JPH01131025A - Production of oxide based superconducting material - Google Patents

Production of oxide based superconducting material

Info

Publication number
JPH01131025A
JPH01131025A JP62289976A JP28997687A JPH01131025A JP H01131025 A JPH01131025 A JP H01131025A JP 62289976 A JP62289976 A JP 62289976A JP 28997687 A JP28997687 A JP 28997687A JP H01131025 A JPH01131025 A JP H01131025A
Authority
JP
Japan
Prior art keywords
fiber
ceramic paper
superconducting material
oxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62289976A
Other languages
Japanese (ja)
Inventor
Shin Tabata
伸 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62289976A priority Critical patent/JPH01131025A/en
Publication of JPH01131025A publication Critical patent/JPH01131025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting material capable of readily providing a sheet having a wide area and carrying out machining and forming, by mixing specific metallic alkoxides in a solvent, hydrolyzing the alkoxides, impregnating ceramic paper with the hydrolyzates and calcining the impregnated paper. CONSTITUTION:Alkoxides or acetylacetonates of at least the total three metals of one or more elements of Mg, Ca and Ba of group IIa elements of the periodic table, one or more elements selected from Sc, Y and lanthanoids of group IIIa elements and copper are homogeneously mixed in a solvent and then hydrolyzed. A sheet of ceramic paper is then impregnated with resultant mixture of hydrolyzates, formed and then calcined. Alternatively, a sheet of formed ceramic paper is impregnated with the above-mentioned mixture of the hydrolyzates and calcined. The applied ceramic paper preferably consists essentially of at least one of alumina fiber, alumina silicate fiber, mullite fiber, spinel fiber, beryllia fiber, boron fiber, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属酸化物(セラミック)系高渇超電導材料の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a metal oxide (ceramic)-based high-density superconducting material.

〔従来の技術〕[Conventional technology]

従来から超電導材料としては金属系のものが最も一般的
に知られており、この中でNb3 Geが23,2にと
いう最高の超電導転移温度(臨界温度)を有するもので
あった。一方、金属酸化物系の超電導材料は一般に金属
系のものよりも臨界温度が低く、13に程度であった。
Conventionally, metal-based materials have been most commonly known as superconducting materials, and among these, Nb3Ge has the highest superconducting transition temperature (critical temperature) of 23.2. On the other hand, metal oxide-based superconducting materials generally have a lower critical temperature than metal-based materials, about 13 degrees.

これに対して、最近臨界温度の高いLa−3r−Cu−
0系(約40K)およびY−Ba−Cu−0系(約90
K)の酸化物系超電導材料が見出された。これらの酸化
物系超電導材料の製造方法としては、いわゆる乾式(粉
末)法と共沈法とが一般に広く行なわれている。
On the other hand, recently La-3r-Cu-
0 series (approximately 40K) and Y-Ba-Cu-0 series (approximately 90K)
K) oxide-based superconducting material was discovered. As methods for manufacturing these oxide-based superconducting materials, the so-called dry (powder) method and coprecipitation method are generally widely used.

乾式法はLa、 Y 、 Ba、 5rSCuなどの酸
化物や炭酸塩の粉末試薬を乳鉢やミルを用いて機械的に
混合したのち焼成して、酸化物の焼結体をうるという方
法である。また共沈法は、上記のような各金属の硝酸塩
を水溶液中に均一に混合溶解させたのち、シュウ酸やア
ンモニアを添加してそれぞれの混合沈殿物を同時にうる
という方法である。
The dry method is a method in which powdered reagents of oxides and carbonates such as La, Y, Ba, and 5rSCu are mechanically mixed using a mortar or mill, and then fired to obtain a sintered body of the oxide. The coprecipitation method is a method in which the nitrates of the metals mentioned above are uniformly mixed and dissolved in an aqueous solution, and then oxalic acid or ammonia is added to obtain a mixed precipitate of each metal at the same time.

ただし、これらの方法では膜状の高温超電導体がえられ
ない。そこで酸化物系超電導膜をうるために、通常の薄
膜形成方法であるスパッタリング、蒸着、CVDなどが
試みられている。
However, these methods cannot produce film-like high-temperature superconductors. Therefore, in order to obtain an oxide-based superconducting film, attempts have been made to use conventional thin film forming methods such as sputtering, vapor deposition, and CVD.

これらの中では「ジャパニーズ・ジャーナル・オブ・ア
プライド・フィツクス(JapaneseJourna
l of Applied  Physics)vol
、26.No、4゜PL410(1987)および同v
o1.26.No、5.PL738(1987) Jな
どに記載されているように、スパッタリング法が最も一
般的であり、広く行なわれている。スパッタリング法は
、ターゲットであるLa−3r−Cu−0系やY−Ba
−Cu−0系などの焼成体をイオン化したArやArと
02との混合ガスで衝撃して加熱した基板上にそれらの
酸化物の薄膜を付着させ、つづいて焼成することより超
電導膜にするというものである。
Among these is the Japanese Journal of Applied Fixtures.
l of Applied Physics) vol.
, 26. No. 4゜PL410 (1987) and the same v.
o1.26. No, 5. As described in PL738 (1987) J, etc., the sputtering method is the most common and widely used. The sputtering method uses targets such as La-3r-Cu-0 and Y-Ba.
-A thin film of these oxides is deposited on a heated substrate by bombarding a fired body of Cu-0 or other oxides with ionized Ar or a mixed gas of Ar and 02, followed by firing to make a superconducting film. That is what it is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のスパッタリング法では、真空系、
反応器、高周波電源とその制御装置、ガス流量コントロ
ーラーなどを備えた高価で大がかりな設備を必要とし、
面積の広い膜の形成には適さず、しかも形成膜の組成が
しばしば意図するものからずれを生じるなどの問題点が
ある。またバルク状の酸化物系超電導材料は、その焼成
前後のいずれのばあいにも成形が困難であるなどの問題
がある。
However, in the conventional sputtering method, vacuum system,
Requires expensive and large-scale equipment including a reactor, high-frequency power supply and its control device, gas flow controller, etc.
It is not suitable for forming a film with a large area, and there are problems in that the composition of the formed film often deviates from the intended one. Further, bulk oxide-based superconducting materials have problems such as being difficult to shape both before and after firing.

本発明は上記のような問題点を解消するためになされた
ものであり、面積の広いシート状の超電導材料を容易に
うろことができ、また加工成形を容易に行なうことので
きる酸化物系超電導材料の製造方法をうろことを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and it is an oxide-based superconductor that can be easily spread through a sheet-like superconducting material with a wide area and that can be easily processed and formed. The purpose is to clarify the manufacturing method of materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は周期律表の■a族元索のうちのHg1Ca。 The present invention is directed to Hg1Ca, which is one of the elements of Group A of the Periodic Table.

SrおよびBaから選ばれた1種以上の元素、ma族元
素のうちのSc、 Yおよびランタノイドから選ばれた
1種以上の元素ならびに銅それぞれの合計少なくとも3
種の金属のアルコキシドまたはアセチルアセトナトを溶
媒中で均質に混合したのち加水分解し、えられた加水分
解生成物の混合物をセラミックペーパーに含浸させたの
ち成形、焼成する、または加水分解生成物の混合物を成
形されたセラミックペーパーに含浸させ、焼成すること
を特徴とする酸化物系超電導材料の製造方法に関する。
A total of at least 3 of each of one or more elements selected from Sr and Ba, one or more elements selected from Sc of the Ma group elements, Y and lanthanoids, and copper.
Mix metal alkoxides or acetylacetonates homogeneously in a solvent and then hydrolyze them, impregnate ceramic paper with the mixture of the resulting hydrolyzed products, and then mold and bake them, or The present invention relates to a method for producing an oxide-based superconducting material, which comprises impregnating a molded ceramic paper with a mixture and firing the mixture.

〔作 用〕[For production]

本発明に用いる各元素のアルコキシドまたはアセチルア
セトナトは適当な溶媒に均質に溶解、分散または懸濁せ
しめられており、これらの加水分解生成物の混合物をセ
ラミック短l!雑をシート化したセラミックペーパーに
含浸させて加工成形後焼成するまたはセラミックペーパ
ーを加工成形後加水分解生成物の混合物を含浸させて焼
成することにより、任意の形状、寸法を有する酸化物系
超電導材料をうることができる。
The alkoxide or acetylacetonate of each element used in the present invention is homogeneously dissolved, dispersed or suspended in a suitable solvent, and the mixture of these hydrolysis products is prepared into a ceramic material! Oxide-based superconducting materials having arbitrary shapes and dimensions can be produced by impregnating a sheet of ceramic paper with a mixture of hydrolysis products and firing it, or by processing and molding a ceramic paper, impregnating it with a mixture of hydrolysis products and firing it. can be obtained.

〔実旅例〕 本発明に用いる金属(Mg、 Ca、 Sr、 Ba、
 Sc、 Y、ランタノイドおよびCu)のアルコキシ
ドにはとくに限定はなく、後述する溶媒に均質に溶解、
分散または懸濁させつるかぎりいかなる構造、形態のも
のをも使用しうる。すなわち、前記金属アルコキシドを
形成するアルコキシ基の炭素数がいくつのものであって
も、また多価アルコールからのアルコキシドであっても
用いることができる。このようなアルコキシ基の好まし
い具体例としては、たとえばメトキシ基、エトキシ基、
プロポキシ基、イソプロポキシ基、ブトキシ基、第3級
ブトキシ基、第2級ブトキシ基などがあげられるがこれ
らに限定されるものではない。また、金属元素に結合す
るアルコキシ基の数にもとくに限定はなく、これらの基
が少なくとも1つ結合しているものであればよい。
[Example] Metals used in the present invention (Mg, Ca, Sr, Ba,
There are no particular limitations on the alkoxides of Sc, Y, lanthanoids, and Cu), and they can be homogeneously dissolved in the solvent described below.
Any structure or form can be used as long as it can be dispersed or suspended. That is, the metal alkoxide can be used regardless of the number of carbon atoms in the alkoxy group and even if the alkoxide is derived from a polyhydric alcohol. Preferred specific examples of such alkoxy groups include, for example, methoxy group, ethoxy group,
Examples include, but are not limited to, propoxy group, isopropoxy group, butoxy group, tertiary butoxy group, and secondary butoxy group. Further, there is no particular limitation on the number of alkoxy groups bonded to the metal element, as long as at least one of these groups is bonded.

本発明に用いる金属のアセチルアセトナトにもとくに限
定はなく、金属にアセチルアセトナト基が少なくとも1
つ結合している化合物であり、かつ後述する溶媒に均質
に溶解、分散または懸濁させうるかぎり、いかなる構造
、形態のものをも使用しつる。
The metal acetylacetonato used in the present invention is not particularly limited, and the metal has at least one acetylacetonato group.
Any structure or form may be used as long as it is a compound that has two bonds and can be homogeneously dissolved, dispersed, or suspended in the solvent described below.

本発明においては、所定の前記金属アルコキシドまたは
金属アセチルアセトナトが溶媒中で均質に混合されたの
ち加水分解され、加水分解生成物の混合物がえられる。
In the present invention, the predetermined metal alkoxides or metal acetylacetonates are homogeneously mixed in a solvent and then hydrolyzed to obtain a mixture of hydrolysis products.

ただし一般に金属アルコキシドと金属アセチルアセトナ
トとでは加水分解の条件や速度が異なるため、本発明で
は両者を同時に用いることはできず、どちらか一方に統
一して用いる必要がある。
However, since metal alkoxides and metal acetylacetonates generally have different hydrolysis conditions and rates, they cannot be used simultaneously in the present invention, and it is necessary to use only one of them.

なお、本明細書にいう均質とは溶液のように均一である
ことのみならず、乳化物や分散物のように実質的に均一
なものとして使用しうる状態であることをも含む概念で
ある。
Note that the term "homogeneous" as used herein is a concept that includes not only uniformity such as a solution, but also a state that can be used as a substantially uniform product such as an emulsion or dispersion. .

H(J、Ca、 SrおよびBaから選ばれた1種以上
の元素のアルコキシドまたはアセチルアセトナト(以下
、■a族系化合物という) 、Sr、 ’Yおよびラン
タノイドから選ばれた1種以上の元素のアルコキシドま
たはアセチルアセトナト(以下、lla族系化合物とい
う)ならびにCuのアルコキシドまたはアセチルアセト
ナト(以下、Cu含有化合物という)を混合する割合に
はとくに限定はなく、目的とする酸化物系超電導材料が
えられるかぎりいかなる組成割合で使用してもよいが、
たとえばma族元索としてyを用いるばあいにはIra
族系化合物/Y含有化合物/Cu含有化合物−2〜10
/ 1 / 3〜10(金属の原子比)程度で混合する
のが好ましく、また■a族元素としてLaを用いるばあ
いには(Ua族系化合物干La含有化合物)/Cu含有
化合物−271(金属の原子比)程度で混合するのが好
ましい。なおIIa族系化合物と[a含有化合物との比
率にはとくに限定はない。
H (alkoxide or acetylacetonate of one or more elements selected from J, Ca, Sr, and Ba (hereinafter referred to as group a compound), Sr, 'Y, and one or more elements selected from lanthanoids) There is no particular limitation on the mixing ratio of Cu alkoxide or acetylacetonate (hereinafter referred to as lla group compound) and Cu alkoxide or acetylacetonate (hereinafter referred to as Cu-containing compound), and the desired oxide-based superconducting material It may be used in any composition ratio as long as it can be obtained, but
For example, when using y as the ma group element, Ira
Group-based compounds/Y-containing compounds/Cu-containing compounds-2 to 10
/ 1 / It is preferable to mix at a ratio of about 3 to 10 (metal atomic ratio), and when La is used as the a group element, (Ua group compound, La-containing compound)/Cu-containing compound-271 ( It is preferable to mix the metals at the same atomic ratio. Note that there is no particular limitation on the ratio of the IIa group compound to the [a-containing compound.

本発明に用いる溶媒としては加水分解に好適に用いるこ
とができる、たとえばメチルアルコール、エチルアルコ
ール、イソプロピルアルコール、ブチルアルコール、ベ
ンゼン、トルエン、キシレン、テトラヒドロフラン、ジ
エチルエーテル、ジフェニルエーテル、アニソール、酢
酸エチル、酢酸ブチル、メチルエチルケトン、メチルイ
ソブチルケトン、イソアミルアルコール、ジアセトンア
ルコールなどを用いるのが好ましい。
The solvent used in the present invention can be suitably used for hydrolysis, such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, benzene, toluene, xylene, tetrahydrofuran, diethyl ether, diphenyl ether, anisole, ethyl acetate, butyl acetate. , methyl ethyl ketone, methyl isobutyl ketone, isoamyl alcohol, diacetone alcohol, etc. are preferably used.

加水分解を行なう際の金属アルコキシドや金属アセチル
アセトナトの濃度、水の添加方法、加水分解する際の条
件などにはとくに限定はないが、加水分解する際の水の
添加量は、金属アルコキシドや金属アセチルアセトナト
を加水分解しつる化学量論量よりも過剰であればよいが
、大過剰であるのが好ましく、温度は60℃以上である
のが好ましい。添加される水としては、金属イオンなど
を含まないイオン交換水、蒸留水などが用いられる。
There are no particular limitations on the concentration of metal alkoxide or metal acetylacetonate, the method of adding water, or the conditions for hydrolysis, but the amount of water added during hydrolysis is It is sufficient if the amount is in excess of the stoichiometric amount for hydrolyzing metal acetylacetonate, but it is preferably in large excess, and the temperature is preferably 60° C. or higher. As the water to be added, ion-exchanged water, distilled water, etc. that do not contain metal ions are used.

加水分解生成物は元素によっては金属酸化物であるばあ
いもあるが、一般にはアモルファス状の水和物または水
酸化物であることが多く、これらは焼成によって比較的
低温(200〜500℃)で金属酸化物になるものが大
部分である。
Depending on the element, the hydrolysis product may be a metal oxide, but in general it is often an amorphous hydrate or hydroxide, which is heated at a relatively low temperature (200 to 500°C) by calcination. Most of them become metal oxides.

また、えられた加水分解生成物の混合物は茶色または黒
色で各々の金属アルコキシドまたは金属アセチルアセト
ナトの加水分解生成物が均質に分散したゾル状態である
The resulting mixture of hydrolysis products is brown or black in color and is in the form of a sol in which the hydrolysis products of each metal alkoxide or metal acetylacetonate are homogeneously dispersed.

つぎに前記のごとき加水分解生成物の混合物をセラミッ
クペーパーに含浸させたのち成形、焼成するまたは成形
されたセラミックペーパーに加水分解生成物の混合物を
含浸させ、焼成することにより超電導材料かえられる。
Next, the superconducting material is changed by impregnating a ceramic paper with the mixture of the hydrolysis products as described above, then shaping and firing, or by impregnating the shaped ceramic paper with the mixture of the hydrolysis products and firing.

なお、セラミックペーパーの成形方法にはとくに限定は
ない。
Note that there are no particular limitations on the method of forming the ceramic paper.

前記セラミックペーパーにはとくに限定はないが、厚さ
100〜500加、坪量50〜250g/−rdのもの
が好ましく、またアルミナ!l雑、アルミナシリケート
m維、ムライト繊維、スピネル繊維、ベリリア繊維、ボ
ロン[t、チッ化ボロンm維、チッ化ケイ素繊維、チッ
化アルミニウム繊帷などの少なくとも1種を主成分とす
るものが好ましく、またバインダーとしては、セルロー
ス繊維、ポリビニルアルコール繊維、ポリビニルブチラ
ールi1m、ビニロン繊維、ポリエステル繊維、酢酸セ
ルロース繊維などを含むものが好ましい。該バインダー
は繊維径1AIm以下までミクロフィブリル化されたも
のが好ましく、前記のごとき主成分に対し10重量%以
下添加するのが好ましい。このようなセラミックペーパ
ーは特開昭60−81399号公報(発明の名称:無機
ペーパー)や特開昭60−81398号公報(発明の名
称ニアルミナベ−パー)に詳細に開示されている抄紙条
件などによりうろことができる。
The ceramic paper is not particularly limited, but preferably has a thickness of 100 to 500 g/-rd and a basis weight of 50 to 250 g/-rd, and alumina! It is preferable that the main component is at least one of the following: l miscellaneous, alumina silicate m fiber, mullite fiber, spinel fiber, beryllia fiber, boron [t, boron nitride m fiber, silicon nitride fiber, aluminum nitride fiber, etc. The binder preferably includes cellulose fibers, polyvinyl alcohol fibers, polyvinyl butyral i1m, vinylon fibers, polyester fibers, cellulose acetate fibers, and the like. The binder is preferably microfibrillated to a fiber diameter of 1 AIm or less, and is preferably added in an amount of 10% by weight or less based on the above-mentioned main components. Such ceramic paper is manufactured under the paper-making conditions disclosed in detail in JP-A-60-81399 (invention name: inorganic paper) and JP-A-60-81398 (invention name: nialumina vapor). You can wander around.

前記加水分解生成物の混合物をセラミックペーパーに含
浸させる方法にはとくに限定はないが、たとえばハケな
どを用いる塗布法、スプレー法、ディッピング法、印刷
法などが用いられる。加水分解生成物の混合物を含浸さ
せる量にもとくに限定はないが、全重量に対して加水分
解生成物の混合物が乾燥後10〜50重量%になるよう
に含浸させるのが好ましい。
There are no particular limitations on the method for impregnating the ceramic paper with the mixture of the hydrolyzed products, but examples include a coating method using a brush, a spray method, a dipping method, and a printing method. There is no particular limitation on the amount of the mixture of hydrolysis products to be impregnated, but it is preferable to impregnate the mixture so that the amount of the mixture of hydrolysis products after drying is 10 to 50% by weight based on the total weight.

また焼成方法や焼成条件にもとくに限定はなく、たとえ
ば加水分解生成物の混合物が含浸せしめられたセラミッ
クペーパーを自然乾燥またはオーブンを用いて加熱乾燥
し、約800〜950℃で約1〜10時間の予備焼成を
行なったのち、約850〜1100℃で約1〜24時間
焼成するなどすればよい。焼成を行なう際の雰囲気とし
ては、空気中、酸素雰囲気中いずれを用いてもよく、ま
た焼成プロセスは任意の湿度で任意の回数行なうことが
できる。本発明者らの検討によれば酸素が豊富な雰囲気
中で行なった方が概して超電導特性の良好な材料が製造
できるようであった。これは、用いた各化合物が熱分解
したのち、酸素の豊富な雰囲気中で焼成すると各金属元
素の酸化物が生成しやすくなることによるものと推察さ
れる。
There are no particular limitations on the firing method or firing conditions; for example, ceramic paper impregnated with a mixture of hydrolyzed products is air-dried or heated and dried in an oven at approximately 800-950°C for approximately 1-10 hours. After pre-firing, it may be baked at about 850 to 1100°C for about 1 to 24 hours. The atmosphere for firing may be either air or oxygen atmosphere, and the firing process can be carried out at any humidity and any number of times. According to studies conducted by the present inventors, it appears that materials with better superconducting properties can generally be produced by carrying out the process in an atmosphere rich in oxygen. This is presumed to be because oxides of each metal element are more likely to be produced when the compounds used are thermally decomposed and then fired in an oxygen-rich atmosphere.

実施例1 目的とする酸化物系超電導材料の組成がYBa2Cu3
O7となるように、Y 1BaおよびCuそれぞれのア
セチルアセトナト(合計10g)を所定の割合で80℃
においてエチルアルコール50〇−中に溶解(一部は懸
濁)した。この溶液中に少量(11d)のアンモニア水
(111度10%)を添加した蒸留水3−を徐々に10
分間かけて滴下して加水分解を行ない、ゾル状の加水分
解生成物の混合物をえた。
Example 1 The composition of the target oxide-based superconducting material is YBa2Cu3
Acetylacetonate of each of Y 1Ba and Cu (total 10 g) was heated at 80°C in a predetermined ratio so that O7
It was dissolved (partially suspended) in 500 ml of ethyl alcohol. Distilled water 3- to which a small amount (11d) of ammonia water (111 degrees 10%) was added was gradually added to 10% of this solution.
Hydrolysis was carried out by dropwise addition over a period of minutes to obtain a mixture of hydrolysis products in the form of a sol.

このゾル状物を100−に濃縮したのち、mH径約3ρ
、繊維長的200〜800ρのアルミナ短繊維(三菱化
成工業■製)と有機バインダーとして繊維径約10ρ以
下にミクロフィブリル化したセルロース(ダイセル−製
のHFC■)とから抄紙した紙厚300ρ、坪量80g
/rdの100#X 350面の大きさのアルミナペー
パー(セルロース5重量%含有)に、加水分解生成物の
混合物を乾燥後の重量が全重量の30%になるようにデ
ィッピング法により含浸させ、長さ100厘、直径10
0IIunの円筒形に成形し、5時間自然乾燥した。つ
ぎに500℃で2時間空気中において予備焼成したのち
、酸素気流中、950℃で3時間焼成し、焼成体をえた
After concentrating this sol to 100-mH diameter approximately 3ρ
, a paper with a thickness of 300 ρ, made from short alumina fibers (manufactured by Mitsubishi Chemical Corporation) with a fiber length of 200 to 800 ρ and cellulose microfibrillated to a fiber diameter of about 10 ρ or less (HFC ■ manufactured by Daicel) as an organic binder. Amount: 80g
Alumina paper (containing 5% by weight of cellulose) with a size of 100# Length 100 rin, diameter 10
It was molded into a cylindrical shape and air-dried for 5 hours. Next, after preliminarily firing in air at 500°C for 2 hours, the product was fired at 950°C for 3 hours in an oxygen stream to obtain a fired product.

この試料にインジウムを用いて1.5s間隔で4つの電
極を形成してクライオスタット中に入れ、液体ヘリウム
で徐々に冷却しながら4端子法によって抵抗率の温度変
化を測定した。測定結果を第1図に示す。
Four electrodes were formed on this sample at intervals of 1.5 seconds using indium, the sample was placed in a cryostat, and the temperature change in resistivity was measured by a four-terminal method while gradually cooling with liquid helium. The measurement results are shown in Figure 1.

第1図に示したように抵抗率は98.5にで急激に低下
し、95.5にでゼロ抵抗を示している。また臨界電流
密度は液体チッ素温度(77、4K)において、212
7A/c4を示した。
As shown in FIG. 1, the resistivity decreases rapidly at 98.5 and shows zero resistance at 95.5. In addition, the critical current density is 212 at the liquid nitrogen temperature (77.4K).
It showed 7A/c4.

実施例2 実施例1でえられたゾル状の加水分解生成物の混合物を
100−に濃縮したものを、30#X 900゜の大き
さの実施例1と同一のアルミナペーパーに実施例1と同
様にして含浸し、5時間自然乾燥して、リボン状のアル
ミナ−金属酸化物ゲルシートをえた。
Example 2 The mixture of the sol-like hydrolyzed products obtained in Example 1 was concentrated to 100° and was placed on the same alumina paper as in Example 1 with a size of 30# x 900°. It was impregnated in the same manner and air-dried for 5 hours to obtain a ribbon-shaped alumina-metal oxide gel sheet.

第2図に示されるようにこのリボン状シート(1)を直
径50敲の円柱形のセラミック(2にらせん状に巻きつ
けたのち、実施例1と同じ条件で焼結した。
As shown in FIG. 2, this ribbon-like sheet (1) was spirally wound around a cylindrical ceramic (2) having a diameter of 50 mm, and then sintered under the same conditions as in Example 1.

円柱形のセラミックをとりはずすと、らせん状の酸化物
系超電導材料をうろことができた。
When the cylindrical ceramic was removed, the spiral oxide-based superconducting material could be seen.

えられた超電導材料の抵抗率の温度変化および液体チッ
素温度における臨界電流密度を測定したところ、実施例
1と同程度の良好な超電導特性を有していた。
When the temperature change in resistivity of the obtained superconducting material and the critical current density at the temperature of liquid nitrogen were measured, it was found that the superconducting material had good superconducting properties comparable to those of Example 1.

実施例3 実施例1でえられたゾル状の加水分解生成物の混合物を
100−に濃縮したものを、乾燥後の重量が全重量の3
0%になるように50#X 900mの大きさの実施例
1と同一のアルミナペーパーの片面にはけを用いて塗布
、乾燥を10回繰返して塗布し、5時間自然乾燥してア
ルミナ−金属酸化物ゲルシートをえた。
Example 3 The mixture of sol-like hydrolysis products obtained in Example 1 was concentrated to 100%, and the weight after drying was 3% of the total weight.
0% on one side of the same alumina paper as in Example 1 with a size of 50 # x 900 m, repeat coating and drying 10 times, and dry naturally for 5 hours to form alumina-metal. I got an oxide gel sheet.

このシートを第3図に示されるように巻いたのち、実施
例1と同じ条件で焼成した。これによって超電導層(3
)とアルミナ層つまり絶縁層(4)が交互に存在するコ
イル状の酸化物系超電導材料がえられた。
After this sheet was rolled as shown in FIG. 3, it was fired under the same conditions as in Example 1. This results in a superconducting layer (3
) and an alumina layer, that is, an insulating layer (4), were formed in a coiled form.

えられた超電導材料の抵抗率の温度変化および液体チッ
素温度における臨界電流密度を測定したところ、実施例
1と同程度の良好な超電導特性を有していた。
When the temperature change in resistivity of the obtained superconducting material and the critical current density at the temperature of liquid nitrogen were measured, it was found that the superconducting material had good superconducting properties comparable to those of Example 1.

実施例4 最終的な焼結体である酸化物系超電導材料の組成をYB
a2C11307,となるようにバリウムブトキシド、
イツトリウムブトキシド、銅ブトキシド(合計3g)を
11のn−ブチルアルコール均一に溶解した。この溶液
を室温で10日間放置し、空気中の水蒸気で徐々に加水
分解を行ない、加水分解生成物の混合物のゾルをえた。
Example 4 The composition of the oxide-based superconducting material that is the final sintered body is YB.
a2C11307, barium butoxide,
Yttrium butoxide and copper butoxide (3 g in total) were uniformly dissolved in 11 parts of n-butyl alcohol. This solution was allowed to stand at room temperature for 10 days and was gradually hydrolyzed with water vapor in the air to obtain a sol of a mixture of hydrolysis products.

このゾル状物を100 dに濃縮したのち、実施例1と
同様のアルミナペーパーに、実施例1と同様にしてデツ
ピング法により含浸させ、実施例1と同一条件で成形、
焼成を行ない、円筒形の酸化物系超電導材料をえた。
After concentrating this sol to 100 d, it was impregnated into the same alumina paper as in Example 1 by the depping method, and molded under the same conditions as in Example 1.
After firing, a cylindrical oxide-based superconducting material was obtained.

えられた超電導材料の抵抗率の温度変化および液体チッ
素温度における臨界電流密度を測定したところ、実施例
1と同程度の良好な超電導特性を有していた。
When the temperature change in resistivity of the obtained superconducting material and the critical current density at the temperature of liquid nitrogen were measured, it was found that the superconducting material had good superconducting properties comparable to those of Example 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によればMg、 Ca、 srお
よびBaから選ばれた1種以上の元素、Sc、 Yおよ
びランタノイドから選ばれた1種以上の元素ならびに銅
それぞれの合計少なくとも3種の金属のアルコキシドま
たはアセチルアセトナトを溶媒中で均質に混合したのち
加水分解し、えられた加水分解生成物の混合物をセラミ
ックペーパーに含浸、成形したのち乾燥、焼成するまた
は加水分解生成物の混合物を成形されたセラミックペー
パーに含浸させ、乾燥、焼成することにより、任意の形
状、寸法を有し、臨界温度が高く、転移幅が狭く、臨界
電流密度の大きい酸化物系超電導材料をうることができ
るという効果を奏する。
As described above, according to the present invention, a total of at least three elements selected from Mg, Ca, sr, and Ba, one or more elements selected from Sc, Y, and lanthanoids, and copper, respectively. Metal alkoxides or acetylacetonates are homogeneously mixed in a solvent and then hydrolyzed, the resulting mixture of hydrolyzed products is impregnated into ceramic paper, formed, dried and fired, or the mixture of hydrolyzed products is By impregnating shaped ceramic paper, drying, and firing, it is possible to obtain an oxide-based superconducting material with arbitrary shape and dimensions, high critical temperature, narrow transition width, and large critical current density. This effect is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1でえられた酸化物系超電導材
料の抵抗率の温度依存性を示すグラフ、第2図は本発明
の実施例2の成形工程の説明図、第3図は本発明の実施
例3の成形工程の説明図である。 代  理  人     大  岩  増  雄第1 
口 温  度(K)
Fig. 1 is a graph showing the temperature dependence of resistivity of the oxide superconducting material obtained in Example 1 of the present invention, Fig. 2 is an explanatory diagram of the molding process of Example 2 of the present invention, and Fig. 3 FIG. 3 is an explanatory diagram of the molding process of Example 3 of the present invention. Agent Masuo Oiwa 1st
Mouth temperature (K)

Claims (4)

【特許請求の範囲】[Claims] (1)周期律表のIIa族元素のうちのMg、Ca、Sr
およびBaから選ばれた1種以上の元素、IIIa族元素
のうちのSc、Yおよびランタノイドから選ばれた1種
以上の元素ならびに銅それぞれの合計少なくとも3種の
金属のアルコキシドまたはアセチルアセトナトを溶媒中
で均質に混合したのち加水分解し、えられた加水分解生
成物の混合物をセラミックペーパーに含浸させたのち成
形、焼成する、または加水分解生成物の混合物を成形さ
れたセラミックペーパーに含浸させ、焼成することを特
徴とする酸化物系超電導材料の製造方法。
(1) Mg, Ca, and Sr of group IIa elements of the periodic table
and Ba, one or more elements selected from Group IIIa elements Sc, Y, and lanthanoids, and copper. The mixture of hydrolysis products is homogeneously mixed and then hydrolyzed in a ceramic paper, and the resulting mixture of hydrolysis products is impregnated into a ceramic paper, which is then shaped and fired, or the mixture of hydrolysis products is impregnated into a shaped ceramic paper. A method for producing an oxide-based superconducting material, which comprises firing.
(2)セラミックペーパーの主成分がアルミナ繊維、ア
ルミナシリケート繊維、ムライト繊維、スピネル繊維、
ベリリア繊維、ボロン繊維、チッ化ボロン繊維、チッ化
ケイ素繊維およびチッ化アルミニウム繊維のうちの少な
くとも一種である特許請求の範囲第(1)項記載の酸化
物系超電導材料の製造方法。
(2) The main components of ceramic paper are alumina fiber, alumina silicate fiber, mullite fiber, spinel fiber,
The method for producing an oxide-based superconducting material according to claim 1, which is at least one of beryllia fiber, boron fiber, boron nitride fiber, silicon nitride fiber, and aluminum nitride fiber.
(3)セラミックペーパーが、バインダーとして繊維径
が1μm以下のミクロフィブリル化された繊維を主成分
のセラミックに対して10重量%以下含むものである特
許請求の範囲第(1)項または第(2)項記載の酸化物
系超電導材料の製造方法。
(3) Claims (1) or (2), wherein the ceramic paper contains microfibrillated fibers with a fiber diameter of 1 μm or less as a binder in an amount of 10% by weight or less based on the main component ceramic. A method for manufacturing the oxide-based superconducting material described above.
(4)バインダーがセルロース繊維、ポリビニルアルコ
ール繊維、ポリビニルブチラール繊維、ビニロン繊維、
ポリエステル繊維および酢酸セルロース繊維のうちの少
なくとも一種である特許請求の範囲第(3)項記載の酸
化物系超電導材料の製造方法。
(4) The binder is cellulose fiber, polyvinyl alcohol fiber, polyvinyl butyral fiber, vinylon fiber,
The method for producing an oxide-based superconducting material according to claim (3), which is at least one of polyester fibers and cellulose acetate fibers.
JP62289976A 1987-11-16 1987-11-16 Production of oxide based superconducting material Pending JPH01131025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289976A JPH01131025A (en) 1987-11-16 1987-11-16 Production of oxide based superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289976A JPH01131025A (en) 1987-11-16 1987-11-16 Production of oxide based superconducting material

Publications (1)

Publication Number Publication Date
JPH01131025A true JPH01131025A (en) 1989-05-23

Family

ID=17750165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289976A Pending JPH01131025A (en) 1987-11-16 1987-11-16 Production of oxide based superconducting material

Country Status (1)

Country Link
JP (1) JPH01131025A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006905A1 (en) * 1988-12-22 1990-06-28 The Boeing Company Whisker-reinforced ceramic and superconductor fibers from preceramic sol-gel, liquid mix, and polymer precursors
US5398840A (en) * 1984-11-02 1995-03-21 The Boeing Company Microparticle enhanced fibrous ceramic baffle for cryogenic liquid containers
US5407618A (en) * 1990-08-13 1995-04-18 The Boeing Company Method for producing ceramic oxide compounds
US5549850A (en) * 1984-11-02 1996-08-27 The Boeing Company LaMnO3 -coated ceramics
US6333000B1 (en) 1984-11-02 2001-12-25 The Boeing Company Process for making LaMnO3-coated ceramics
US6559103B1 (en) 1988-02-12 2003-05-06 The Boeing Company Method for producing superconducting oxide compounds

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398840A (en) * 1984-11-02 1995-03-21 The Boeing Company Microparticle enhanced fibrous ceramic baffle for cryogenic liquid containers
US5549850A (en) * 1984-11-02 1996-08-27 The Boeing Company LaMnO3 -coated ceramics
US6333000B1 (en) 1984-11-02 2001-12-25 The Boeing Company Process for making LaMnO3-coated ceramics
US6559103B1 (en) 1988-02-12 2003-05-06 The Boeing Company Method for producing superconducting oxide compounds
WO1990006905A1 (en) * 1988-12-22 1990-06-28 The Boeing Company Whisker-reinforced ceramic and superconductor fibers from preceramic sol-gel, liquid mix, and polymer precursors
US5407618A (en) * 1990-08-13 1995-04-18 The Boeing Company Method for producing ceramic oxide compounds

Similar Documents

Publication Publication Date Title
US5620945A (en) Process for forming a superconductive fiberform ceramic composite
US4897378A (en) Preparation of thin film superconducting oxides
US4994433A (en) Preparation of thin film superconducting oxides
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
JP2002284525A (en) Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
JPH01131025A (en) Production of oxide based superconducting material
Altenburg et al. Thick films of ceramic superconducting, electro-ceramic materials
JP4592696B2 (en) Method for producing precursor solution for metalorganic vapor deposition using superconducting oxide and method for producing thin film superconductor by metalorganic vapor deposition
US5182255A (en) Shaped and fired articles of YBa2 Cu3 O7
JPH0476324B2 (en)
AU592943B2 (en) Formation of superconducting metal oxide film by pyrolysis
US6559103B1 (en) Method for producing superconducting oxide compounds
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPH02107560A (en) Molded baked article of yba2cu307 and its production
JPS63270316A (en) Production of oxide superconductor
JP2573650B2 (en) Superconductor manufacturing method
JP2601892B2 (en) Manufacturing method of Tl-based superconductor wiring pattern
JPH01203258A (en) Production of oxide superconducting sintered body
JPH02267816A (en) Superconductive ceramic wire material and manufacture thereof
JPH01308826A (en) Formation of superconducting ceramic thin film
JPH0282413A (en) Laminated superconductive ceramics film on magnesium oxide base plate
JPS63285811A (en) Manufacture of oxide superconductor heavy membrane
JPH01252526A (en) Production of oxide superconductor film containing copper
JPH01257183A (en) Production of stabilized high-temperature superconducting ceramic wire and tape
EP0358974A2 (en) Process for forming thin film of superconductive compound metal oxide