JPH02183915A - Oxide superconducting compact - Google Patents

Oxide superconducting compact

Info

Publication number
JPH02183915A
JPH02183915A JP1002578A JP257889A JPH02183915A JP H02183915 A JPH02183915 A JP H02183915A JP 1002578 A JP1002578 A JP 1002578A JP 257889 A JP257889 A JP 257889A JP H02183915 A JPH02183915 A JP H02183915A
Authority
JP
Japan
Prior art keywords
layer
noble metal
superconductor
metal layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1002578A
Other languages
Japanese (ja)
Inventor
Isanori Sato
功紀 佐藤
Nakahiro Harada
原田 中裕
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1002578A priority Critical patent/JPH02183915A/en
Publication of JPH02183915A publication Critical patent/JPH02183915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superior superconducting characteristic by providing an oxide superconducting layer on either side of a base material via a noble metal layer or inorganic substance layer. CONSTITUTION:An oxide superconducting layer is provided on either side of a base material 3 via a noble metal layer 2 or an inorganic substance layer 4; or the superconducting layer 1 may be provided via both the noble metal layer 2 and the inorganic substance layer 4. Substances with a thermal expansion rate of 5 to 15X10<-4>/ deg.C should preferably be used as the base material 3. They include Ti, Zr, Ta, Nb, Fe, Ni, Co, Cr, Mo and their alloys. Other candidates include carbon, ceramics and crystals, such as MgO, SrTiO3, ZrO2 and Al2O3. Ag, Au, Pt, Pd and others are used for the noble metal layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、線材、ケーブル、配線回路板或いは電気、電
子部品等に使用される酸化物超電導成形体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide superconducting molded body used for wires, cables, printed circuit boards, electrical and electronic parts, and the like.

〔従来の技術とその課B) 酸化物超電導体としては、液体He温度で超電導となる
Ba−Pb−B1系酸化物等が知られていたが、近年液
体H2、Ne史にはN2温度以上で超電導を示す酸化物
超電導体(以下超電導体と略記)が開発されている。こ
れらの超電導体としては、例えば(L a XS r 
I−X) ZCu 04やY B a 。
[Prior art and its section B] As oxide superconductors, Ba-Pb-B1 oxides that become superconducting at liquid He temperature are known, but in recent years, liquid H2 and Ne history have been developed at temperatures above N2 temperature. Oxide superconductors (hereinafter abbreviated as superconductors) that exhibit superconductivity have been developed. Examples of these superconductors include (L a XS r
I-X) ZCu 04 and YBa.

Cu、OXの様な第3族す元素、アルカリ土類金属及び
Cuからなる複合酸化物があり、その構造はKzN i
 F4構造や0□欠損性の層状ペロブスカイト型構造で
ある。同類のCu−0面構造を有する層状物質として、
B i −3r−Ca−Cu−0系やT l −B a
 −Ca −Cu −0系物質があり、より高い臨界温
度(Tc)のものが得られている。
There is a composite oxide consisting of Cu, Group 3 elements such as OX, alkaline earth metals, and Cu, and its structure is KzN i
These are F4 structure and 0□-deficient layered perovskite structure. As a layered material with a similar Cu-0 plane structure,
B i -3r-Ca-Cu-0 system and T l -B a
-Ca-Cu-0 type materials are available, and those with higher critical temperatures (Tc) have been obtained.

上記の酸化物超電導体はペースト印刷等により厚膜にし
たり、PVD法やCVD法により薄膜にしたり、これを
線材化したりして導体に成形され、各種用途に利用が試
みられている。
The above-mentioned oxide superconductors are formed into conductors by making thick films by paste printing or the like, by making thin films by PVD or CVD, or by making wires, and their use in various applications has been attempted.

上記のPVD法等の気相法は、いずれも真空中で成膜が
行なわれるが、例えば前記YBa2CulOXの様な酸
化物を形成する場合は分解反応等の副反応により02が
不足するので、0□を若干添加した真空が利用されるが
、最適な組成に維持する事が困難で、このX)形成膜は
無定形状に成り易く、従って超電導特性に劣り又は全く
超電導特性を示さないものであった。
In all vapor phase methods such as the PVD method described above, film formation is performed in a vacuum, but when forming an oxide such as YBa2CulOX, 02 is insufficient due to side reactions such as decomposition reactions. A vacuum with a slight addition of □ is used, but it is difficult to maintain the optimal composition, and the film formed tends to be amorphous, and therefore has poor superconducting properties or does not exhibit superconducting properties at all. there were.

この様な事から従来酸11ダ後、酸素含有雰囲気中で9
00°C前後に加熱して、酸素等の組成及び結晶構造の
調整を行なって超電導体となしている。
For this reason, conventionally after 11 days of acid, 9 times in an oxygen-containing atmosphere.
It is heated to around 00°C to adjust the composition of oxygen, etc. and the crystal structure, making it a superconductor.

ところで上記の超電導成形体には、実用上の種々の機械
的並びに熱的な応力や歪みに耐え、且つ目的とする形状
に成形出来る可撓性が要求されている。例えば超電導成
形体は使用時に液体窒素等の冷媒中で冷却されるが、使
用を中断する時常温に戻すので、厳しいヒートサイクル
条件下で使用される事になる。
By the way, the above-mentioned superconducting molded body is required to have the flexibility to withstand various mechanical and thermal stresses and strains in practical use and to be able to be molded into a desired shape. For example, superconducting molded bodies are cooled in a refrigerant such as liquid nitrogen during use, but are returned to room temperature when use is interrupted, so they are used under severe heat cycle conditions.

この様な事から超電導体を金属の様な可撓性に優れた基
体上に成膜して使用する方法が検討されているが、前記
の超電導体に調整する為の加熱処理の際に基体の金属が
超電導体中に拡散して臨界電流密度(J、)ばかりでな
く、臨界温度(T c )や臣n界磁場(Hc)等の超
電導特性が低下するという問題があった。
For this reason, a method of forming a superconductor into a film on a highly flexible substrate such as a metal is being considered. There is a problem in that the metal diffuses into the superconductor, degrading not only the critical current density (J, ) but also the superconducting properties such as the critical temperature (T c ) and the magnetic field (Hc).

父上記の加熱処理の際に、超電導体の構成成分が界面や
表面に偏析したり、甚だしい場合には揮発して目的とす
る超電導特性が充分に得られな(なるという問題があっ
た。
During the above-mentioned heat treatment, there was a problem in that the constituent components of the superconductor segregated on the interface or surface, or in extreme cases, volatilized, making it impossible to obtain the desired superconducting properties.

更には超電導体膜が外気と接すると湿気や大気中の汚染
ガス成分により超電導特性が急速に劣化するという様な
問題もあった。
Furthermore, when the superconductor film comes into contact with the outside air, there is a problem in that the superconducting properties rapidly deteriorate due to moisture and contaminant gas components in the atmosphere.

〔課題を解決する為の手段及び作用〕[Means and actions to solve the problem]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、機械的、熱的な応力、
歪みに耐え、可撓性に優れ、且つ経時劣化のない超電導
成形体を提供する事である。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to reduce mechanical and thermal stress,
It is an object of the present invention to provide a superconducting molded body that is resistant to distortion, has excellent flexibility, and does not deteriorate over time.

即ち本発明は、少なく共片側に貴金属層又は無機物層或
いは両層が順次設けられている酸化物超電導体層が貴金
属層又は無機物層を基体側にして基体の両側に設けられ
ている事を特徴とする酸化物超電導成形体である。
That is, the present invention is characterized in that the oxide superconductor layer, in which the noble metal layer or the inorganic layer or both layers are sequentially provided on at least one side, is provided on both sides of the substrate with the noble metal layer or the inorganic layer on the substrate side. This is an oxide superconducting molded body.

本発明の酸化物超電導成形体は、第1図にその断面図を
示した様に、基体3の両側にそれぞれ貴金属層2(1図
a)又は無機物層4(1図b)を介して酸化物超電導体
層1が設けられたもの、第3図にその断面図を示した様
に、基体3の両側にそれぞれ貴金属層2、酸化物超電導
体N1及び貴金属層5が順次設けられたものが代表的構
造である。
As shown in the cross-sectional view of FIG. 1, the oxide superconducting molded body of the present invention has a noble metal layer 2 (FIG. 1a) or an inorganic layer 4 (FIG. 1b) on both sides of a base 3. As shown in the cross-sectional view of FIG. This is a typical structure.

本発明は上記断面構造に限定されるものではなく、第2
.4図に示す如く貴金属層2と酸化物超電導体層1との
間に金属又は/及び非金属からなる無機物層4を介在さ
せて用いる事は有用である。
The present invention is not limited to the above cross-sectional structure, but the second
.. As shown in FIG. 4, it is useful to interpose an inorganic layer 4 made of metal and/or non-metal between the noble metal layer 2 and the oxide superconductor layer 1.

本発明において、基体はその用途に応じて機能を異にす
るが、多くの場合機械的強度が第1であり、電磁的安定
化等の安定化作用も重要である。
In the present invention, the functions of the substrate vary depending on its use, but in most cases mechanical strength is the most important, and stabilizing effects such as electromagnetic stabilization are also important.

電線ケーブル導体用の基体には金属が可撓性や強度に優
れるばかりでなく、長尺体を安定して安価に入手出来る
ので最も適している。
Metal is the most suitable material for the base material for electric wire and cable conductors because it not only has excellent flexibility and strength, but also can be obtained in long lengths stably and at low cost.

基体として要求される特性としては、冷熱サイクルで熱
的ストレスを極小化出来るものが好ましく、熱膨張率が
5〜15 X 10−”/”Cの物質が有利であり、例
えばTi、Zr、Ta、、Nb、Fe、Ni、Cr、C
o、Mo及びこれらの合金等がある。もちろんこれらと
導電性、伝熱性のより高いCu、Af等と複合化した基
体も有用である。
As for the characteristics required for the substrate, it is preferable that the thermal stress can be minimized during cooling and heating cycles, and materials with a coefficient of thermal expansion of 5 to 15 x 10-"/"C are advantageous, such as Ti, Zr, Ta, etc. ,,Nb,Fe,Ni,Cr,C
o, Mo, and alloys thereof. Of course, substrates made of composite materials such as Cu and Af, which have higher electrical conductivity and heat conductivity, are also useful.

基体には、上記金属材料以外にカーボン、又は5rTi
C)+、MgO5ZrO,、Aff、O!、Be01B
N、A/!N等のセラミックスの単結晶や多結晶体、或
いはSin、や多成分ガラス等の無定形無機物層が適用
される。
The base material is made of carbon or 5rTi in addition to the above metal materials.
C) +, MgO5ZrO,, Aff, O! , Be01B
N, A/! A single crystal or polycrystal of ceramic such as N, or an amorphous inorganic layer such as Sin or multi-component glass is applied.

又基体の形状は、板状体や長尺のテープ、線等が一般的
である。
The shape of the substrate is generally a plate, a long tape, a wire, or the like.

本発明において基体の上方又は超電導体層の−F方に設
けられる貴金属層には、Ag5Au、Pd。
In the present invention, the noble metal layer provided above the substrate or on the -F side of the superconductor layer includes Ag5Au and Pd.

pt、In、Os、Ru、Rh等又はこれらの合金が用
いられる。
PT, In, Os, Ru, Rh, etc. or alloys thereof are used.

本発明において基体の上方に設けられる貴金属層は、加
熱処理の際基体の構成元素が超電導体中に侵入するのを
防止するバリヤーとしての作用を有し、又超電導体層の
上方に設けられる貴金属層は、加熱処理の際生じる超電
導体構成元素の偏析や揮発を抑えると共に、使用中に、
超電導体が外気中の湿気やSO□、N08、H,S、(
l□等の有害ガスと反応して急速に変質するのを防止す
るものであり、又超電導体の熱的磁気的安定化に寄与し
、更には外部との電気的接続においても有効に作用する
In the present invention, the noble metal layer provided above the substrate acts as a barrier to prevent constituent elements of the substrate from entering the superconductor during heat treatment, and the noble metal layer provided above the superconductor layer acts as a barrier to prevent the constituent elements of the substrate from entering the superconductor during heat treatment. The layer suppresses the segregation and volatilization of the superconductor constituent elements that occur during heat treatment, and also prevents the
Superconductors can absorb moisture in the outside air, SO□, N08, H, S, (
It prevents rapid deterioration due to reaction with harmful gases such as l .

上記において基体上に形成される貴金属層の厚さは、0
.01〜10μm、特に好ましくは、0.1〜2μmに
おいてバリヤーきしての効果が最もよく発渾される。
In the above, the thickness of the noble metal layer formed on the substrate is 0
.. The barrier effect is best developed at a thickness of 0.01 to 10 μm, particularly preferably 0.1 to 2 μm.

本発明において超電導体層と接して設けられる無機物層
は、超電導体層の成長を支配して超電導電流を極大化す
る結晶方位への配向成長を促進する作用を有している。
In the present invention, the inorganic layer provided in contact with the superconductor layer has the effect of controlling the growth of the superconductor layer and promoting oriented growth in a crystal orientation that maximizes the superconducting current.

即ち前記の如く酸化物超電導体の多くは層状物質であり
、C軸に直交するCu −0面に平行に超電導電流が流
れるので、基板に垂直にC軸をたてた配向成長が多くの
場合必要となる。
In other words, as mentioned above, most oxide superconductors are layered materials, and superconducting current flows parallel to the Cu -0 plane perpendicular to the C-axis, so in many cases oriented growth with the C-axis perpendicular to the substrate occurs. It becomes necessary.

これらの作用をする無機物は結晶構造と化学反応性の両
観点から選択されるもので、特に次の条件、■超電導体
と低反応性である事、■正方品、斜方晶、6方晶、ペロ
ブスカイトからなる結晶構造体である事、を満足する必
要がある。
The inorganic substances that perform these actions are selected from the viewpoints of both crystal structure and chemical reactivity, and in particular, the following conditions must be met: ■ Low reactivity with superconductors; ■ Tetragonal, orthorhombic, and hexagonal crystals. It is necessary to satisfy the following requirements: , it is a crystal structure consisting of perovskite.

上記無機物の内非金属としては、A2□01、Z「0□
、MgO1TiO,,5rTiOt、Sin、、B e
 O,B a F t、BaZrOx、BaTi0.、
Bad、Cab、SrO等の物質が適用し得るものであ
り、その厚さは0.018m以上、特に0.05〜2μ
mにおいて実用上有用である。
Among the above inorganic substances, non-metals include A2□01, Z"0□
,MgO1TiO,,5rTiOt,Sin,,B e
O, B a F t, BaZrOx, BaTi0. ,
Materials such as Bad, Cab, and SrO can be applied, and the thickness thereof is 0.018 m or more, particularly 0.05 to 2 μm.
It is practically useful in m.

本発明において、上記無機物層には、金属を用いる事も
可能で、上記金属には、遷移金属又はその合金が通して
いる。本発明に用いられる遷移金属は、周i11律表の
第4.5.6族に属する元素で、特に有用な元素はTi
、Zr、Cr、Mo、W、Nb、Ta、Fe、Ni、C
oやN1−P系、N1−W−P系、Ni−Cu系又はオ
ーステナイト系ステンレス鋼のFe−Cr−Ni系等の
合金である。
In the present invention, it is also possible to use a metal for the inorganic layer, and a transition metal or an alloy thereof passes through the metal. The transition metal used in the present invention is an element belonging to Group 4.5.6 of the I11 table, and a particularly useful element is Ti.
, Zr, Cr, Mo, W, Nb, Ta, Fe, Ni, C
These are alloys such as O, N1-P series, N1-W-P series, Ni-Cu series, or Fe-Cr-Ni series of austenitic stainless steels.

本発明において、超電導体層の代表的物質は、前記の(
LaS r)、Cuba、Y B a 2Cu 30x
sBiSrCaCuO11/!BaCaCuOの外、こ
れらの置換物質としてY S r o、5B a 1.
5Cu zox、YosS Co、zB azcu、=
o、等も含まれ、いずれもペロブスカイト型構造を呈す
るものである。父上記酸化物においてOの一部をF等の
アニオン、CUの一部をAg、Ni、Fe等のカチオン
で置換したものも含まれる。
In the present invention, the representative material of the superconductor layer is the above-mentioned (
LaS r), Cuba, YBa 2Cu 30x
sBiSrCaCuO11/! In addition to BaCaCuO, these substituents include Y S r o, 5B a 1.
5Cu zox, YosS Co, zB azcu, =
o, etc., all of which exhibit a perovskite structure. Also included are oxides in which part of O is replaced by an anion such as F, and part of CU is replaced by a cation such as Ag, Ni, or Fe.

超電導体層の厚さは任意であるが、0.1μm〜1mm
、特に0.5〜50μmが好ましい。
The thickness of the superconductor layer is arbitrary, but it is 0.1 μm to 1 mm.
, particularly preferably 0.5 to 50 μm.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

ハステロイ基板又は5O3304基板の両側に種々材質
の貴金属層、無機物層及び超電導体層を順次形成して酸
化物超電導成形体を製造した。
A noble metal layer, an inorganic layer, and a superconductor layer made of various materials were sequentially formed on both sides of a Hastelloy substrate or a 5O3304 substrate to produce an oxide superconductor molded body.

上記において各々の層の形成は、高周波マグネトロンス
パッタ装置を用いて行ない、貴金属層はAr雰囲気(5
mTo r r)中で、無機物層ばAr+Ch雰囲気(
7mTorr、0.50%)中でそれぞれ基体を600
 ’Cに加熱して形成した。
In the above, each layer is formed using a high frequency magnetron sputtering device, and the noble metal layer is formed in an Ar atmosphere (5
mTo r r), the inorganic layer is Ar+Ch atmosphere (
600 mTorr, 0.50%)
It was formed by heating to 'C.

又超電導体層はAr+O□雰囲気(80mTorr、0
z50%)中で基体を650°Cに加熱し、100Wの
負荷をかけて形成した。
In addition, the superconductor layer was placed in an Ar+O□ atmosphere (80 mTorr, 0
The substrate was heated to 650° C. and a load of 100 W was applied.

更に上記酸化物超電導成形体に適宜種々の条件で加熱処
理を施した。加熱処理後200℃迄2°C/minの速
度で冷却した。
Further, the oxide superconducting molded body was subjected to heat treatment under various conditions as appropriate. After the heat treatment, it was cooled to 200°C at a rate of 2°C/min.

この様にして得られた各々の酸化物超電導成形体につい
て、結晶配向性、臨界温度(Tc)、臨界電流密度(J
、)を1lll11定した。
Regarding each oxide superconducting compact obtained in this way, the crystal orientation, critical temperature (Tc), critical current density (J
, ) were determined to be 1llll11.

結果は各々の層の材質及び製造条件を併記して第1表に
示した。
The results are shown in Table 1 together with the material and manufacturing conditions for each layer.

第1表から明らかな様に、本発明品(No1〜6)はい
ずれもT、及びJ、が高い値を示している。
As is clear from Table 1, the products of the present invention (Nos. 1 to 6) all exhibit high values of T and J.

これは、主に本発明品の貴金属層が基体金属元素の超電
導体層への拡散を抑制し、又無機物層が超電導体の成長
を支配し、結晶方位への配向成長を促進する等の作用に
よるものである。
This is mainly due to the effects of the noble metal layer of the product of the present invention suppressing the diffusion of the base metal element into the superconductor layer, and the inorganic layer controlling the growth of the superconductor and promoting oriented growth in the crystal orientation. This is due to

本発明品の内、No6は無機物層が介在していない為、
超電導体層の結晶がランダム配向となり、その結果磁場
中でのJ、が低い値となった。
Among the products of the present invention, No. 6 has no intervening inorganic layer, so
The crystals of the superconductor layer were randomly oriented, resulting in a low value of J in the magnetic field.

比較品のNo7は無機物層が薄すぎる為効果が薄く、又
No8は貴金属層も無機物層もない為、基体中の金属元
素が超電導体層に拡散してJcが低下したものと考えら
れる。
Comparative product No. 7 has a too thin inorganic layer, so the effect is weak, and No. 8 has neither a noble metal layer nor an inorganic layer, so it is thought that the metal elements in the base diffused into the superconductor layer, resulting in a decrease in Jc.

〔発明の効果〕〔Effect of the invention〕

以上に述べた様に本発明の酸化物超電導成形体は、酸化
物超電導体の基体と接する側に貴金属層が直接又は無機
物層を介して設けられているので、基体からの有害元素
の侵入が防止されると共に、超電導体の結晶配向が制御
されており、従って実用レベルに達する優れた超電導特
性を呈するものであって、工業上顕著な効果を奏するも
のである。
As described above, in the oxide superconducting molded body of the present invention, since the noble metal layer is provided directly or via an inorganic layer on the side of the oxide superconductor that is in contact with the substrate, harmful elements can be prevented from entering from the substrate. At the same time, the crystal orientation of the superconductor is controlled, and therefore it exhibits excellent superconducting properties that reach a practical level, and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、本発明の酸化物超電導成形体の実施例を
示す断面説明図である。 1・−酸化物超電導体層、2−貴金属層、3−・−基体
、4・−無機物層、5−・−貴金属層。 第 図 第2図 第3図 第4図
1 to 4 are cross-sectional explanatory views showing examples of the oxide superconducting molded body of the present invention. 1.--oxide superconductor layer, 2--noble metal layer, 3-.-substrate, 4.--inorganic layer, 5-.-noble metal layer. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 少なく共片側に貴金属層又は無機物層或いは両層が順次
設けられている酸化物超電導体層が貴金属層又は無機物
層を基体側にして基体の両側に設けられている事を特徴
とする酸化物超電導成形体。
An oxide superconductor characterized in that oxide superconductor layers are provided on both sides of a substrate with the noble metal layer or the inorganic layer facing the substrate, and at least a noble metal layer, an inorganic layer, or both layers are sequentially provided on one side of the oxide superconductor. Molded object.
JP1002578A 1989-01-09 1989-01-09 Oxide superconducting compact Pending JPH02183915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002578A JPH02183915A (en) 1989-01-09 1989-01-09 Oxide superconducting compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002578A JPH02183915A (en) 1989-01-09 1989-01-09 Oxide superconducting compact

Publications (1)

Publication Number Publication Date
JPH02183915A true JPH02183915A (en) 1990-07-18

Family

ID=11533253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002578A Pending JPH02183915A (en) 1989-01-09 1989-01-09 Oxide superconducting compact

Country Status (1)

Country Link
JP (1) JPH02183915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
JPH05147941A (en) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol Production of superconductor and superconductor
EP0731986B1 (en) * 1994-09-29 1998-03-04 Abb Research Ltd. Current-limiting device
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147941A (en) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol Production of superconductor and superconductor
US5132278A (en) * 1990-05-11 1992-07-21 Advanced Technology Materials, Inc. Superconducting composite article, and method of making the same
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate
EP0731986B1 (en) * 1994-09-29 1998-03-04 Abb Research Ltd. Current-limiting device
US5828291A (en) * 1994-09-29 1998-10-27 Abb Research Ltd. Multiple compound conductor current-limiting device
DE4434819C5 (en) * 1994-09-29 2004-05-27 Abb Research Ltd. Current limiting device

Similar Documents

Publication Publication Date Title
KR970005157B1 (en) Oxide superconductor shaped body and method of manufacturing
US4921833A (en) Superconducting member
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
JPH07335051A (en) Oxide superconductive tape with stabilizing layer and manufacture thereof
JPH02183915A (en) Oxide superconducting compact
JP2649242B2 (en) Superconducting ceramic laminate and its manufacturing method
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH01221810A (en) Oxide superconductive mold and its manufacture
JP2643972B2 (en) Oxide superconducting material
JP3623868B2 (en) High durability oxide superconductor and manufacturing method thereof
JP3061634B2 (en) Oxide superconducting tape conductor
JP2532914B2 (en) Superconducting ceramic laminate and its manufacturing method
JPS6161555B2 (en)
JPH02152110A (en) Oxide superconducting compact and manufacture thereof
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPH01105412A (en) Manufacture of oxide superconductive compact
JPH01115009A (en) Oxide superconducting compact and manufacture thereof
JPH08157213A (en) Oxide superconductive film and its production
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JPH02217306A (en) Production of oxide superconductor
JP5087447B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JPH01144519A (en) Oxide-based covering member for superconductor
JP2595261B2 (en) Manufacturing method of oxide superconductor
JPH01186510A (en) Superconducting material