is much higher than conventional metal-based superconductors and liquid nitrogen can be used as a coolant, but the critical current density Jc is low. There are drawbacks. On the other hand, the superconducting state of this oxide superconductor containing copper has emerged by doping holes into the antiferromagnetic insulator, and the magnetic interaction between spins is also important in the superconducting mechanism. It is thought to be responsible for work. Therefore, it is necessary to utilize the close interaction between the oxide superconductor and the magnetic material as a method for further increasing the Tc of the oxide superconductor containing copper or improving the Jc. Is considered to be influential. In particular, laminating an oxide superconductor and a magnetic material on a thin film is considered to be an effective method for utilizing this interaction.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、酸化物超伝導体薄膜を形成するには、成膜時
の支持体(基板)の温度を600℃以上にするか、成膜後
に800℃以上で熱処理をする必要があるため、積層膜を
形成する際に金属、合金の磁性体を用いると酸化物超伝
導体との界面で拡散,反応してしまい、異相の形成、酸
化物超伝導体、及び、磁性体の組成ずれ、界面の急峻性
の喪失といつた問題を生じる。
However, in order to form an oxide superconductor thin film, it is necessary to set the temperature of the support (substrate) at the time of film formation to 600 ° C. or higher, or to perform heat treatment at 800 ° C. or higher after the film formation. If a magnetic material such as a metal or an alloy is used to form the oxide, it diffuses and reacts at the interface with the oxide superconductor, forming a heterogeneous phase, a deviation in the composition of the oxide superconductor and the magnetic material, This results in a loss of steepness and occasional problems.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記の問題点を解決するためのものであ
り、前記の酸化物超伝導体と磁性体の積層薄膜におい
て、磁性体として金属、合金ではなく、酸化物磁性体を
用いることを特徴とする。磁性体として酸化物を用いる
ことにより、酸化物超伝導体薄膜を形成する際の高温プ
ロセスにおいても、界面での拡散,反応を抑えることが
でき、急峻な界面を形成することができる。また、酸化
物磁性体は酸化物超伝導体と類似の結晶構造をもつもの
が多いので、適宜な結晶構造、及び、格子定数をもつ酸
化物磁性体を選ぶことにより、界面での結晶構造的欠陥
の少ない積層薄膜を形成することができる。
The present invention has been made to solve the above problems, and in the above-described laminated thin film of an oxide superconductor and a magnetic material, a metal or an alloy is used as the magnetic material instead of an oxide magnetic material. And By using an oxide as the magnetic material, diffusion and reaction at the interface can be suppressed even in a high-temperature process for forming an oxide superconductor thin film, and a steep interface can be formed. In addition, since many oxide magnetic materials have a crystal structure similar to that of the oxide superconductor, by selecting an appropriate crystal structure and an oxide magnetic material having a lattice constant, the crystal structure at the interface can be improved. A laminated thin film with few defects can be formed.

この積層構造は、第1図、及び、第2図で示すよう
に、酸化物磁性体層が酸化物超伝導体層の上であつても
下であつてもかまわない。あるいは、第3図で示すよう
に、酸化物磁性体層と酸化物超伝導体層を、順次、交互
に積層することによつて多層膜を形成することもでき
る。また、第4図で示すように、酸化物磁性体層を二枚
の酸化物超伝導体層ではさんだ三層構造を形成すること
により、「トンネル現象の物理と応用」(培風館,1987
p.177〜p.186)で詳述しているような磁性バリア・ト
ンネル接合素子を構成することができる。この場合、磁
性体層として酸化物磁性体を用いることにより、酸化物
超伝導体層との界面での反応の少ない良好な素子構造を
つくることができる。
In this laminated structure, as shown in FIGS. 1 and 2, the oxide magnetic layer may be above or below the oxide superconductor layer. Alternatively, as shown in FIG. 3, a multilayer film can be formed by sequentially and alternately stacking an oxide magnetic material layer and an oxide superconductor layer. In addition, as shown in FIG. 4, a three-layer structure in which an oxide magnetic material layer is sandwiched between two oxide superconductor layers forms "physics and application of the tunnel phenomenon" (Baifukan, 1987).
A magnetic barrier / tunnel junction element as described in detail on pages 177 to 186) can be formed. In this case, by using an oxide magnetic material as the magnetic material layer, a favorable element structure with less reaction at the interface with the oxide superconductor layer can be formed.

本発明の積層薄膜の酸化物超伝導体は、イットリウム
あるいは希土類元素、及びバリウム、銅、酸素から構成
されるペロブスカイト型結晶構造を有し、かつ前記酸化
物磁性体がランタン、カルシウム、マンガン、酸素から
構成されるペロブスカイト型結晶構造を有するものを用
いる。特に、酸化物磁性体層としては、La1-XCaXMnO
3(X=0.05〜0.95)が好ましい。
The oxide superconductor of the laminated thin film of the present invention has a perovskite-type crystal structure composed of yttrium or a rare earth element, and barium, copper, and oxygen, and the oxide magnetic material is composed of lanthanum, calcium, manganese, and oxygen. Having a perovskite-type crystal structure composed of In particular, as the oxide magnetic layer, La 1-X Ca X MnO
3 (X = 0.05 to 0.95) is preferred.

〔作用〕[Action]

本発明による酸化物磁性体と酸化物超伝導体の積層薄
膜は、界面での相互の原子の拡散による反応が少ないた
め、異相を生じない急峻な界面を形成することができ
る。すなわち、酸化物磁性体として酸化物超伝導体と格
子定数の整合性のよいものを選ぶことによつて、界面の
結晶構造的欠陥の少ない積層薄膜を形成することができ
たものである。このような良好な界面をもつ積層薄膜に
よつて、例えば、磁性バリア・トンネル接合素子の特性
を向上させることができる。
The laminated thin film of the oxide magnetic material and the oxide superconductor according to the present invention can form a steep interface that does not cause a different phase because there is little reaction due to mutual diffusion of atoms at the interface. That is, by selecting an oxide magnetic substance having a good lattice constant matching with that of the oxide superconductor, a laminated thin film having few crystal structure defects at the interface can be formed. With the laminated thin film having such a good interface, for example, the characteristics of the magnetic barrier tunnel junction device can be improved.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。酸化物超伝
導体層、及び、酸化物磁性体層の形成方法は、このほか
に、イオンビームスパツタリング法、電子ビーム蒸着法
等があり、また、これらの方法を組合せて用いてもよ
い。
Hereinafter, the present invention will be described using examples. Other methods for forming the oxide superconductor layer and the oxide magnetic layer include an ion beam sputtering method and an electron beam evaporation method, and these methods may be used in combination.

(1) 高周波スパツタリング装置にランタン,カルシ
ウム,マンガン,酸素からなる焼結体ターゲツトを装着
する。この焼結体ターゲツトの組成は、La:Ca:Mn=0.3:
0.7:1となるようにする。ターゲツトの対向位置に5mm×
20mm×0.5mmの大きさの酸化マグネシウム(MgO)単結晶
を支持体(基板)として固定する。2×10-6Torr程度に
まで排気した後、支持体の表面温度を600℃に保ちつ
つ、アルゴンを1×10-4Torrの圧力まで導入する。13.5
6MHz、出力200Wの高周波グロー放電により、La−Ca−Mn
−O薄膜を1μmの厚みまで堆積する。この膜を空気中
920℃で1時間熱処理することにより、MgO基板上にLa
0.3Ca0.7MnO3膜を形成することができる。
(1) Attach a sintered target consisting of lanthanum, calcium, manganese, and oxygen to a high-frequency sputtering device. The composition of this sintered body target is La: Ca: Mn = 0.3:
0.7: 1. 5mm × at the opposite position of the target
A magnesium oxide (MgO) single crystal having a size of 20 mm × 0.5 mm is fixed as a support (substrate). After evacuating to about 2 × 10 −6 Torr, argon is introduced to a pressure of 1 × 10 −4 Torr while maintaining the surface temperature of the support at 600 ° C. 13.5
La-Ca-Mn by high frequency glow discharge of 6MHz, output 200W
Deposit -O thin film to a thickness of 1 μm. This membrane in air
Heat treatment at 920 ° C for 1 hour allows La on the MgO substrate
A 0.3 Ca 0.7 MnO 3 film can be formed.

(2) このスパツタリング装置にイツトリウム,バリ
ウム,銅,酸素からなる焼結体ターゲツトを装着する。
この焼結体ターゲツトの組成は、Y:Ba:Cu=1:2:4.5とな
るようにする。ターゲツトの対向位置に、(1)で作製
したLa0.3Ca0.7MnO3膜を堆積したMgO単結晶基板を固定
する。2×10-6Torr程度にまで排気した後、支持体の表
面温度を600℃に保ちつつ、アルゴンを1×10-4Torrの
圧力まで導入する。13.56MHz、出力200Wの高周波グロー
放電により、Y−Ba−Cu−O薄膜を1μmの厚みまで堆
積する。この膜を空気中850℃で一時間熱処理すること
により、La0.3Ca0.7MnO3膜上にYBa2Cu3Oyを形成するこ
とができる。(1)及び(2)の手順で作製したYBa2Cu
3Oy/La0.3Ca0.7MnO3積層膜を試料Aとする。
(2) A sintered target composed of yttrium, barium, copper, and oxygen is mounted on the sputtering device.
The composition of this sintered body target is set to be Y: Ba: Cu = 1: 2: 4.5. The MgO single crystal substrate on which the La 0.3 Ca 0.7 MnO 3 film prepared in (1) is deposited is fixed at the position facing the target. After evacuating to about 2 × 10 −6 Torr, argon is introduced to a pressure of 1 × 10 −4 Torr while maintaining the surface temperature of the support at 600 ° C. A Y-Ba-Cu-O thin film is deposited to a thickness of 1 μm by high frequency glow discharge at 13.56 MHz and output of 200 W. By subjecting this film to a heat treatment in air at 850 ° C. for one hour, YBa 2 Cu 3 O y can be formed on the La 0.3 Ca 0.7 MnO 3 film. YBa 2 Cu produced by the procedure of (1) and (2)
The sample A is a 3 O y / La 0.3 Ca 0.7 MnO 3 laminated film.

(3) スパツタリング装置にイツトリウム,バリウ
ム,銅,酸素からなる焼結体ターゲツトを装着する。こ
の焼結体ターゲツトの組成は、Y:Ba:Cu=1:2:4.5となる
ようにする。ターゲツトの対向位置にMgO単結晶基板を
固定する。2×10-6Torr程度にまで排気した後、基板の
表面温度を600℃に保ちつつ、アルゴンを1×10-4Torr
の圧力まで導入する。13.56MHz、出力200Wの高周波グロ
ー放電により、Y−Ba−Cu−O薄膜を1μmの厚みまで
堆積する。この膜を空気中900℃で一時間熱処理するこ
とにより、MgO基板上にYBa2Cu3Oyを形成することができ
る。この手順で作製したYBa2Cu3Oy単層膜を試料Bとす
る。
(3) Attach a sintered target made of yttrium, barium, copper, and oxygen to the spattering device. The composition of this sintered body target is set to be Y: Ba: Cu = 1: 2: 4.5. An MgO single crystal substrate is fixed at a position facing the target. After evacuating to about 2 × 10 -6 Torr, while maintaining the surface temperature of the substrate at 600 ° C., argon was supplied at 1 × 10 -4 Torr.
Up to the pressure. A Y-Ba-Cu-O thin film is deposited to a thickness of 1 μm by high frequency glow discharge at 13.56 MHz and output of 200 W. By subjecting this film to heat treatment in air at 900 ° C. for one hour, YBa 2 Cu 3 O y can be formed on the MgO substrate. The YBa 2 Cu 3 O y single-layer film produced by this procedure is used as Sample B.

(4) 電子ビーム蒸着装置を用いてMgO単結晶基板上
に1μmの厚さのMn薄膜を堆積する。次に、この膜を
(3)で用いたスパツタリング装置に取り付ける。2×
10-6Torr程度にまで排気した後、基板の表面温度を600
℃に保ちつつ、アルゴンを1×10-4Torrの圧力まで導入
する。13.56MHz、出力200Wの高周波グロー放電により、
Y−Ba−Cu−O薄膜を1μmの厚みまで堆積する。この
膜を空気中850℃で一時間熱処理することにより、YBa2C
u3Oy/Mn積層膜を形成することができる。これを試料C
とする。
(4) A 1 μm thick Mn thin film is deposited on a MgO single crystal substrate using an electron beam evaporation apparatus. Next, this film is attached to the spattering apparatus used in (3). 2x
After evacuation to about 10 -6 Torr, the surface temperature of
While maintaining the temperature at ° C., argon is introduced to a pressure of 1 × 10 −4 Torr. 13.56MHz, 200W high frequency glow discharge,
A Y-Ba-Cu-O thin film is deposited to a thickness of 1 m. This film is heat-treated in air at 850 ° C for 1 hour to obtain YBa 2 C
A u 3 O y / Mn laminated film can be formed. This is sample C
And

(5) 試料A,B,Cについて四端子法により比抵抗の温
度特性(ρ−T特性)を測定する。その結果を第5図に
示す。これによると、試料Aは試料Bに比べTcがわずか
に高くなつていることがわかる。一方、試料Cでは試料
Bに比べTcは低下し、遷移幅も大きくなつていることが
わかる。
(5) The temperature characteristics (ρ-T characteristics) of the specific resistance of the samples A, B, and C are measured by a four-terminal method. The results are shown in FIG. According to this, it is understood that Tc of sample A is slightly higher than that of sample B. On the other hand, it can be seen that Tc is lower and the transition width of Sample C is larger than that of Sample B.

(6) 試料A及びCについて、酸化物超伝導体と磁性
体の界面の急峻性を調べるために、シムス(SIMS)によ
る界面付近の組成分析を行なつた。その結果を第6図に
示す。試料Aでは界面付近での各元素の拡散は比較的小
さいが、試料Cでは著しく大きくなつていることがわか
る。第5図において、試料Cのρ−T特性が著しく劣つ
ていたのはこのためではないかと考えられる。
(6) With respect to Samples A and C, in order to examine the steepness of the interface between the oxide superconductor and the magnetic material, a composition analysis near the interface was performed by SIMS. The results are shown in FIG. It can be seen that in sample A, the diffusion of each element near the interface is relatively small, but in sample C, it is significantly larger. In FIG. 5, it is considered that the ρ-T characteristic of the sample C was remarkably inferior because of this.

〔発明の効果〕〔The invention's effect〕

本発明によれば、酸化物超伝導体と酸化物磁性体との
積層により、反応の小さい急峻な界面を形成することが
でき、例えば磁性バリア・トンネル接合素子の特性を向
上させることができる。
ADVANTAGE OF THE INVENTION According to this invention, the lamination | stacking of an oxide superconductor and an oxide magnetic body can form a steep interface with small reaction, and can improve the characteristic of a magnetic barrier tunnel junction element, for example.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の説明図、第2図は本発明の
第二の実施例の説明図、第3図は本発明の第三の実施例
の説明図、第4図は本発明の第四の実施例の説明図、第
5図は本発明の第五の実施例の説明図、第6図は第六の
実施例の説明図である。 1……酸化物磁性体、2……酸化物超伝導体、3……支
持体(基板)。
FIG. 1 is an explanatory view of one embodiment of the present invention, FIG. 2 is an explanatory view of a second embodiment of the present invention, FIG. 3 is an explanatory view of a third embodiment of the present invention, and FIG. FIG. 5 is an explanatory view of a fourth embodiment of the present invention, FIG. 5 is an explanatory view of a fifth embodiment of the present invention, and FIG. 6 is an explanatory view of a sixth embodiment. 1 ... oxide magnetic material, 2 ... oxide superconductor, 3 ... support (substrate).

フロントページの続き (72)発明者 菅家 庸子 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 華園 雅信 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭63−318014(JP,A) 特開 昭64−72416(JP,A) 特開 昭64−52312(JP,A) 特開 平1−215074(JP,A) 特開 平1−217979(JP,A) 特開 昭58−28104(JP,A) 特開 昭64−3917(JP,A) 特開 昭64−44098(JP,A) 特開 平1−106481(JP,A)Continued on the front page (72) Inventor Yoko Sugaya 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Laboratory (72) Inventor Masanobu Kazono 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture, Hitachi, Ltd. References JP-A-63-318014 (JP, A) JP-A-64-72416 (JP, A) JP-A-64-52312 (JP, A) JP-A 1-215074 (JP, A) 1-217979 (JP, A) JP-A-58-28104 (JP, A) JP-A-64-3917 (JP, A) JP-A-64-44098 (JP, A) JP-A-1-106481 (JP, A) A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】支持体上に、酸化物超伝導体と酸化物磁性
体とを積層した積層薄膜において、 前記酸化物超伝導体がイットリウムあるいは希土類元
素、及びバリウム、銅、酸素から構成されるペロブスカ
イト型結晶構造を有し、かつ前記酸化物磁性体がランタ
ン、カルシウム、マンガン、酸素から構成されるペロブ
スカイト型結晶構造を有することを特徴とする積層薄
膜。
1. A laminated thin film in which an oxide superconductor and an oxide magnetic material are laminated on a support, wherein the oxide superconductor is composed of yttrium or a rare earth element, and barium, copper, and oxygen. A laminated thin film having a perovskite crystal structure, and wherein the oxide magnetic material has a perovskite crystal structure composed of lanthanum, calcium, manganese, and oxygen.
【請求項2】請求項1記載の積層薄膜において、 前記酸化物超伝導体と前記酸化物磁性体が交互に積層さ
れた三層構造を有することを特徴とする積層薄膜。
2. The laminated thin film according to claim 1, wherein said laminated thin film has a three-layer structure in which said oxide superconductor and said oxide magnetic material are alternately laminated.
【請求項3】請求項1または2記載の積層薄膜を用いて
形成されることを特徴とする磁性バリア・トンネル接合
素子。
3. A magnetic barrier tunnel junction device formed using the laminated thin film according to claim 1.
JP1242070A 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material Expired - Lifetime JP2714176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242070A JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242070A JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH03105807A JPH03105807A (en) 1991-05-02
JP2714176B2 true JP2714176B2 (en) 1998-02-16

Family

ID=17083837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242070A Expired - Lifetime JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2714176B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228803A (en) * 1990-01-31 1991-10-09 Sumitomo Cement Co Ltd Oxide superconducting multiple body
JP3025891B2 (en) * 1990-04-19 2000-03-27 松下電器産業株式会社 Thin film superconductor and method of manufacturing the same
WO1991018423A1 (en) * 1990-05-11 1991-11-28 Hitachi, Ltd. Superconducting element using oxide superconductor
JP2956299B2 (en) * 1991-08-30 1999-10-04 株式会社日立製作所 Magnetic detecting element, energy detecting element, and energy detecting method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523647B2 (en) * 1987-06-19 1996-08-14 株式会社日立製作所 Metal oxide superconducting thin film
JPS6452312A (en) * 1987-08-21 1989-02-28 Matsushita Electric Ind Co Ltd Superconductor
JPS6472416A (en) * 1987-09-14 1989-03-17 Matsushita Electric Ind Co Ltd Super-structure superconductive material

Also Published As

Publication number Publication date
JPH03105807A (en) 1991-05-02

Similar Documents

Publication Publication Date Title
JP5101779B2 (en) Structure for high critical current superconducting tape
Bao et al. YBaCuO superconducting thin films with zero resistance at 84 K by multilayer deposition
Pavlov et al. Fabrication of high-temperature quasi-two-dimensional superconductors at the interface of a ferroelectric Ba 0.8 Sr 0.2 TiO 3 film and an insulating parent compound of La 2 CuO 4
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
US6157044A (en) Tunnel junction type josephson device
JP2714176B2 (en) Laminated thin film of oxide superconductor and oxide magnetic material
Hess et al. Preparation and patterning of YBaCuO thin films obtained by sequential deposition of CuO x/Y2O3/BaF2
JPH10507590A (en) Multilayer composite and method of manufacture
JPH104223A (en) Oxide superconducting josephson element
US5565415A (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
EP0824275A2 (en) Method for preparing layered structure including oxide superconductor thin film
EP0949691A1 (en) SQUID formed on a sapphire substrate
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
WO1989003125A1 (en) A process for producing an electric circuit including josephson diodes
JP2703403B2 (en) Superconducting wiring fabrication method
JP2569055B2 (en) Preparation method of oxide superconductor thin film
JP2598973B2 (en) Laminated superconducting element
JP2517081B2 (en) Superconducting device and manufacturing method thereof
JP2774531B2 (en) Superconductor device
JP2835203B2 (en) Superconducting element manufacturing method
US6606780B1 (en) Mercury-containing copper oxide superconductor and method of producing same
JP2877313B2 (en) Method for manufacturing microbridge and method for manufacturing DC-SQUID
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
Luo et al. Preparation of ferroelectric Pb (Zr0. 53Ti0. 47) O3 thin film on YBa2Cu3O7–δ film by magnetron sputtering