JPH02298257A - Thin film of oxide superconductor and its production - Google Patents

Thin film of oxide superconductor and its production

Info

Publication number
JPH02298257A
JPH02298257A JP1118938A JP11893889A JPH02298257A JP H02298257 A JPH02298257 A JP H02298257A JP 1118938 A JP1118938 A JP 1118938A JP 11893889 A JP11893889 A JP 11893889A JP H02298257 A JPH02298257 A JP H02298257A
Authority
JP
Japan
Prior art keywords
film
thin film
oxide
superconducting
old
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1118938A
Other languages
Japanese (ja)
Other versions
JPH0822740B2 (en
Inventor
Hiroshi Ichikawa
洋 市川
Hideaki Adachi
秀明 足立
Masaru Yoshida
勝 吉田
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118938A priority Critical patent/JPH0822740B2/en
Publication of JPH02298257A publication Critical patent/JPH02298257A/en
Publication of JPH0822740B2 publication Critical patent/JPH0822740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a structure raising the superconducting critical temp. of a thin film of Bi oxide superconductor by alternately laminating a thin lamellar film of oxide superconductor containing Bi, Cu, and alkaline earths as principal components and a thin lamellar oxide film containing Bi and Ti. CONSTITUTION:A thin lamellar film 21 of oxide superconductor and a thin lamellar oxide film 22 are alternately laminated on a base material 15. The above thin lamellar film 21 of oxide superconductor contains at least bismuth (Bi), copper (Cu), and alkaline earths (group IIa) as principal components, and the above thin lamellar oxide film 22 contains at least bismuth (Bi) and titanium (Ti) as principal components. At this time, the above alkaline earths mean at least one kind among the group IIa elements. By this method, the periodical lamination of Bi oxide can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、100に以上の高臨界温度が期待されるビス
マスを含む酸化物超電導体薄膜及びそのの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide superconductor thin film containing bismuth, which is expected to have a high critical temperature of 100 or higher, and a method for producing the same.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge)
などが知られていたが、これらの材料の超電導転移温度
はたかだか23にであった。一方、ペロブスカイト系化
合物は、さらに高い転移温度が期待され、Ba−La−
Cu−0系の高温超電導体が提案された [(シ゛エイ
・シ゛−・へ°ト°ノルフ アント° ケー・I−・ミ
コラー、ファイトンヱリフト・フユア・フィシ゛−り 
ヘ゛−) −コンテ゛ンスト マク−(J、G。
Conventional technology Niobium nitride (NbN) and germanium niobium (Nb3Ge) are used as A15 type binary compounds as high-temperature superconductors.
were known, but the superconducting transition temperature of these materials was at most 23°C. On the other hand, perovskite compounds are expected to have even higher transition temperatures, and Ba-La-
A Cu-0-based high-temperature superconductor was proposed [(K. I. Mikoller, Phytonlift Future Physics)
(J, G.

Bednorz  and  K、A、Muller、
Zetshrlft  Fur  PhyslkB)−
Condensed  Matter  vol、64
,189−193(198G)コ。
Bednorz and K. A. Muller;
Zetshrlft Fur PhyslkB)-
Condensed Matter vol.64
, 189-193 (198G).

さらに、DI−5r−Ca−Cu−0系の材料が100
に以上の転移温度を示すことも発見された[エイチ・マ
エタ゛、ワイ・タナ力、エム・フクトミ アント° テ
ィー・79八(ジヤバ二−ス° ・ジャーナル・オブ・
1〕゛ライト° ・フィジフクス)(H,Naeda、
  Y、Tanaka、  M、Fukutoml  
and  T、Asano+  (Japanese 
 Journal  ofAppHed Physic
s)Vol、27.L209−210(1988))]
。この種の材料の超電導機構の詳細は明らかではないが
、転移温度が室温以上に高くなる可能性があり、高温超
電導体として従来の2元系化合物より、より有望な特性
が期待される。
In addition, DI-5r-Ca-Cu-0 material is 100%
It was also discovered that H. Maeta, Y. Tana, M. Fukutomi Ant.
1゛Light ° Physifukus) (H, Naeda,
Y, Tanaka, M, Fukutoml
and T, Asano+ (Japanese
Journal of Applied Physics
s) Vol, 27. L209-210 (1988)]
. The details of the superconducting mechanism of this type of material are not clear, but the transition temperature may be higher than room temperature, and it is expected that it will have more promising properties as a high-temperature superconductor than conventional binary compounds.

さらに超電導体と絶縁物とを交互に積層することにより
、より高い超電導転移温度が従来から期待されていた 
[エム・エイチ・コーIン アント° テ゛イー・エイ
チ・り゛り。
Furthermore, it was previously expected that higher superconducting transition temperatures could be achieved by alternately layering superconductors and insulators.
[M.H. Co., Ltd.

ラス、 ジュニア(フィシ゛カトレヒ゛ニー・レタース
°)(M、H,Cohen  andD、H,Doug
lass、  Jr、、  (Physlcal  R
eview  Letters)Yol 、+9.11
8−121(19B?))コ。
Russ, Jr. (Physical Training Letters°) (M, H, Cohen and D, H, Doug
lass, Jr., (Physlcal R
(view Letters) Yol, +9.11
8-121 (19B?)) Ko.

発明が解決しようとする課題 しかしながら、B1−5r−Ca−Cu−0系の材料は
、現在の技術では主として焼結という過程でしか形成で
きないため、セラミックの粉末あるいはブロックの形状
でしか得られない。一方、この種の材料を実用化する場
合、薄膜状に加工することが強く要望されているが、従
来の技術では、良好な超電導特性を有する薄膜作製は難
しいものであった。すなわち、旧−5r−Ca−Cu−
0系には超電導転移温度の異なるいくつかの相が存在す
ることが知られているが、特に転移温度が100に以上
の相を薄膜の形態で達成するのは、非常に困難とされて
いた。
Problems to be Solved by the Invention However, with current technology, B1-5r-Ca-Cu-0 material can only be formed through the process of sintering, so it can only be obtained in the form of ceramic powder or blocks. . On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but it has been difficult to fabricate a thin film with good superconducting properties using conventional techniques. That is, old-5r-Ca-Cu-
It is known that the 0 system has several phases with different superconducting transition temperatures, but it has been extremely difficult to achieve a phase with a transition temperature of 100 or higher in the form of a thin film. .

また、従来このBl系において良好な超電導特性を示す
薄膜を形成するためには少なくとも700℃以上の熱処
理あるいは形成時の加熱が必要であり、そのため高い超
電導転移温度が期待される絶縁膜との周期的な積層構造
を得ることは極めて困難と考えられ、またこの構造を利
用した集積化デバイスを構成することもたいへん困難で
あるとされていた。
In addition, conventionally, in order to form a thin film exhibiting good superconducting properties in this Bl system, heat treatment at at least 700°C or higher or heating during formation is required, and therefore, the period with the insulating film, which is expected to have a high superconducting transition temperature, is It was considered extremely difficult to obtain a typical laminated structure, and it was also considered extremely difficult to construct an integrated device using this structure.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 第1の本発明の酸化物超電導薄膜は、主体成分が少なく
ともビスマス(stL 銅(Cu)、  およびアルカ
リ土類(IIa族)を含む層状酸化物超電導薄膜と、主
体成分が少なくともビスマス(81)とチタン(TI)
を含む層状酸化物薄膜が交互に積層された構造を持つこ
とを特徴とする酸化物超電導薄膜である。
Means for Solving the Problems The first oxide superconducting thin film of the present invention comprises a layered oxide superconducting thin film whose main components include at least bismuth (stL), copper (Cu), and alkaline earth (group IIa); is at least bismuth (81) and titanium (TI)
This is an oxide superconducting thin film characterized by having a structure in which layered oxide thin films containing .

さらに第2の本発明の酸化物超電導薄膜の製造方法は、
基体上に、少なくともB1を含む酸化物と少なくとも銅
およびアルカリ土類(IIa族)を含む酸化物とを周期
的に積層させて形成する酸化物薄膜と、少なくともBl
を含む酸化物と少なくともTIを含む酸化物を周期的に
積層させて形成する酸化物薄膜とを、さらに交互に積層
させて得ることを特徴とする酸化物超電導薄膜の製造方
法である。
Furthermore, the second method of manufacturing an oxide superconducting thin film of the present invention includes:
An oxide thin film formed by periodically stacking an oxide containing at least B1 and an oxide containing at least copper and alkaline earth (group IIa) on a substrate;
This is a method for producing an oxide superconducting thin film, characterized in that an oxide thin film formed by periodically stacking an oxide containing TI and an oxide containing at least TI are further alternately stacked.

ここでアルカリ土類は、IIa族元素のうちの少なくと
も一種あるいは二種以上の元素を示す0作用 第1の本発明においては、安定な旧。0□酸化膜層また
はこれを主体とした層によりともに覆われた結晶構造と
なっているところの、別系超電導薄膜と、旧とT1とを
含む酸化物層状構造の絶縁体薄膜とが、交互に積層され
た構造をとることによって、超電導膜と絶縁膜との間で
の相互拡散の少ない積層が可能となり、その結果Bl系
超電導薄膜における超電導転移温度の上昇が実現された
ものである。
Here, alkaline earth represents at least one or two or more elements of group IIa elements. In the first invention, the alkaline earth is a stable metal. 0□A superconducting thin film of a different type, which has a crystal structure covered with an oxide film layer or a layer mainly composed of this, and an insulating thin film with an oxide layered structure containing old and T1 are alternately By adopting a stacked structure, it is possible to stack the superconducting film and the insulating film with less mutual diffusion, and as a result, an increase in the superconducting transition temperature in the Bl-based superconducting thin film is realized.

さらに第2の本発明においては上記構造を達成するため
、少なくとも旧を含む酸化物と、少なくとも銅およびア
ルカリ土類(IIa族)を含む酸化物あるいは少なくと
もT1を含む酸化物とを、周期的に積層させて分子レベ
ルの制御による薄膜の作製を行うことによって、再現性
良<Bl系超電導薄膜と絶縁膜との積層を得るものであ
る。
Furthermore, in the second aspect of the present invention, in order to achieve the above structure, an oxide containing at least old and an oxide containing at least copper and alkaline earth (group IIa) or an oxide containing at least T1 are periodically mixed. By manufacturing thin films by laminating them and controlling them at the molecular level, it is possible to obtain a laminated layer of a Bl-based superconducting thin film and an insulating film with good reproducibility.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

まず、本発明者らは旧糸超電導薄膜と絶縁膜との周期的
な積層構造を実現するため、旧糸超電導薄膜と種々の絶
縁膜との相互作用について検討した。
First, the present inventors studied the interaction between the old thread superconducting thin film and various insulating films in order to realize a periodic laminated structure of the old thread superconducting thin film and the insulating film.

通常、BI系超超電導薄膜600〜700℃に加熱した
基体上に蒸着して得る。蒸着後、そのままでも薄膜は超
電導特性を示すが、その後850〜950℃の熱処理を
施し、超電導特性を向上させる。
Usually, the BI-based superconducting thin film is obtained by vapor deposition on a substrate heated to 600 to 700°C. After vapor deposition, the thin film exhibits superconducting properties as it is, but it is then subjected to heat treatment at 850 to 950°C to improve its superconducting properties.

しかしながら、基体温度が高い時に絶縁膜を旧糸超電導
薄膜に続いて積層したり、絶縁膜を形成後熱処理を行っ
た場合、超電導膜と絶縁膜との間で、元素の相互拡散が
起こり超電導特性が大きく劣化することが判明した。相
互拡散を起こさないためには、超電導膜、絶縁膜の結晶
性が優れていること、超電導膜・絶縁膜間での格子の整
合性が優れていること、絶縁膜が850〜950℃の熱
処理に対して安定であることが不可欠と考えられる。
However, if the insulating film is laminated next to the old superconducting thin film when the substrate temperature is high, or if heat treatment is performed after forming the insulating film, interdiffusion of elements occurs between the superconducting film and the insulating film, resulting in superconducting properties. was found to be significantly degraded. In order to prevent mutual diffusion, the superconducting film and insulating film must have excellent crystallinity, the lattice matching between the superconducting film and the insulating film must be excellent, and the insulating film must be heat-treated at 850 to 950°C. It is considered essential to be stable against

種々の検討を行った結果、本発明者らは、少なくともT
Iを含むBl酸化物層状構造の薄膜が絶縁膜として適し
ていることを見いだした。この理由として、 TIを含
む81層状酸化物は、BI20゜酸化物層がT1および
酸素等の元素からなる構造体を挟み込んだ層状ペロブス
カイトを示すことが知られており)このataoa層は
同種の結晶構造の物質の界面に対して高温の熱処理にお
いても非常に安定であり、またBl系超電導体と旧−T
II酸化物との格子の整合性がきわめて優れていること
が考えられる。
As a result of various studies, the present inventors have determined that at least T
It has been found that a thin film having a layered structure of Bl oxide containing I is suitable as an insulating film. The reason for this is that the 81-layered oxide containing TI is known to exhibit a layered perovskite in which the BI20° oxide layer sandwiches a structure consisting of elements such as T1 and oxygen). It is very stable even in high-temperature heat treatment at the interface between the materials in the structure, and it is also very stable between the Bl-based superconductor and the
It is considered that the lattice matching with II oxide is extremely excellent.

さらに本発明者らは、旧糸超電導薄膜とB1−Tl系酸
化物薄膜を周期的に積層した時、Bl系超電導薄膜本来
の超電導転移温度が上昇することを見いだした。
Furthermore, the present inventors have discovered that when the old thread superconducting thin film and the B1-Tl based oxide thin film are laminated periodically, the superconducting transition temperature inherent to the Bl based superconducting thin film increases.

本発明者らによる第1の発明の内容を更に深く理解され
るために、第1図を用い具体的な実施例を示す。
In order to further understand the contents of the first invention by the present inventors, a specific example will be shown using FIG.

(実施例1) 第1図は、本実施例で用いた二元マグネトロンスパッタ
装置内部の概略を示す斜視図であり、11は旧−5r−
Ca−Cu−0ターゲツト、 12はEl−TiOター
ゲット、13はシャッター、14はアパーチャー、15
は基体、16は基体加熱用ヒーターを示す。焼結体をプ
レス成形加工して作製した2個のターゲラ)11.12
を用い、第1図に示すように配置させた。すなわち、M
g0(100)基体15に焦点を結ぶように各ターゲッ
トが約30°傾いて設置されている。ターゲットの前方
には回転するシャッター13があり、その中に設けられ
たアパーチャー14の回転をパルスモータ−で制御する
ことにより、旧−5r−Ca−Cu−0→旧−Tl−0
4旧−5r−Ca−Cu−0+BI−TI−0+B1−
5r−Ca−Cu−0のサイクルでスノfツタ蒸着が行
なうことができる。旧−5r−Ca−Cu−01i、B
1−Tl−0膜の積層の様子を概念的に第2図に示す。
(Example 1) FIG. 1 is a perspective view schematically showing the inside of the binary magnetron sputtering apparatus used in this example, and 11 is an old-5r-
Ca-Cu-0 target, 12 is El-TiO target, 13 is shutter, 14 is aperture, 15
16 indicates a substrate, and 16 indicates a heater for heating the substrate. 11.12 Two pieces of targera made by press forming a sintered body
was used and arranged as shown in FIG. That is, M
Each target is installed at an angle of approximately 30° so as to focus on the g0 (100) substrate 15. There is a rotating shutter 13 in front of the target, and by controlling the rotation of the aperture 14 provided therein with a pulse motor, old-5r-Ca-Cu-0 → old-Tl-0
4 Old-5r-Ca-Cu-0+BI-TI-0+B1-
Snof ivy deposition can be performed with a cycle of 5r-Ca-Cu-0. Old-5r-Ca-Cu-01i, B
FIG. 2 conceptually shows how the 1-Tl-0 films are stacked.

第2図において、21は旧−5r−Ca−Cu−0膜、
22は旧−T1−0膜を示す。ターゲット11.12へ
の入力電力、旧−5r−Ca−Cu−0および旧−TI
−0のスパッタ時間を制御することにより、基体15上
に蒸着するB1−5r−Ca−Cu−0膜21.111
1−Sr−Ca−Cu−0膜22の膜厚を変えることが
できる。
In Fig. 2, 21 is a former-5r-Ca-Cu-0 film;
22 indicates the old-T1-0 film. Input power to target 11.12, old-5r-Ca-Cu-0 and old-TI
B1-5r-Ca-Cu-0 film 21.111 deposited on the substrate 15 by controlling the sputtering time of -0
The thickness of the 1-Sr-Ca-Cu-0 film 22 can be changed.

基体16をヒーター16で約TOO℃に加熱し、アルゴ
ン・酸素(1:1)混合雰囲気0.5Paのガス中で各
ターゲットのスパッタリングを行なぅた。薄膜作製後は
酸素雰囲気中において1850℃の熱処理を5時間流し
た。本実施例では、各ターゲットのスパッタ電力を、B
1−5r−Ca−Cu−0: 150f、 B1−T1
−0:  100 fとし、ターゲット11.12のス
パッタ時間を制御した。旧−5r−Ca−Cu−0膜2
1の元素の組成比率が1111:Sr:Ca:Cu:2
:2:2:3.8l−TIO膜22の元素の組成比率が
旧:TI:4:3になるよう、ターゲラ)11,12の
元素の組成比率を調整した。
The substrate 16 was heated to about TOOO° C. by the heater 16, and each target was sputtered in a mixed atmosphere of argon and oxygen (1:1) at 0.5 Pa. After the thin film was prepared, heat treatment was performed at 1850° C. for 5 hours in an oxygen atmosphere. In this example, the sputtering power of each target is set to B
1-5r-Ca-Cu-0: 150f, B1-T1
-0: 100 f, and sputtering time of target 11.12 was controlled. Old-5r-Ca-Cu-0 film 2
The composition ratio of element 1 is 1111:Sr:Ca:Cu:2
:2:2:3.8l-The composition ratio of the elements of TAGERA) 11 and 12 was adjusted so that the composition ratio of the elements of the TIO film 22 was old:TI:4:3.

8l−Sr−Ca−Cu−0膜21をB1−Tl−0膜
22と積層せずに基体15上に形成した場合、すなわち
B1−5′r−Ca−Cu−0膜21そのものの特性は
、l15にで超電導転移を起こし、97にで抵抗がゼロ
になるものであった。さらに本発明者らによると、結晶
性を維持したまま、薄くできる膜厚の限界はB1−Ti
−0膜22については約200Aであった。絶縁膜はで
きるだけ薄い方が好ましいので、膜厚20Gの旧−TI
−0膜22に対して、旧−8r−Ca−Cu−0膜21
の膜厚を変え第2図に示すような(8l−Sr−Ca−
Cu−0膜→BI−TI−0膜)の積層構造を20周期
作製した。そのときの超電導薄膜の抵抗の温度特性を第
3図に示す。第3図において、B1−5r−Ca−Cu
−ON 21の膜厚が100A1300A。
When the 8l-Sr-Ca-Cu-0 film 21 is formed on the base 15 without being laminated with the B1-Tl-0 film 22, that is, the characteristics of the B1-5'r-Ca-Cu-0 film 21 itself are as follows. , a superconducting transition occurs at 115, and the resistance becomes zero at 97. Furthermore, according to the present inventors, the limit of the film thickness that can be reduced while maintaining crystallinity is the
-0 film 22 was about 200A. It is preferable for the insulating film to be as thin as possible, so the old-TI with a film thickness of 20G
-0 film 22, old -8r-Ca-Cu-0 film 21
By changing the film thickness of (8l-Sr-Ca-
A stacked structure (Cu-0 film→BI-TI-0 film) was fabricated for 20 cycles. The temperature characteristics of the resistance of the superconducting thin film at that time are shown in FIG. In FIG. 3, B1-5r-Ca-Cu
-ON 21 film thickness is 100A1300A.

500Aのときのを特性をそれぞれ、特性31.32.
33に示す。特性31においてはゼロ抵抗温度が約30
 KとB1−5r−Da−Cu−0膜”21の特性が劣
化することがわかった。この理由としてN  B1−5
r−Ca−Cu−0膜21とB[−TIO膜22との間
で元素の相互拡散による膜2L22の結晶性の破壊が考
えられる。さらに特性33においては、B1−Tl−0
膜22との周期的な積層なしに基体15上につけたとき
の旧−5r−Ca−Cu−0膜21本来の超電導特性と
ほとんど同じであり、絶縁膜旧−T1−0膜22との積
層効果は確認されなかった。しかしながら、本発明者ら
は特性32において、超電導転移温度、ゼロ抵抗温度が
ともに約5に上昇することを見いだした。この効果の詳
細な理由については未だ不明であるが、B1−5r−C
a−Cu−0膜21と旧−T1−0膜22との積層界面
での元素の相互拡散の影響が少なく、かつ薄いB1−T
l−0膜22を介して複数の旧−5r−Ca−Cu−0
膜21を積層することによりB1−5r−Ca−Cu−
0膜21において超電導機構になんらかの変化が引き起
こされたことが考えられる。
The characteristics at 500A are 31.32.
33. In characteristic 31, the zero resistance temperature is approximately 30
It was found that the characteristics of N and B1-5r-Da-Cu-0 films "21 deteriorated.The reason for this was that N B1-5
It is considered that the crystallinity of the film 2L22 is destroyed due to mutual diffusion of elements between the r-Ca-Cu-0 film 21 and the B[-TIO film 22. Furthermore, in characteristic 33, B1-Tl-0
The original superconducting properties of the old -5r-Ca-Cu-0 film 21 when deposited on the substrate 15 without periodic lamination with the film 22 are almost the same, and the superconducting properties of the old -5r-Ca-Cu-0 film 21 are almost the same as those of the old -T1-0 film 22 when laminated with the insulating film 22. No effect was confirmed. However, the present inventors found that in property 32, both the superconducting transition temperature and the zero resistance temperature rise to about 5. Although the detailed reason for this effect is still unknown, B1-5r-C
The effect of mutual diffusion of elements at the laminated interface between the a-Cu-0 film 21 and the old-T1-0 film 22 is small, and the thin B1-T
Multiple old-5r-Ca-Cu-0 through the l-0 film 22
By stacking the film 21, B1-5r-Ca-Cu-
It is conceivable that some change was caused in the superconducting mechanism in the 0 film 21.

なお、超電導転移温度が上昇する効果は、旧−5r−C
a−Cu−0膜21の膜厚が200〜400Aの範囲で
有効であることを、本発明者らは確認した。
Note that the effect of increasing the superconducting transition temperature is
The present inventors have confirmed that a film thickness of the a-Cu-0 film 21 in a range of 200 to 400 A is effective.

なお、本発明者らはターゲット11、もしくは工2に鉛
(Pb)を添加してスパッタしたとき、基体15の温度
が上記実施例よりも約100℃低くても、上記実施例と
同等な結果が得られることを見いだした。
Note that when the present inventors performed sputtering by adding lead (Pb) to target 11 or process 2, even if the temperature of base 15 was approximately 100°C lower than in the above embodiment, results similar to those in the above embodiment were obtained. I found that it was possible to obtain

なお、本発明者らは旧−TiO膜22の代わりに、8l
−TI−Nb−0,B1−Tl−Ta−0,BITI−
Ca−0,Bl−Tj−Sr−0,8l−T1−Ba−
0,旧−Tl−Na−0,B1−Tl−に−0膜を用い
たときも第1の発明が有効であることを確認した。
In addition, the present inventors used 8l instead of the old -TiO film 22.
-TI-Nb-0, B1-Tl-Ta-0, BITI-
Ca-0,Bl-Tj-Sr-0,8l-T1-Ba-
It was confirmed that the first invention is also effective when a -0 film is used for 0, old-Tl-Na-0, B1-Tl-.

さらに本発明者らは、B1の酸化物と、5r1Ca、C
uの酸化物を異なる蒸発源から真空中で別々に蒸発させ
、基体上に旧−〇−+ 5r−Cu−0−+ Ca−C
u−0−+ 5r−Cu−〇→B1−0の順で周期的に
積層させた場合、さらにBlの酸化物と、TIの酸化物
を異なる蒸発源から真空中で別々に蒸発させ、BIO→
T1−0→旧−0の順で周期的に積層させた場合、 (
実施例1)に示した積層構造作製方法より極めて制御性
良く、安定した膜質の、しかも膜表面が極めて平坦な旧
−5r−Ca−Cu−0超電導薄膜およびB1−Tl0
絶縁膜が得られることを見いだした。
Furthermore, the present inventors have discovered that the oxide of B1 and 5r1Ca, C
The oxide of
When layered periodically in the order of u-0-+ 5r-Cu-〇→B1-0, Bl oxide and TI oxide are evaporated separately in vacuum from different evaporation sources to form BIO. →
When laminated periodically in the order of T1-0 → old-0, (
Old-5r-Ca-Cu-0 superconducting thin film and B1-Tl0 with extremely good controllability, stable film quality, and extremely flat film surface compared to the layered structure manufacturing method shown in Example 1)
It was discovered that an insulating film can be obtained.

さらに本発明者らは、旧−0,5r−Cu−0,Ca−
Cu−01TIOを別々の蒸発源から蒸発させ、旧−5
r−Ca−Cu−0超電導薄膜とB1−Tl−0絶縁膜
を周期的に積層した時、極めて制御性良< m (Bl
−5r−Ca−Cu−0) ・n(Bl−TI−0)の
周期構造を持つ薄膜を形成できることを見いだした。こ
こでml  nは正の整数を示す。
Furthermore, the present inventors have discovered that former-0,5r-Cu-0,Ca-
Cu-01TIO was evaporated from separate sources and old-5
When the r-Ca-Cu-0 superconducting thin film and the B1-Tl-0 insulating film were laminated periodically, extremely good controllability < m (Bl
It has been found that a thin film having a periodic structure of -5r-Ca-Cu-0) .n(Bl-TI-0) can be formed. Here, mln represents a positive integer.

さらに、このm(Bi−5r−Ca−Cu−0) ・n
 (Bl−TI−0)薄膜は、 (実施例1)に示した
8l−5r−Ca−Cu−0を同時に蒸着して得る超電
導薄膜と、B1−71−0を同時に蒸着して得る酸化物
絶縁膜とを周期的に積層して得た薄膜に比べて、はるか
に結晶性が優れ、超電導転移温度、臨界電流密度等の特
性に勝っていることも併せて見いだした。さらに本発明
者らは、上記の方法で作製した旧−5r−Ca−Cu−
0超電導薄膜とB1−Tl−0絶縁膜はともに薄膜表面
が極めて平坦であることを見いだした。
Furthermore, this m(Bi-5r-Ca-Cu-0) ・n
(Bl-TI-0) thin film is a superconducting thin film obtained by simultaneously depositing 8l-5r-Ca-Cu-0 shown in (Example 1) and an oxide obtained by simultaneously depositing B1-71-0. It was also discovered that the crystallinity is far superior to thin films obtained by periodically laminating insulating films, and the properties such as superconducting transition temperature and critical current density are superior. Furthermore, the present inventors discovered that the former-5r-Ca-Cu-
It was found that the thin film surfaces of both the 0 superconducting thin film and the B1-Tl-0 insulating film were extremely flat.

これらのことは第4図に示す積層の概念を示す図を用い
て説明することができる。すなわち、それぞれ層状構造
を構成する異なる元素を別々に順次積層していくことに
より、基体表面に対し平行な面内だけで積層された蒸着
元素が動くだけで、基体表面に対し垂直方向への元素の
移動がないことによるものと考えられる。さらに、旧と
TIを含む酸化物層状ペロブスカイト構造の結晶のa軸
の長さは、B1−5r−Ca−Cu−0のそれとほぼ等
しく、連続的にエピタキシャル成長が可能であることに
よるものと考えられる。
These matters can be explained using the diagram shown in FIG. 4, which shows the concept of lamination. In other words, by sequentially stacking different elements constituting a layered structure, the stacked elements move only in a plane parallel to the substrate surface, and the elements perpendicular to the substrate surface move. This is thought to be due to the lack of movement. Furthermore, the a-axis length of the crystal with the layered oxide perovskite structure containing old and TI is almost equal to that of B1-5r-Ca-Cu-0, which is thought to be due to the fact that continuous epitaxial growth is possible. .

さらに意外にも、良好な超電導特性を得るに必要な基体
の温度、熱処理温度も、従来より低いことを見いだした
Furthermore, it was surprisingly discovered that the temperature of the substrate and the heat treatment temperature required to obtain good superconducting properties are lower than conventional ones.

旧−0,5r−Cu−0,Ca−Cu−0,TiOを周
期的に積層させる方法としては、いくつか考えられる。
There are several possible methods for periodically stacking old-0,5r-Cu-0, Ca-Cu-0, and TiO.

一般に、MBE装置あるいは多元のEB蒸着装置で蒸発
源の前を開閉シャッターで制御したり、気相成長法で作
製する際にガスの種類を切り替えたりすることにより、
周期的積層を達成することができる。
Generally, by controlling an opening/closing shutter in front of the evaporation source in an MBE device or a multi-source EB evaporation device, or by switching the type of gas when producing by vapor phase growth method,
Periodic stacking can be achieved.

しかしこの種の非常に薄い層の積層には従来スパッタリ
ング蒸着は不向きとされていた。この理由は、成膜中の
ガス圧の高さに起因する不純物の混入およびエネルギー
の高い粒子によるダメージと考えられている。しかしな
がら、本発明者らは、この旧系酸化物超電導体に対して
スパッタリングにより異なる薄い層の積層を行なったと
ころ、意外にも良好な積層膜作製が可能なことを発見し
た。
However, sputtering deposition has traditionally been considered unsuitable for this type of extremely thin layer stacking. The reason for this is thought to be the incorporation of impurities due to the high gas pressure during film formation and damage caused by high energy particles. However, when the present inventors laminated different thin layers using sputtering on this old-type oxide superconductor, they surprisingly discovered that it was possible to produce a good laminated film.

スパッタ中の高い酸素ガス圧およびスパッタ放電が、旧
糸の100K以上の臨界温度を持つ相の形成、および旧
−TIO絶縁膜の形成に都合がよいためではなかろうか
と考えられる。
This is probably because the high oxygen gas pressure and sputter discharge during sputtering are favorable for the formation of a phase with a critical temperature of 100 K or higher in the old yarn and for the formation of the old -TIO insulating film.

スパッタ蒸着で異なる物質を積層させる方法としては、
組成分布を設けた1ケのスパッタリングターゲットの放
電位置を周期的に制御するという方法があるが、組成の
異なる複数個のターゲットのスパッタリングという方法
を用いると比較的簡単に達成することができる。この場
合、複数個のターゲットの各々のスパッタ量を周期的に
制御したり、あるいはターゲットの前にシャッターを設
けて周期的に開閉したりして、周期的積層膜を作製する
ことができる。また基板を周期的運動させて各々ターゲ
ットの上を移動させる方法でも作製が可能である。レー
ザースパッタあるいはイオンビームスパッタを用いた場
合には、複数個のターゲットを周期運動させてビームの
照射するターゲットを周期的に変えれば、周期的積層膜
が実現される。このように複数個のターゲットを用いた
スパッタリングにより比較的簡単にBl系酸化物の周期
的積層が作製可能となる。
The method of layering different materials using sputter deposition is as follows:
There is a method of periodically controlling the discharge position of one sputtering target with a composition distribution, but this can be achieved relatively easily by using a method of sputtering multiple targets with different compositions. In this case, a periodic laminated film can be produced by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and opening and closing it periodically. Alternatively, it can be manufactured by a method in which the substrate is moved periodically and moved over each target. When laser sputtering or ion beam sputtering is used, periodic laminated films can be realized by periodically moving a plurality of targets and periodically changing the targets irradiated with the beam. In this way, by sputtering using a plurality of targets, a periodic stack of Bl-based oxides can be produced relatively easily.

以下本発明者らによる第2の発明の内容をさらに理解す
るために、具体的な実施例を示す。
In order to further understand the content of the second invention by the present inventors, specific examples will be shown below.

(実施例2) 第5図に本実施例で用いた4元マグネトロンスパッタ装
置の概略図を示す。第5図において、51はBlターゲ
ット、52は5rCu合金ターゲット、53はCaCu
合金ターゲット、54はT1ターゲット、55はシャッ
ター、56はスリット、57は基体、58は基体加熱用
ヒーターを示す。計4個のターゲット51.52.53
.54は第2図に示すように配置させた。即ち、Mg0
(1,00)基体57に焦点を結ぶように各ターゲット
が約30″傾いて設置されている。ターゲットの前方に
は回転するシャッター55があり、パルスモータで駆動
することによりその中に設けられたスリット56の回転
が制御され、各ターゲットのサイクル及びスパッタ時間
を設定することができる。基体57をヒーター58で約
600 ”Cに加熱し、アルゴン香酸素(5:  1)
混合雰囲気3Paのガス中で各ターゲットのスパッタリ
ングを行なった。各ターゲットのスパッタ電流を、Bl
:30 mA、 5rCu:80 mA、 CaCu:
300 mA、 Tl:40G mAにして実験を行っ
た。81→5rCu−+ CaCu4B lのサイクル
でスパッタし、B1−5r−Ca−Cu−0膜の元素の
組成比率がBI:Sr:Ca:Cu=2:2:2:3と
なるように各ターゲットのスパッタ時間を調整し、上記
サイクルを20周期行った結果、100に以上の臨界温
度を持つ相を作製することができた。このままの状態で
もこの旧−5r−Ca−Cu−0薄膜は100K以上の
超電導転移を示したが、さらに酸素中で850″G、 
 1時間の熱処理を行なうと非常に再現性がよくなり、
超電導転移温度は120 K、抵抗がゼロになる温度は
100 Kになった。超電導転移温度が100 Kを越
す相は金属元素がB1−5r−Cu−Ca−Cu−Ca
−Cu−S+”BIの順序で並んだ酸化物の層から成り
立っているとも言われており、本発明の製造方法がこの
構造を作るのに非常に役だっているのではないかと考え
られる。また、同様に旧→T1→旧のサイクルでB1−
Ti0膜の元素の組成比がBl:Tl:4:3となるよ
うに各ターゲットのスパッタ時間を調整し、上記サイク
ルを4サイクルまで少なくして、B1−Tl0膜の膜厚
を薄くしても、極めて結晶性に優れたBl−Ti0膜が
得られた。
(Example 2) FIG. 5 shows a schematic diagram of a quaternary magnetron sputtering apparatus used in this example. In FIG. 5, 51 is a Bl target, 52 is a 5rCu alloy target, and 53 is a CaCu
An alloy target, 54 a T1 target, 55 a shutter, 56 a slit, 57 a substrate, and 58 a heater for heating the substrate. Total of 4 targets 51.52.53
.. 54 were arranged as shown in FIG. That is, Mg0
(1,00) Each target is installed at an angle of about 30" so as to focus on the base 57. In front of the target is a rotating shutter 55, and the shutter 55 is driven by a pulse motor. The rotation of the slit 56 is controlled, and the cycle and sputtering time for each target can be set. The substrate 57 is heated to about 600"C with a heater 58, and heated with argon and oxygen (5:1).
Sputtering of each target was performed in a gas mixture atmosphere of 3 Pa. The sputtering current of each target is Bl
:30 mA, 5rCu:80 mA, CaCu:
The experiment was conducted at 300 mA and Tl: 40G mA. Sputtering was performed with a cycle of 81→5rCu-+CaCu4Bl, and each target was sputtered so that the elemental composition ratio of the B1-5r-Ca-Cu-0 film was BI:Sr:Ca:Cu=2:2:2:3. As a result of adjusting the sputtering time and repeating the above cycle 20 times, it was possible to produce a phase having a critical temperature of 100 or higher. Even in this state, this old-5r-Ca-Cu-0 thin film showed a superconducting transition of over 100K, but furthermore, in oxygen at 850"G,
After 1 hour of heat treatment, reproducibility is very good.
The superconducting transition temperature was 120 K, and the temperature at which resistance became zero was 100 K. In the phase whose superconducting transition temperature exceeds 100 K, the metal element is B1-5r-Cu-Ca-Cu-Ca.
It is said that it is made up of oxide layers arranged in the order -Cu-S+"BI, and it is thought that the manufacturing method of the present invention is extremely useful in creating this structure. , Similarly, in the old → T1 → old cycle, B1-
Even if the sputtering time of each target is adjusted so that the elemental composition ratio of the Ti0 film is Bl:Tl:4:3, the number of cycles is reduced to 4, and the thickness of the B1-Tl0 film is made thinner. A Bl-Ti0 film with extremely excellent crystallinity was obtained.

さらに本発明者らはmX(Bi+ 5rCu−+ Ca
Cu−+ 5rCu→旧)→nX(Bi→T1→81)
のサイクルで各ターゲットをスパッタし、m (Bl−
5r7Ca−Cu−0) o n(Bl−TI−0)薄
膜を基体57上に作製した。ここでmT  nは正の整
数を示す。本発明者らはn=4のとき、mを変化させて
周期的に積層して得た膜の超電導特性を調べた。第6図
にm=″2.8.16のときに得た膜の抵抗の温度変化
をそれぞれ特性61.62.83に示す。第6図におい
て、m=6のとき、最も高い超電導転移温度およびゼロ
抵抗温度、すなわち特性62が得られた。特性62の超
電導転移温度、ゼロ抵抗温度はB1−5r−Ca−Cu
−O膜本来のそれらの値よりも約8に高いものであった
。この効果の詳細な理由については未だ不明であるが、
本実施例に示した方法でB l−5r−Ca−Cu−0
膜と旧−T1−0膜とを周期的に積層することによって
、8l−5r−Ca−Cu−0膜とB1−Tl−0膜が
互いに旧202届を介してエピタキシャル成長している
ことにより積層界面での元素の相互拡散の影響がなく、
かつ結晶性に優れた薄いB1−Tl−〇膜を介して同じ
く結晶性に優れたB1−5r−Ca−Cu−OFlXを
積層することにより旧−5r−Ca−Cu−0膜におい
て超電導機構になんらかの変化が引き起こされたことが
考えられる。
Furthermore, the present inventors have determined that mX(Bi+ 5rCu−+ Ca
Cu-+ 5rCu→old)→nX(Bi→T1→81)
Sputter each target with a cycle of m (Bl-
A 5r7Ca-Cu-0) on (Bl-TI-0) thin film was fabricated on the substrate 57. Here, mT n represents a positive integer. The present inventors investigated the superconducting properties of films obtained by periodically stacking films while changing m when n=4. Figure 6 shows the temperature changes in the resistance of the film obtained when m = 2, 8, and 16, respectively, as characteristics 61, 62, and 83. In Figure 6, when m = 6, the highest superconducting transition temperature and zero resistance temperature, that is, characteristic 62.The superconducting transition temperature and zero resistance temperature of characteristic 62 are B1-5r-Ca-Cu
The values were about 8 higher than those of the -O film. Although the detailed reason for this effect is still unknown,
By the method shown in this example, B l-5r-Ca-Cu-0
By periodically stacking the film and the old-T1-0 film, the 8l-5r-Ca-Cu-0 film and the B1-Tl-0 film are epitaxially grown through the old 202 film. There is no effect of interdiffusion of elements at the interface,
By layering B1-5r-Ca-Cu-OFlX, which also has excellent crystallinity, through a thin B1-Tl-〇 film, which has excellent crystallinity, a superconducting mechanism can be achieved in the old -5r-Ca-Cu-0 film. It is possible that some change has occurred.

なお、超電導転移温度が上昇する効果は、1111→5
rCu−+ CaCu+ 81のサイクルが4〜10の
範囲で有効であることを、本発明者らは確認した。
Note that the effect of increasing the superconducting transition temperature is 1111→5
The inventors have confirmed that rCu-+ CaCu+ 81 cycles are effective in the range of 4-10.

なお、本発明者らはターゲット51、もしくは54に鉛
(Pb)を添加してスパッタ“したとき、基体57の温
度が上記実施例よりも約100°C低くても、上記実施
例と同等な結果が得られることを見いだした。
In addition, when the present inventors added lead (Pb) to the target 51 or 54 and performed sputtering, the temperature of the base 57 was approximately 100°C lower than that of the above embodiment, but the result was the same as that of the above embodiment. We have found that results can be obtained.

なお、本発明者らは8l−TI−0模の代わりに、B1
Tl−Nb−0,B1−Tl−Ta−0,B1−Tl−
Ca−0,B1−Tl−5r−0゜DI−TI−Ba−
0,B1−Tl−Na−0,B1−Tl−に−0膜を用
いたときも第2の発明が有効であることを確認した。
In addition, the present inventors used B1 instead of the 8l-TI-0 model.
Tl-Nb-0, B1-Tl-Ta-0, B1-Tl-
Ca-0,B1-Tl-5r-0゜DI-TI-Ba-
It was confirmed that the second invention is also effective when a -0 film is used for 0,B1-Tl-Na-0,B1-Tl-.

発明の効果 以上のように第1の本発明の酸化物超電導薄膜は、Bl
系酸化物超電導薄膜の超電導転移温度を上昇させる構造
を提供するものであり、第2の本発明の酸化物超電導薄
膜の製造方法は第1の発明をより効果的に実現し、デバ
イス等の応用には必須の低温でのプロセス確立したもの
であり、本発明の工業的価値は大きい。
Effects of the Invention As described above, the oxide superconducting thin film of the first invention has Bl
The present invention provides a structure that increases the superconducting transition temperature of a superconducting oxide superconducting thin film, and the second method of manufacturing an oxide superconducting thin film of the present invention realizes the first invention more effectively and is suitable for applications such as devices. The industrial value of the present invention is great because a low-temperature process, which is essential for this purpose, has been established.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の本発明の一実施例における酸化物超電導
薄膜の製造装置の概略を示す斜視図、第2図は同薄膜の
構造を示す断面図、第3図は第1図の装置により得た薄
膜における抵抗の温度特性を示すグラフ1 第4図は第
2の本発明の薄膜の構造の概念を示す断面図、第5図は
第2の本発明の一実施例における薄膜の製造装置の概略
的斜視図、第6図は第5図の装置により得た薄膜におけ
る抵抗の温度特性を示すグラフである。 11、12.5L52、53.54・・・スパッタリン
グターゲット、 13.55・・・シャッター、14・
・・アパーチャー、56・・・スリット、15.57・
・・MgO基体、 16、58・・・ヒーター、 21
・−−81−Sr −Ca −Cu −0膜、 22−
−−Bl−TI−0膜、 31.32.33.81.8
2.83・・・薄膜の抵抗の温度特性。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 第 2 図 第 3 図 5り                lω湿−度 C
に) 第4図 oooooo。 oooooo。 ■■■O■■■ ・   ・   ・   ・   ・   ・   ・
ooooooo  。 ・  ・  ・  ・  ・   ・  ・     
1oooooo■−ムーO ・・・・・・・−ムー0 O0■■■■■−3r−0 O000O00−Ti 0 0(E)(E)0(E)(E)0 1 o o o o o、○01 oooooo。 第5図 詮   埒 区
FIG. 1 is a perspective view schematically showing an apparatus for producing an oxide superconducting thin film according to an embodiment of the first invention, FIG. 2 is a cross-sectional view showing the structure of the thin film, and FIG. 3 is the apparatus shown in FIG. 1. Graph 1 showing the temperature characteristics of resistance in the thin film obtained by Fig. 4 is a cross-sectional view showing the concept of the structure of the thin film of the second invention, and Fig. 5 is the manufacturing of the thin film in one embodiment of the second invention. FIG. 6, which is a schematic perspective view of the apparatus, is a graph showing the temperature characteristics of the resistance in the thin film obtained by the apparatus of FIG. 11, 12.5L52, 53.54... Sputtering target, 13.55... Shutter, 14.
...Aperture, 56...Slit, 15.57.
...MgO base, 16, 58... heater, 21
・--81-Sr-Ca-Cu-0 film, 22-
--Bl-TI-0 membrane, 31.32.33.81.8
2.83...Temperature characteristics of thin film resistance. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 Figure 2 Figure 3 Figure 5 lω Humidity C
) Figure 4 ooooooo. ooooooo. ■■■O■■■ ・ ・ ・ ・ ・ ・ ・
ooooooooo.・ ・ ・ ・ ・ ・ ・
1oooooo■-MuO ......-Mu0 O0■■■■■-3r-0 O000O00-Ti 0 0(E)(E)0(E)(E)0 1 o o o o o ,○01 ooooooo. Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)主体成分が少なくともビスマス(Bi)、銅(C
u)、およびアルカリ土類(IIa族)を含む層状酸化物
超電導薄膜と、主体成分が少なくともビスマス(Bi)
とチタン(Ti)を含む層状酸化物薄膜が交互に積層さ
れたこと(ここでアルカリ土類は、IIa族元素のうちの
少なくとも一種あるいは二種以上の元素を示す。)を特
徴とする酸化物超電導薄膜。
(1) The main components are at least bismuth (Bi) and copper (C).
u), and a layered oxide superconducting thin film containing an alkaline earth (group IIa), and a main component of which is at least bismuth (Bi).
and titanium (Ti) (here, alkaline earth represents at least one or two or more elements of group IIa elements). Superconducting thin film.
(2)基体上に、少なくともビスマス(Bi)を含む酸
化物と少なくとも銅およびアルカリ土類(IIa族)を含
む酸化物とを周期的に積層させて形成する酸化物薄膜と
、少なくともビスマス(Bi)を含む酸化物と少なくと
もチタン(Ti)を含む酸化物を周期的に積層させて形
成する酸化物薄膜とを、交互に積層させる(ここでアル
カリ土類は、IIa族元素のうちの少なくとも一種あるい
は二種以上の元素を示す。)ことを特徴とする酸化物超
電導薄膜の製造方法。
(2) An oxide thin film formed by periodically stacking an oxide containing at least bismuth (Bi) and an oxide containing at least copper and alkaline earth (group IIa) on a substrate; ) and oxide thin films formed by periodically stacking oxides containing at least titanium (Ti) (here, the alkaline earth is at least one type of group IIa element). or two or more elements.) A method for producing an oxide superconducting thin film.
(3)積層物質の蒸発を少なくとも二種以上の蒸発源で
行うことを特徴とする請求項2記載の酸化物超電導薄膜
の製造方法。
(3) The method for producing an oxide superconducting thin film according to claim 2, characterized in that the evaporation of the laminated material is performed using at least two types of evaporation sources.
(4)積層物質の蒸発をスパッタリングで行なうことを
特徴とする請求項2記載の酸化物超電導薄膜の製造方法
(4) The method for producing an oxide superconducting thin film according to claim 2, wherein the evaporation of the laminated material is performed by sputtering.
JP1118938A 1989-05-12 1989-05-12 Oxide superconducting thin film and method for producing the same Expired - Lifetime JPH0822740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118938A JPH0822740B2 (en) 1989-05-12 1989-05-12 Oxide superconducting thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118938A JPH0822740B2 (en) 1989-05-12 1989-05-12 Oxide superconducting thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02298257A true JPH02298257A (en) 1990-12-10
JPH0822740B2 JPH0822740B2 (en) 1996-03-06

Family

ID=14748948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118938A Expired - Lifetime JPH0822740B2 (en) 1989-05-12 1989-05-12 Oxide superconducting thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0822740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017216682A1 (en) * 2016-06-17 2017-12-21 株式会社半導体エネルギー研究所 Sputtering device and transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017216682A1 (en) * 2016-06-17 2017-12-21 株式会社半導体エネルギー研究所 Sputtering device and transistor

Also Published As

Publication number Publication date
JPH0822740B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPH02145761A (en) Manufacture of thin superconductor film
JPH02298257A (en) Thin film of oxide superconductor and its production
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPH0316920A (en) Oxide superconductive thin film and its production
JP2733368B2 (en) Superconducting thin film and method for producing the same
JPH02122065A (en) Production of thin film type superconductor
JPH0437609A (en) Oxide superconducting thin film and its production
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH042617A (en) Oxide superconducting thin film and production thereof
JP2558880B2 (en) Method for producing copper oxide thin film
JPH0316919A (en) Superconductive thin film and its production
JPH0382749A (en) Thin film superconductor and its production
JPH05171414A (en) Superconducting thin film and its production
JPH05170448A (en) Production of thin ceramic film
JPH0465320A (en) Superconducting thin film and its production
JP2961852B2 (en) Manufacturing method of thin film superconductor
JPH046108A (en) Insulator, production of insulating thin film, superconducting thin film and production thereof
JP2502743B2 (en) Method of manufacturing thin film superconductor
JP2502744B2 (en) Method of manufacturing thin film super-electric body
JPH03170333A (en) Thin filmy super conductor and its preparation
JPH02167827A (en) Thin-film superconductor
JPH0714817B2 (en) Oxide superconducting thin film and method for producing the same