JPH01173792A - Manufacture of magnetic shielding superconductive material - Google Patents
Manufacture of magnetic shielding superconductive materialInfo
- Publication number
- JPH01173792A JPH01173792A JP62332993A JP33299387A JPH01173792A JP H01173792 A JPH01173792 A JP H01173792A JP 62332993 A JP62332993 A JP 62332993A JP 33299387 A JP33299387 A JP 33299387A JP H01173792 A JPH01173792 A JP H01173792A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- superconducting material
- magnetic shielding
- producing
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000919 ceramic Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 239000002759 woven fabric Substances 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000000470 constituent Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 239000000843 powder Substances 0.000 abstract description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 5
- 239000004332 silver Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 238000003746 solid phase reaction Methods 0.000 abstract 1
- 239000007921 spray Substances 0.000 abstract 1
- 239000002887 superconductor Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910020012 Nb—Ti Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Details Of Measuring And Other Instruments (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Noise Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は磁気シールド材の製造方法に係り、特にセラミ
ックス系超電導物質を用いた磁気シールド用超電導材の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a magnetic shielding material, and particularly to a method for manufacturing a superconducting material for magnetic shielding using a ceramic superconducting material.
(従来の技術)
各種の電気機器を外部磁界からの誘導障害から保護する
ために磁気シールド材が用いられており。(Prior Art) Magnetic shielding materials are used to protect various electrical devices from induced interference from external magnetic fields.
このようなシールド材として、従来金属板や金属粉末を
混入した塗料等が知られている。しかしながらこのよう
な磁気遮へい材料は電気抵抗を有するため、高周波に対
しては有効であるが、静磁場や変化の遅い磁場の遮へい
ができないばかりか、前者においては重量が増加する上
可撓性が小さいため、機器全体を遮へいするのに困難が
伴ない、−右後者においては強磁場に対して、特に強磁
場の発生源である超電導マグネット等を遮へいするのに
不十分であるという難点を有する。Conventionally, metal plates, paints mixed with metal powder, and the like are known as such shielding materials. However, since such magnetic shielding materials have electrical resistance, they are effective against high frequencies, but not only cannot they shield static magnetic fields or slow-changing magnetic fields, but the former also increases their weight and lacks flexibility. Because of its small size, it is difficult to shield the entire device; -The latter has the disadvantage that it is insufficient to shield against strong magnetic fields, especially superconducting magnets, etc., which are the sources of strong magnetic fields. .
本出願人は、例えば磁気浮上列車の車室内の磁界強度を
下げることに用いることのできる磁気シールド用超電導
板の製造方法として、化合物系のNb、Sn超電導材を
用いる方法を先に出願した(特開昭59−180109
号、特願昭60−258373号)。これらのシールド
材は超電導材を用いているため、その磁気遮へい効果は
大きいが、いずれもNb板とCu板とを積層した圧延材
を用いるため可撓性に乏しく遮へい材として使用するの
に限界を生ずる。The present applicant previously filed an application for a method of using compound-based Nb and Sn superconducting materials as a method of manufacturing a superconducting plate for magnetic shielding that can be used, for example, to reduce the magnetic field strength in the cabin of a magnetic levitation train ( Japanese Patent Publication No. 59-180109
No. 60-258373). Since these shielding materials use superconducting materials, their magnetic shielding effect is great, but since they are all made of rolled materials laminated with Nb plates and Cu plates, they have poor flexibility and are limited in their use as shielding materials. will occur.
近年セラミックス超電導物質の開発が著しいスピードで
進められており、本年に亘って233にや室温以上の臨
界温度を示す物質も報告されている。In recent years, the development of ceramic superconducting materials has progressed at a remarkable speed, and over the past year, 233 materials have been reported that exhibit critical temperatures higher than room temperature.
このような材料は液体窒素温度や室温で使用し得る可能
性があり、技術的、経済的に極めて有利となる利点を有
するが従来の合金系(Nb−Ti合金等)や化合物系(
Nb、Sn等)の超電導材料に比較して硬い上、かつ脆
いという欠点を有する。Such materials have the potential to be used at liquid nitrogen temperatures or room temperature, and have extremely advantageous technical and economical advantages, but conventional alloy systems (such as Nb-Ti alloys) and compound systems (such as Nb-Ti alloys)
It has the disadvantage of being harder and more brittle than superconducting materials such as Nb, Sn, etc.).
本発明はこのようなセラミックス系の超電導物質を用い
た磁気シールド材の製造方法に関するもので上述のNb
、Snを用いた磁気シールド板の欠点をも克服するもの
である。The present invention relates to a method for manufacturing a magnetic shielding material using such a ceramic-based superconducting material,
, which also overcomes the drawbacks of magnetic shield plates using Sn.
(発明が解決しようとする問題点)
本発明は上記の従来の磁気シールド材の有する難点即ち
■可撓性が小さい、■重量が大きい、■静磁場や変化の
遅い磁場に対して遮へい効率が小さい、■超電導マグネ
ット等の強磁場の遮へいに不十分である等の点をいずれ
も解決するものである。(Problems to be Solved by the Invention) The present invention addresses the above-mentioned disadvantages of conventional magnetic shielding materials, namely: ■Low flexibility, ■Large weight, and ■Low shielding efficiency against static magnetic fields and slow-changing magnetic fields. This solves problems such as small size and insufficient shielding of strong magnetic fields such as superconducting magnets.
セラミックス超電導物質を用いた線材の製造方法は現在
名いくつか公表されているが、このような方法を用いて
面状体を製造する場合(イ)アモルファスのテープを酸
素雰囲気下で加熱処理するか、(ロ)セラミックス粉体
を金属管等に収容し、圧延加工等を施してテープ状に成
形することが考えられる。しかしながら(イ)の方法に
おいては極めて急速な冷却を必要とする上、遮へい材と
して取扱いが困難であり、(ロ)の方法においては成形
後に内部に酸素を供給することが困難なため。Currently, several methods for manufacturing wire rods using ceramic superconducting materials have been published, but when manufacturing planar bodies using these methods, (a) Is it necessary to heat-treat the amorphous tape in an oxygen atmosphere? (b) It is conceivable to house the ceramic powder in a metal tube or the like and to form it into a tape shape by rolling or the like. However, method (a) requires extremely rapid cooling and is difficult to handle as a shielding material, and method (b) makes it difficult to supply oxygen inside after molding.
超電導特性が不十分となり易い上、幅広あるいは長尺の
シートを製造することが困難であり、かつ両者共その製
造工程が複雑であるという難点を有する。本発明の方法
はこのような難点をも解決するものである。In addition to the fact that the superconducting properties tend to be insufficient, it is difficult to manufacture wide or long sheets, and both have the disadvantages that the manufacturing process is complicated. The method of the present invention also overcomes these difficulties.
[発明の構成]
(問題点を解決するための手段)
本発明の磁気シールド用超電導材の製造方法は、可撓性
を有するセラミックス面状体の片側または両側に、セラ
ミックス超電導物質あるいは酸化性条件下で加熱するこ
とによりセラミックス超電導物質を生成する構成物質を
被着せしめた後、この被着物質の外側に安定化材を被覆
し、次いで加熱処理することによりセラミックス超電導
物質の焼結層を形成することを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The method for producing a superconducting material for magnetic shielding of the present invention is to apply a ceramic superconducting material or an oxidizing condition to one or both sides of a flexible ceramic sheet body. After depositing a constituent material that generates a ceramic superconducting material by heating it under the surface, a stabilizing material is coated on the outside of this deposited material, and then a sintered layer of the ceramic superconducting material is formed by heat treatment. It is characterized by
本発明における可撓性を有するセラミックス面状体とし
てはセラミックスファイバよりなる織布や不織布、ある
いはセラミックスシートやセラミックスフィルムが好適
する。前者の織布や不織布を形成するセラミックスファ
イバとしては炭化珪素(SiC)系のファイバや酸化物
系のファイバを用いることができる。これらのセラミッ
クスファイバは連続長繊維でその平均値径は、例えば1
0〜13μmφと極めて小さく、かつ高い耐熱性(10
00℃以上)と高い引張強さ(200Kg/mm” )
を有しており、例えば
チラノ繊維:宇部興産株式会社製SiC系ファイバ(S
1−Ti −C−0系)
商品名
ニカロン 二日本カーボン株式会社Hsic系ファイバ
商品名
サフィル :英国Imperial Chemical
Indust−−ries PLC−ICI製AQ1
0.ファイバ商品名
等の他Si○2系ファイバが知られている。一方後者の
セラミックスシートやセラミックスフィルムは上記の織
布や不織布を成形することにより得られる。As the flexible ceramic planar body in the present invention, woven fabrics or nonwoven fabrics made of ceramic fibers, ceramic sheets, or ceramic films are suitable. As the ceramic fibers forming the former woven or nonwoven fabric, silicon carbide (SiC) fibers or oxide fibers can be used. These ceramic fibers are continuous long fibers with an average diameter of, for example, 1
Extremely small (0 to 13 μmφ) and highly heat resistant (10
00℃ or higher) and high tensile strength (200Kg/mm”)
For example, Tyranno fiber: SiC fiber (S
1-Ti-C-0 series) Product name Nicalon Nippon Carbon Co., Ltd. Hsic series fiber Product name Safil: British Imperial Chemical
Industries--ries PLC-ICI AQ1
0. In addition to fiber product names, Si○2 type fibers are also known. On the other hand, the latter ceramic sheet or ceramic film can be obtained by molding the above-mentioned woven fabric or non-woven fabric.
上記のセラミックス面状体の体積固有抵抗は105Ωc
m以下であることが望ましい。この理由は超電導物質の
温度が臨界温度以上に上昇した際のロスの発生を小さく
し、破壊を防止するためである。The volume resistivity of the above ceramic sheet body is 105Ωc
It is desirable that it be less than m. The reason for this is to reduce the occurrence of loss and prevent destruction when the temperature of the superconducting material rises above the critical temperature.
セラミックス面状体に被着される超電導物質としてはY
Ba2Cu3Ox (x <14 ;ペロブスカイト)
が代表的なもどして上げられるが、勿論これに限定され
るものではなく、これにF等の第4元素を添加したもの
や、他のセラミックス超電導物質を用いることもできる
。また酸化性条件下で加熱することによりセラミックス
超電導物質を生成する構成物質としては、例えばY−2
Ba−3Cu合金やY、Ba−Cuあるいはこれらの酸
化物、炭酸塩(Y 203、BaCO2、CuO等)の
融液が用いられる。この場合、融液中の構成元素の原子
数比は超電導物質を構成する金属の原子数比に一致させ
ることが好ましい。これら融液状態での被着の他、気相
やイオン状態での被着、例えばプラズマ放電、スパッタ
リング、蒸着や溶射等の方法を用いることができる。こ
の場合においても他のセラミックス超電導物質を生成す
る構成物質に適用し得ることは言うまでもない。The superconducting material to be adhered to the ceramic sheet is Y.
Ba2Cu3Ox (x <14; perovskite)
is a typical reconstituted material, but of course it is not limited to this, and it is also possible to use a material to which a fourth element such as F is added, or other ceramic superconducting materials. In addition, as a constituent material that produces a ceramic superconducting material by heating under oxidizing conditions, for example, Y-2
A melt of Ba-3Cu alloy, Y, Ba-Cu, or their oxides or carbonates (Y203, BaCO2, CuO, etc.) is used. In this case, it is preferable that the atomic ratio of the constituent elements in the melt corresponds to the atomic ratio of the metals constituting the superconducting material. In addition to these depositions in the melt state, deposition in the gas phase or ionic state, such as plasma discharge, sputtering, vapor deposition, and thermal spraying, can be used. It goes without saying that this method can also be applied to constituent materials that produce other ceramic superconducting materials.
焼結層の外側に形成される安定化層は、例えばCu、A
g等やこれらの合金が用いられ、この層はメツキや蒸着
等により形成される。この安定化層は熱的安定性(局部
的熱応力の緩和)、化学的安定性を向上させる他、機械
的保護や端子付けを容易にする目的で配置される。尚安
定化材として高温で酸化物を生成しないAg、Au、P
t等の金属やこれ等の合金を被覆した場合には、酸化性
条件下の加熱により適当な速度で、かつ微細なセラミッ
クス超電導物質を生成することが可能となる。この場合
にはセラミックス超電導物質の焼結層は、酸素気流中や
酸素加圧下で酸化調整しながら生成させることが好まし
い。焼結温度は約700〜1000℃である。The stabilizing layer formed on the outside of the sintered layer is made of, for example, Cu, A
This layer is formed by plating, vapor deposition, etc. This stabilizing layer is provided for the purpose of improving thermal stability (alleviation of local thermal stress) and chemical stability, as well as mechanical protection and facilitating terminal attachment. In addition, Ag, Au, and P, which do not generate oxides at high temperatures, can be used as stabilizing materials.
When coated with a metal such as T or an alloy thereof, it becomes possible to produce a fine ceramic superconducting material at an appropriate rate by heating under oxidizing conditions. In this case, the sintered layer of the ceramic superconducting material is preferably formed in an oxygen stream or under oxygen pressure while controlling the oxidation. The sintering temperature is approximately 700-1000°C.
上記の安定化層の外側には通常絶縁被膜が施される。こ
の絶縁被覆としては、UV硬化ウレタン樹脂やPVFエ
ナメル樹脂等の有機絶縁材料や、アルミナやポリボロシ
ロキサン樹脂等の無機絶縁材料を用いることができる。An insulating coating is usually applied on the outside of the above-mentioned stabilizing layer. As this insulating coating, organic insulating materials such as UV curing urethane resin and PVF enamel resin, and inorganic insulating materials such as alumina and polyborosiloxane resin can be used.
(作用)
本発明の方法においては、可撓性を有するセラミックス
面状体の片側または両側に、セラミックス超電導物質あ
るいは酸化性条件下で加熱することによりセラミックス
超電導物質を生成する構成物質を被着した後この外側に
安定化材を被覆し、次いで焼結するため、軽量で可撓性
を有する磁気シールド材を製造することができ、このシ
ールド材は静磁場や強磁場に対しても有効である。(Function) In the method of the present invention, a ceramic superconducting material or a constituent material that generates a ceramic superconducting material by heating under oxidizing conditions is deposited on one or both sides of a flexible ceramic sheet body. After that, the outside is coated with a stabilizing material and then sintered, making it possible to produce a lightweight and flexible magnetic shielding material that is effective against static and strong magnetic fields. .
また面状体がセラミックスよりなるため超電導物質との
熱膨張差も小さく密着性に優れている。Furthermore, since the planar body is made of ceramic, the difference in thermal expansion with the superconducting material is small and the adhesiveness is excellent.
またAg、Au、Pt等の金属やこれ等の合金を安定化
材として用いた場合には、焼結時に安定化材と内部のセ
ラミックスとは反応せず、例えば(高温)
(低温)
を生じ、実質的にAgを通して酸素が内部へ拡散して解
離するため、外部からの酸素の供給が適度に制限され急
激なセラミックス化による粉末化と急激な温度上昇によ
って生ずる燃焼が防止される。Furthermore, when metals such as Ag, Au, Pt, or alloys of these metals are used as stabilizing materials, the stabilizing materials do not react with the internal ceramics during sintering, resulting in, for example, (high temperature) (low temperature). Since oxygen substantially diffuses into the interior through Ag and dissociates, the supply of oxygen from the outside is appropriately restricted, and combustion caused by powdering due to rapid ceramicization and rapid temperature rise is prevented.
この場合には微細なペロブスカイトが長時間かけて生成
されるため、その特性も良好である。In this case, since fine perovskite is produced over a long period of time, its properties are also good.
(実施例)
第1図に示すように、チラノ繊維(宇部興産株式会社製
5i−Ti−C−0系セラミックスファイバ商品名)か
らなる織布(1)の両面に同相反応法により生成したY
Ba2Cu3Oxの微粉末(2)をプラズマ溶射により
5〜6μmの厚さに被着せしめた。次いでこの面外側に
銀(3)を1μmの厚さに蒸着した後、930℃で18
時間加熱焼結した。(Example) As shown in Fig. 1, Y
Ba2Cu3Ox fine powder (2) was deposited to a thickness of 5 to 6 μm by plasma spraying. Next, silver (3) was vapor-deposited on the outside of this surface to a thickness of 1 μm, and then heated at 930°C for 18
Sintered by heating for hours.
このようにして得られたシールド材(4)の超電導特性
(臨界温度; T c )を第2図に示す。この図から
明らかなようにTcΦ85にであり液体窒素温度(77
K)で充分磁気遮へい効果を有する。The superconducting properties (critical temperature; T c ) of the shielding material (4) thus obtained are shown in FIG. As is clear from this figure, TcΦ85 and liquid nitrogen temperature (77
K) has a sufficient magnetic shielding effect.
[発明の効果]
以上、本発明によれば、軽量で可撓性に優れ、かつ静磁
場や変化の遅い磁場あるいは強磁場に対しても有効な磁
気シールド材を容易に製造することができる。また安定
化材として高温で酸化物を生成しない銀等の金属を用い
た場合には、熱処理時の酸素の供給を適当に制限できる
ためセラミックスの粉末化や燃焼を防止することができ
、良好な結晶を生成することが可能となる。[Effects of the Invention] As described above, according to the present invention, it is possible to easily manufacture a magnetic shielding material that is lightweight, has excellent flexibility, and is effective against static magnetic fields, slow-changing magnetic fields, and strong magnetic fields. In addition, if a metal such as silver that does not generate oxides at high temperatures is used as a stabilizing material, the supply of oxygen during heat treatment can be appropriately restricted, which prevents the ceramic from turning into powder or burning. It becomes possible to generate crystals.
第1図は本発明の方法により製造された磁気シールド材
の概略断面図、第2図はその超電導特性を示すグラフで
ある。
1・・・・・・・織布
2・・・・・・・YBa2Cu3Ox被着層3・・・・
・・・銀安定化層
4・・・・・・・磁気シールド材
代理人 弁理士 守 谷 −雄FIG. 1 is a schematic cross-sectional view of a magnetic shielding material manufactured by the method of the present invention, and FIG. 2 is a graph showing its superconducting properties. 1... Woven fabric 2... YBa2Cu3Ox adhesion layer 3...
...Silver stabilizing layer 4...Magnetic shielding material agent Patent attorney Moritani -O
Claims (10)
側に、セラミックス超電導物質あるいは酸化性条件下で
加熱することによりセラミックス超電導物質を生成する
構成物質を被着せしめた後、この被着物質の外側に安定
化材を被覆し、次いで加熱処理することによりセラミッ
クス超電導物質の焼結層を形成することを特徴とする磁
気シールド用超電導材の製造方法。1. After depositing a ceramic superconducting material or a constituent material that generates a ceramic superconducting material by heating under oxidizing conditions on one or both sides of a flexible ceramic sheet body, the outer side of this deposited material is 1. A method for producing a superconducting material for magnetic shielding, comprising forming a sintered layer of a ceramic superconducting material by coating with a stabilizing material and then heat-treating.
る織布あるいは不織布である特許請求の範囲第1項記載
の磁気シールド用超電導材の製造方法。2. 2. The method for producing a superconducting material for magnetic shielding according to claim 1, wherein the ceramic sheet body is a woven or nonwoven fabric made of ceramic fibers.
セラミックスフィルムである特許請求の範囲第1項記載
の磁気シールド用超電導材の製造方法。3. 2. The method of manufacturing a superconducting material for magnetic shielding according to claim 1, wherein the ceramic sheet is a ceramic sheet or a ceramic film.
セラミックスよりなる特許請求の範囲第1項乃至第3項
いずれか1項記載の磁気シールド用超電導材の製造方法
。4. 4. A method for producing a superconducting material for magnetic shielding according to any one of claims 1 to 3, wherein the ceramic sheet body is made of silicon carbide-based or oxide-based ceramics.
ある特許請求の範囲第1項乃至第4項いずれか1項記載
の磁気シールド用超電導材の製造方法。5. The method for manufacturing a superconducting material for magnetic shielding according to any one of claims 1 to 4, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
ミックス面状体の被着は、溶融状態より施される特許請
求の範囲第1項乃至第5項いずれか1項記載の磁気シー
ルド用超電導材の製造方法。6. The method for manufacturing a superconducting material for magnetic shielding according to any one of claims 1 to 5, wherein the superconducting material or the constituent material for producing the same is applied to the ceramic planar body in a molten state. .
ミックス面状体への被着は、気相あるいはイオン状態よ
り施される特許請求の範囲第1項乃至第5項いずれか1
項記載の磁気シールド用超電導材の製造方法。7. Any one of claims 1 to 5, in which the superconducting material or the constituent materials that produce it are applied to the ceramic sheet body in a gas phase or in an ionic state.
A method for manufacturing a superconducting material for magnetic shielding as described in .
はその合金よりなる特許請求の範囲第1項乃至第7項い
ずれか1項記載の磁気シールド用超電導材の製造方法。8. 8. The method for producing a superconducting material for magnetic shielding according to any one of claims 1 to 7, wherein the stabilizing material is made of a metal or an alloy thereof that does not produce oxides at high temperatures.
、Ag、Au、Ptまたはこれ等の合金である特許請求
の範囲第8項記載の磁気シールド用超電導材の製造方法
。9. 9. The method for producing a superconducting material for magnetic shielding according to claim 8, wherein the metal or alloy thereof that does not generate oxides at high temperatures is Ag, Au, Pt, or an alloy thereof.
囲第8項あるいは第9項記載の磁気シールド用超電導材
の製造方法。10. The method for producing a superconducting material for magnetic shielding according to claim 8 or 9, wherein the heat treatment is performed under oxidizing conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62332993A JP2585667B2 (en) | 1987-12-28 | 1987-12-28 | Manufacturing method of superconducting material for magnetic shield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62332993A JP2585667B2 (en) | 1987-12-28 | 1987-12-28 | Manufacturing method of superconducting material for magnetic shield |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01173792A true JPH01173792A (en) | 1989-07-10 |
JP2585667B2 JP2585667B2 (en) | 1997-02-26 |
Family
ID=18261100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62332993A Expired - Lifetime JP2585667B2 (en) | 1987-12-28 | 1987-12-28 | Manufacturing method of superconducting material for magnetic shield |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2585667B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103044454A (en) * | 2011-10-14 | 2013-04-17 | 四川科伦药业股份有限公司 | Method for synthesizing cefoselis sulfate |
-
1987
- 1987-12-28 JP JP62332993A patent/JP2585667B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103044454A (en) * | 2011-10-14 | 2013-04-17 | 四川科伦药业股份有限公司 | Method for synthesizing cefoselis sulfate |
Also Published As
Publication number | Publication date |
---|---|
JP2585667B2 (en) | 1997-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940009871B1 (en) | Preparation of superconducting oxides and oxide-metal compositions | |
KR890007441A (en) | Oxide Superconducting Molded Article and Manufacturing Method Thereof | |
KR880014017A (en) | Method of manufacturing thin film superconducting oxide film | |
EP0393932B1 (en) | Superconducting structure for magnetic shielding | |
JPH01173792A (en) | Manufacture of magnetic shielding superconductive material | |
US5273957A (en) | Thermally sprayed lead-containing thick layers | |
JPH01173790A (en) | Manufacture of magnetic shielding superconductive material | |
JP2621270B2 (en) | Superconducting material for magnetic shield | |
JP2662552B2 (en) | Superconducting material for magnetic shield | |
JPH01173791A (en) | Manufacture of magnetic shielding superconductive material | |
JPH01131025A (en) | Production of oxide based superconducting material | |
JPH01173794A (en) | Manufacture of magnetic shielding superconductive material | |
JPH01173793A (en) | Manufacture of magnetic shielding superconductive material | |
JP2653109B2 (en) | Superconducting material | |
JPH01216598A (en) | Manufacture of superconducting material for magnetic shield | |
US5786306A (en) | Synthesis of high TC superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys | |
JPH02183915A (en) | Oxide superconducting compact | |
JPS63274017A (en) | Superconductive wire material | |
JPH01216599A (en) | Manufacture of superconducting material for magnetic shield | |
JP2575443B2 (en) | Method for producing oxide-based superconducting wire | |
JP2816792B2 (en) | Superconducting magnetic shield container and method of manufacturing the same | |
JPH0339458A (en) | Clad material of metal and oxide superconductor and its production | |
JP2575442B2 (en) | Method for producing oxide-based superconducting wire | |
JP2527789B2 (en) | Method for manufacturing oxide-based superconducting wire | |
JPH01292871A (en) | Manufacture of oxide superconductive molding with electrode layer |