JP2643972B2 - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JP2643972B2
JP2643972B2 JP63047217A JP4721788A JP2643972B2 JP 2643972 B2 JP2643972 B2 JP 2643972B2 JP 63047217 A JP63047217 A JP 63047217A JP 4721788 A JP4721788 A JP 4721788A JP 2643972 B2 JP2643972 B2 JP 2643972B2
Authority
JP
Japan
Prior art keywords
layer
superconducting
oxide
oxide layer
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63047217A
Other languages
Japanese (ja)
Other versions
JPH01220872A (en
Inventor
三紀夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63047217A priority Critical patent/JP2643972B2/en
Publication of JPH01220872A publication Critical patent/JPH01220872A/en
Application granted granted Critical
Publication of JP2643972B2 publication Critical patent/JP2643972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ジョセフソン素子、超電導記憶素子等の超
電導デバイス、超電導配線、超電導線材などとして使用
可能な酸化物系超電導材に関する。
The present invention relates to an oxide-based superconducting material that can be used as a superconducting device such as a Josephson element or a superconducting storage element, a superconducting wiring, a superconducting wire, or the like.

「従来の技術およびその課題」 最近に至り、常電導状態から超電導状態へ遷移する臨
界温度(Tc)が液体窒素温度を超える値を示す酸化物系
超電導体が種々発見されている。この種の酸化物系超電
導体は、一般式A−B−Cu−O(ただし、AはY,Sc,La,
Yb,Er,Eu,Ho,Dy等の周期律表III a族元素の1種以上を
示し、BはBe,Mg,Ca,Sr,Ba等の周期律表II a族元素の1
種以上を示す)で示される酸化物であり、液体ヘリウム
で冷却することが必要であった従来の合金系あるいは金
属間化合物系の超電導体と比較して格段に有利な冷却条
件で使用できることから、実用上極めて有望な超電導材
料として研究がなされている。
"Prior art and its problems" Recently, various oxide-based superconductors have been discovered in which the critical temperature (Tc) at which the transition from the normal conducting state to the superconducting state exceeds the liquid nitrogen temperature. This type of oxide superconductor has a general formula AB-Cu-O (where A is Y, Sc, La,
Yb, Er, Eu, Ho, Dy, etc., represents at least one kind of group IIIa element of the Periodic Table III, such as Be, Mg, Ca, Sr, Ba.
Oxides), which can be used under significantly more advantageous cooling conditions than conventional alloy or intermetallic compound superconductors that required cooling with liquid helium. Research has been conducted as a very promising superconducting material for practical use.

そして現在のところ、このような超電導体を用い、銅
やステンレス鋼などの金属製あるいはアルミナ、チタン
酸ストロンチウム、YSZなどのセラミックス製の基材の
表面に酸化物超電導薄膜を形成して酸化物系超電導材を
形成するには、例えば基材の表面に、真空蒸着法、スパ
ッタリング法、分子線エピタキシー法、化学気相成長
法、レーザPVD法などの成膜法を用いて酸化物超電導層
を形成する方法が試みられている。
At present, using such a superconductor, an oxide superconducting thin film is formed on the surface of a metal substrate such as copper or stainless steel or a ceramic substrate such as alumina, strontium titanate, or YSZ. To form a superconducting material, for example, an oxide superconducting layer is formed on the surface of a substrate using a film forming method such as a vacuum deposition method, a sputtering method, a molecular beam epitaxy method, a chemical vapor deposition method, and a laser PVD method. Ways have been tried.

しかし、セラミックス製の基材は、脆いために、衝撃
を受けて破損しやすく、機械強度の優れた酸化物系超電
導材の作成が困難な問題があった。また、これらのセラ
ミックス材料は、表面に酸化物超電導層を形成する際セ
ラミックス中の不純物が超電導層中に拡散混入して超電
導特性を低下させることのないように、高純度のセラミ
ックス材料を使用する必要があり、このような高純度セ
ラミックス材料は価格が非常に高い上に、その製造工程
上、大面積の板体や長尺な線材等を得ることが困難なこ
とから、このようなセラミックスからなる基材を利用で
きる範囲が限られてしまう問題があった。
However, since the ceramic base material is brittle, it is easily damaged by an impact, and there is a problem that it is difficult to prepare an oxide superconducting material having excellent mechanical strength. In addition, when forming an oxide superconducting layer on the surface, a high-purity ceramic material is used so that impurities in the ceramic do not diffuse into the superconducting layer and deteriorate the superconducting characteristics. It is necessary to use such high-purity ceramic materials because they are very expensive and it is difficult to obtain large-area plates and long wires in the manufacturing process. There is a problem that the range in which the base material can be used is limited.

また、基材として金属を用い、その表面に超電導層を
形成する場合には、界面において基材の金属と酸化物超
電導体とが反応を起こして非超電導性の物質が生成さ
れ、超電導特性が低下してしまう問題があった。また、
金属製の基材と超電導層の熱膨張率に格差があるため
に、その製造時あるいは使用時の温度変化によって歪を
生じ、超電導特性の低下あるいは断線などを起こす問題
があった。
When a metal is used as the base material and a superconducting layer is formed on the surface, the metal of the base material reacts with the oxide superconductor at the interface to form a non-superconducting substance, and the superconducting property is reduced. There was a problem of lowering. Also,
Since there is a difference in the coefficient of thermal expansion between the metal base material and the superconducting layer, there is a problem in that distortion occurs due to a change in temperature during the production or use thereof, resulting in deterioration of superconducting characteristics or disconnection.

本発明は、上記課題に鑑みてなされたもので、優れた
超電導特性を有し、かつ基材に対する超電導層の密着性
が良好で機械強度が高い酸化物系超電導材の製造方法の
提供を目的とする。
The present invention has been made in view of the above problems, and has an object to provide a method for producing an oxide-based superconducting material having excellent superconducting properties, good adhesion of a superconducting layer to a substrate, and high mechanical strength. And

「課題を解決するための手段」 上記課題解決の手段として、本発明の酸化物系超伝導
材は、Ag,Ti,Ta,Nb,Ni,Zr,ステンレス,ハステロイ,イ
ンコネル,ニクロム,Cu−Ni合金からなる群から選択さ
れる1種からなる金属製基材の表面に、酸化物層が形成
され、この酸化物層上にAu,Pt,Ag,Pd等の非酸化性金属
からなる非酸化層が形成され、この非酸化層上に酸化物
超電導層が形成されてなるものである。
"Means for Solving the Problems" As means for solving the above problems, the oxide-based superconducting material of the present invention comprises Ag, Ti, Ta, Nb, Ni, Zr, stainless steel, Hastelloy, Inconel, Nichrome, Cu-Ni An oxide layer is formed on the surface of a metal substrate made of one selected from the group consisting of alloys, and a non-oxidizing metal made of a non-oxidizing metal such as Au, Pt, Ag, or Pd is formed on the oxide layer. A layer is formed, and an oxide superconducting layer is formed on this non-oxidized layer.

「作用」 上記基材の表面に、酸化物層と非酸化層と超電導層を
積層形成するので、非酸化層が基材あるいは酸化物層か
らの不純物の拡散混入を防止する。
[Operation] Since an oxide layer, a non-oxidized layer, and a superconducting layer are formed on the surface of the base material, the non-oxidized layer prevents diffusion of impurities from the base material or the oxide layer.

また、超電導層と基材との間に酸化物層と非酸化物層
を形成したので、熱変化によっておこる歪が緩和され
る。
In addition, since the oxide layer and the non-oxide layer are formed between the superconducting layer and the base material, the distortion caused by the heat change is reduced.

「実施例」 第1図は本発明による酸化物系超伝導材の一実施例を
示す図であって、符号1は超電導材である。
Example FIG. 1 is a view showing an example of an oxide superconducting material according to the present invention, and reference numeral 1 denotes a superconducting material.

この超電導材1は、金属製の板状の基材2上にMgOか
らなる酸化物層3が形成され、この酸化物層3上にAuの
非酸化層4が形成され、この非酸化層4上にY−Ba−Cu
−O系超電導体からなる超電導層5が形成されてなるも
のである。
In this superconducting material 1, an oxide layer 3 made of MgO is formed on a metal plate-shaped base material 2, a non-oxidized layer 4 of Au is formed on the oxide layer 3, and a non-oxidized layer 4 of Au is formed. Y-Ba-Cu on top
A superconducting layer 5 made of an -O-based superconductor is formed.

上記基材の金属材料としては、Ag,Ti,Ta,Nb,Ni,Zr,ス
テンレス,ハステロイ,インコネル,ニクロム,Cu−Ni
合金からなる群から選択される1種からなるものが用い
られる。
Ag, Ti, Ta, Nb, Ni, Zr, stainless steel, Hastelloy, Inconel, Nichrome, Cu-Ni
One consisting of one selected from the group consisting of alloys is used.

また、上記酸化物層3および非酸化層4の厚さは、超
電導層5の膜厚等によって適宜設定されるが、例えば超
電導層5の膜厚を1μmとする場合には、酸化物層3お
よび非酸化層4を0.2〜2μm程度の膜厚とするのが好
ましい。
The thickness of the oxide layer 3 and the non-oxide layer 4 is appropriately set depending on the thickness of the superconducting layer 5 and the like. For example, when the thickness of the superconducting layer 5 is 1 μm, Preferably, the non-oxidized layer 4 has a thickness of about 0.2 to 2 μm.

この超電導材1を製造するには、まず、板状の基材2
を用意し、この基材2の表面に真空蒸着法、スパッタリ
ング法、分子線エピタキシー法、化学気相成長法、レー
ザPVD法などの成膜法を用い、MgOからなる酸化物層3を
形成する。次に、この酸化物層3上にAuからなる非酸化
層4を形成する。この非酸化層4を形成する方法として
は、真空蒸着法やスパッタリング法が好適に使用され
る。次に、この非酸化層4上にY−Ba−Cu−O超電導体
からなる超電導層5を形成する。非酸化層4上に超電導
層5を形成するには、真空蒸着法、スパッタリング法、
分子線エピタキシー法、化学気相成長法、レーザPVD法
などの成膜法の他、Y−Ba−Cu−O超電導体粉末にエタ
ノールなどの分散媒を加えてスラリー状の材料とし、こ
の材料をスプレー塗装あるいは基材1を材料中に浸漬し
て引き上げる操作によって基材1の非酸化層4上に材料
を付着させた後、800〜1000℃で1〜数十時間の熱処理
を施して超電導層5を形成する方法などが用いられる。
上記Y−Ba−Cu−O超電導粉末あるいはスパッタリング
法やレーザPVD法などに使用されるY−Ba−Cu−O超電
導体のターゲット材料を製造するには、例えばY2O3粉末
とBaCO3粉末とCuO粉末をY:Ba:Cu=1:2:3となるように均
一に混合した混合粉末を酸素含有雰囲気中、700〜1000
℃で1〜数十時間加熱した後、粉砕、圧粉成形、加熱の
一連の処理を1回以上繰り返し行って超電導体粉末と
し、更にこの超電導体粉末をバルク状に圧粉成形し、焼
結することによってターゲット材料を作成する方法が好
適に用いられる。
In order to manufacture the superconducting material 1, first, a plate-shaped substrate 2
Is prepared, and an oxide layer 3 made of MgO is formed on the surface of the substrate 2 by using a film forming method such as a vacuum evaporation method, a sputtering method, a molecular beam epitaxy method, a chemical vapor deposition method, and a laser PVD method. . Next, a non-oxidized layer 4 made of Au is formed on the oxide layer 3. As a method for forming the non-oxidized layer 4, a vacuum deposition method or a sputtering method is suitably used. Next, a superconducting layer 5 made of a Y-Ba-Cu-O superconductor is formed on the non-oxidized layer 4. To form the superconducting layer 5 on the non-oxidized layer 4, a vacuum deposition method, a sputtering method,
In addition to film forming methods such as molecular beam epitaxy, chemical vapor deposition, and laser PVD, a dispersion medium such as ethanol is added to Y-Ba-Cu-O superconductor powder to form a slurry material. After depositing the material on the non-oxidized layer 4 of the base material 1 by spray coating or dipping the base material 1 into the material and pulling it up, a heat treatment is performed at 800 to 1000 ° C. for 1 to several tens of hours to form a superconducting layer. For example, a method of forming 5 is used.
In the production of the Y-Ba-Cu-O superconductor powder or target material Y-Ba-Cu-O superconductors are used such as a sputtering method or a laser PVD method, for example, Y 2 O 3 powder and BaCO 3 powder And a mixed powder obtained by uniformly mixing CuO powder so that Y: Ba: Cu = 1: 2: 3, in an oxygen-containing atmosphere, 700 to 1000
After heating at 1 ° C. for one to several tens of hours, a series of processes of pulverization, compacting, and heating are repeated at least once to obtain a superconductor powder, and further, the superconductor powder is compacted into a bulk and sintered. By doing so, a method of preparing a target material is suitably used.

なお、スパッタリング法などの成膜法を用いて超電導
層5を形成した場合であっても、超電導層5形成後に必
要に応じて熱処理を施しても良い。この熱処理は酸素含
有雰囲気中、800〜1000℃で1〜数十時間加熱した後、
室温まで徐冷する加熱条件が好ましい。
Note that, even when the superconducting layer 5 is formed using a film forming method such as a sputtering method, heat treatment may be performed as necessary after the superconducting layer 5 is formed. This heat treatment is performed in an oxygen-containing atmosphere at 800 to 1000 ° C for 1 to several tens of hours,
Heating conditions of slowly cooling to room temperature are preferred.

以上の各操作によって、第1図に示す超電導材1が製
造される。
By the above operations, superconducting material 1 shown in FIG. 1 is manufactured.

この超電導材1は、金属製の基材2上に、MgOからな
る酸化物層3が形成され、この酸化物層3上にAuからな
る非酸化層4が形成され、この非酸化層4上にY−Ba−
Cu−O超電導体からなる超電導層5が形成された構成な
ので、超電導層5中に基材2および酸化物層3から不純
物が拡散混入することがなく、高品質の超電導層5を形
成することができ、超電導材1の超電導特性を向上させ
ることができる。
In the superconducting material 1, an oxide layer 3 made of MgO is formed on a metal base material 2, a non-oxidized layer 4 made of Au is formed on the oxide layer 3, To Y-Ba-
Since the superconducting layer 5 made of a Cu—O superconductor is formed, impurities are not diffused and mixed into the superconducting layer 5 from the base material 2 and the oxide layer 3, and the high-quality superconducting layer 5 is formed. And the superconducting properties of the superconducting material 1 can be improved.

また、基材2と超電導層5の間に、酸化物層3と、柔
らかく酸化物との接着性の良いAuからなる非酸化層4を
介在させたことにより、基材2と超電導層5の熱膨張率
の格差による超電導層5への熱応力付加が緩和され、超
電導層5に生じるクラック等の不良を減少させることが
できる。
Further, the oxide layer 3 and the non-oxidized layer 4 made of Au, which is soft and has good adhesiveness to the oxide, are interposed between the base material 2 and the superconducting layer 5 so that the base material 2 and the superconducting layer 5 The application of thermal stress to superconducting layer 5 due to the difference in coefficient of thermal expansion is reduced, and defects such as cracks generated in superconducting layer 5 can be reduced.

また、Auからなる非酸化層4と超電導層5の成分とが
反応して各々の層の界面に非超電導物質が生成されるこ
とがないので、非酸化層4を超電導層5の安定化材とし
て作用させることができる。
Further, since the non-oxidized layer 4 made of Au and the components of the superconducting layer 5 do not react with each other to generate a non-superconducting substance at the interface between the layers, the non-oxidized layer 4 is used as a stabilizing material for the superconducting layer 5. Can act as

なお、先の実施例では、酸化物層3の材料としてMgO
を用いたが、酸化物層3の材料はこれに限定されること
なく、例えばYSZ、チタン酸ストロンチウム、チタン酸
バリウム、アルミナなどセラミックス材料を用いても良
く、また基材2に酸化処理を施し、その表面に酸化皮膜
を形成し、これを酸化物層3としても良い。
In the above embodiment, the material of the oxide layer 3 is MgO
However, the material of the oxide layer 3 is not limited to this. For example, a ceramic material such as YSZ, strontium titanate, barium titanate, and alumina may be used. An oxide film may be formed on the surface, and this may be used as the oxide layer 3.

また、先の実施例では、非酸化層4の材料としてAuを
用いたが、この非酸化層4の材料としてはAuに限定され
ることなく、Pt,Ag,Pdなどの貴金属の1種あるいは2種
以上を用いることができる。
In the above embodiment, Au was used as the material of the non-oxide layer 4. However, the material of the non-oxide layer 4 is not limited to Au, and one of noble metals such as Pt, Ag, and Pd or Two or more types can be used.

また、基材2の形状は板状に限定されることなく、線
状、管状、テープ状、柱状など種々の形状のものを用い
ることができる。
Further, the shape of the base material 2 is not limited to a plate shape, and various shapes such as a linear shape, a tubular shape, a tape shape, and a column shape can be used.

また、先の実施例では超電導層5の材料としてY−Ba
−Cu−O超電導体を用いたが、超電導層5の材料はこれ
に限定されることなく、これ以外のA−B−Cu−O(た
だし、AはY,Sc,La,Yb,Er,Eu,Ho,Dy等の周期律表III a
族元素の1種以上またはBiなどの周期律表V b族元素ま
たはTlなどの周期律表III b族元素の1種以上を示し、
BはBe,Mg,Ca,Sr,Ba等の周期律表II a族元素の1種以上
を示す)超電導体などの酸化物超電導体を用いても良
い。なおY−Ba−Cu−O以外の酸化物超電導体として
は、Bi1SruCavCuyOx(ただし、0.5≦u、0.2≦v、1≦
yである。)、Tl2Ba2Ca2Cu3Oxなどである。
In the above embodiment, the material of the superconducting layer 5 is Y-Ba
Although a -Cu-O superconductor was used, the material of the superconducting layer 5 is not limited to this, but other AB-Cu-O (where A is Y, Sc, La, Yb, Er, Periodic table of Eu, Ho, Dy, etc.IIIa
A periodic table V such as Bi or at least one element of group III b such as Tl;
B represents one or more elements of Group IIa elements of the periodic table such as Be, Mg, Ca, Sr, and Ba.) An oxide superconductor such as a superconductor may be used. As oxide superconductors other than Y-Ba-Cu-O, Bi 1 SruCavCuyOx (provided that 0.5 ≦ u, 0.2 ≦ v, 1 ≦
y. ), Tl 2 Ba 2 Ca 2 Cu 3 Ox.

(製造例) 厚さ1mmのハステロイ製の基板上に、マグネトロンス
パッタ法を用い、MgOからなる0.5μm厚の酸化物層を形
成した。次に、この酸化物層上に、マグネトロンスパッ
タ法を用い、0.5μm厚のAu層を形成した。
(Production Example) A 0.5 μm thick oxide layer made of MgO was formed on a 1 mm thick Hastelloy substrate by magnetron sputtering. Next, an Au layer having a thickness of 0.5 μm was formed on this oxide layer by magnetron sputtering.

一方、Y2O3粉末と、BaCO3粉末と、CuO粉末を、Y:Ba:C
u=1:2:3となるように均一に混合した混合粉末を大気
中、900℃で12時間加熱し、これを粉砕後、圧粉成形処
理を行ってバルク状の成形体とし、この成形体を酸素気
流中、950℃で24時間加熱してスパッタ用超電導ターゲ
ット材を作成した。
On the other hand, Y 2 O 3 powder, BaCO 3 powder, and CuO powder are mixed with Y: Ba: C
The mixed powder uniformly mixed so that u = 1: 2: 3 is heated in the air at 900 ° C. for 12 hours, and after pulverization, a powder compacting process is performed to form a bulk compact. The body was heated at 950 ° C. for 24 hours in an oxygen stream to prepare a superconducting target material for sputtering.

次に、上記ターゲット材を用い、先の基板のAu層上
に、マグネトロンスパッタ法によって厚さ1μmの超電
導層を形成した。次いで、酸化物層とAu層と超電導層の
各層を積層形成した基板を酸素雰囲気中において、900
℃で3時間加熱した後、室温まで徐冷する熱処理を施し
た。以上の各操作により、第1図に示すものと同等構成
の超電導材(以下、実施例と言う)を得た。
Next, a superconducting layer having a thickness of 1 μm was formed on the Au layer of the previous substrate by magnetron sputtering using the above target material. Next, the substrate on which the oxide layer, the Au layer, and the superconducting layer are laminated is formed in an oxygen atmosphere at 900 900.
After heating at 3 ° C. for 3 hours, a heat treatment for gradually cooling to room temperature was performed. Through the above operations, a superconducting material having the same configuration as that shown in FIG. 1 (hereinafter, referred to as an example) was obtained.

なお、次に示す構成の比較例1および比較例2を作成
し、上記実施例との性能比較を行った。
In addition, Comparative Examples 1 and 2 having the following configurations were prepared, and the performance was compared with that of the above-described example.

上記実施例に用いたものと同様の基板上に、マグネト
ロンスパッタ法を用いてMgOからなる厚さ0.5μmの酸化
物層を形成し、この酸化物層上に、マグネトロンスパッ
タ法を用いてY−Ba−Cu−O超電導体からなる厚さ1μ
mの超電導層を形成し、比較例1とした。
On a substrate similar to that used in the above embodiment, an oxide layer of MgO having a thickness of 0.5 μm was formed using a magnetron sputtering method, and a Y-layer was formed on this oxide layer using a magnetron sputtering method. 1μ thick Ba-Cu-O superconductor
m of superconducting layer was formed, and Comparative Example 1 was obtained.

また、上記実施例に用いたものと同様の基板上に、マ
グネトロンスパッタ法を用い、厚さ0.5μmのAu層を形
成し、このAu層上に、マグネトロンスパッタ法を用いて
Y−Ba−Cu−O超電導体からなる厚さ1μmの超電導層
を形成し、比較例2とした。
A 0.5 μm thick Au layer was formed on the same substrate as that used in the above example by magnetron sputtering, and Y-Ba-Cu was formed on this Au layer by magnetron sputtering. A superconducting layer made of a -O superconductor and having a thickness of 1 µm was formed, and Comparative Example 2 was obtained.

そして、実施例および比較例1,2の各々の臨界温度(T
c)、臨界電流密度(Jc)を測定した。結果を表1に示
す。
Then, each critical temperature (T
c) The critical current density (Jc) was measured. Table 1 shows the results.

表1に示すように、本発明による超電導材は、優れた
超電導特性が得られることが確認された。
As shown in Table 1, it was confirmed that the superconducting material according to the present invention had excellent superconducting properties.

また、上記実施例および比較例1,2の各々の超電導層
をAES(オージェ電子分光)法により分析し、不純物の
拡散状態を調べた結果、比較例1の超電導層中には酸化
物層中のMgが拡散混合しており、また比較例2の超電導
層中には基板中のNiがAu層を通して拡散混合されている
のに対し、実施例の超電導材中にはMgやNiの拡散混入は
認められなかった。
Further, the superconducting layers of the above example and comparative examples 1 and 2 were analyzed by AES (Auger electron spectroscopy) to examine the diffusion state of impurities. Mg is diffused and mixed, and Ni in the substrate is diffused and mixed in the superconducting layer of Comparative Example 2 through the Au layer, whereas Mg and Ni are diffused and mixed in the superconducting material of Example. Was not found.

「発明の効果」 以上説明したように本発明による酸化物系超電導材
は、Ag,Ti,Ta,Nb,Ni,Zr,ステンレス,ハステロイ,イン
コネル,ニクロム,Cu−Ni合金からなる群から選択され
る1種からなる金属製基材の表面に、酸化物層が形成さ
れ、この酸化物層上にAu,Pt,Ag,Pd等の非酸化性金属か
らなる非酸化層が形成され、この非酸化層上に酸化物超
電導層が形成された構成なので、超電導層中に基材およ
び酸化物層から不純物が拡散混入することがなく、高品
質の超電導層を形成することができ、超電導材の超電導
特性を向上させることができる。
[Effect of the Invention] As described above, the oxide superconducting material according to the present invention is selected from the group consisting of Ag, Ti, Ta, Nb, Ni, Zr, stainless steel, Hastelloy, Inconel, nichrome, and Cu-Ni alloy. An oxide layer is formed on the surface of a metal substrate made of one of the following, and a non-oxidized layer made of a non-oxidizable metal such as Au, Pt, Ag, or Pd is formed on the oxide layer. Since the oxide superconducting layer is formed on the oxide layer, impurities do not diffuse into the superconducting layer from the base material and the oxide layer, and a high-quality superconducting layer can be formed. Superconductivity can be improved.

また、基材と超電導層の間に酸化物層および非酸化層
を介在させたことにより、基材と超電導層の熱膨張率の
格差による超電導層への熱応力付加が緩和され、超電導
層に生じるクラック等の不良を減少させることができ
る。
In addition, the interposition of the oxide layer and the non-oxidized layer between the base material and the superconducting layer alleviates the application of thermal stress to the superconducting layer due to the difference in the coefficient of thermal expansion between the base material and the superconducting layer. It is possible to reduce defects such as cracks that occur.

また、Auなどの非酸化性金属からなる非酸化層は、超
電導層の成分との反応性がなく、超電導層との界面に非
超電導物質が生成することがないので、非酸化層を超電
導層の安定化材として作用させることができる。
The non-oxidized layer made of a non-oxidizable metal such as Au has no reactivity with the components of the superconducting layer, and no non-superconducting substance is generated at the interface with the superconducting layer. Can act as a stabilizer.

【図面の簡単な説明】 第1図は本発明の一実施例を示す図であって、超電導材
の断面図である。 1……超電導材、2……基材、3……酸化物層、4……
非酸化層、5……超電導層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing one embodiment of the present invention, and is a sectional view of a superconducting material. 1 ... superconducting material, 2 ... substrate, 3 ... oxide layer, 4 ...
Non-oxidized layer, 5 ... superconducting layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−305574(JP,A) 特開 昭64−50580(JP,A) 特開 平1−206675(JP,A) 特開 昭64−87763(JP,A) Appl.Phys.Lett.51 (25),(21 December 1987),PP.2164−2166 Appl.Phys.Lett.51 (25),(21 December 1987),PP.2155−2157 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-305574 (JP, A) JP-A-64-50580 (JP, A) JP-A-1-206675 (JP, A) JP-A 64-64 87763 (JP, A) Appl. Phys. Lett. 51 (25), (21 December 1987), PP. 2164-2166 Appl. Phys. Lett. 51 (25), (21 December 1987), PP. 2155-2157

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ag,Ti,Ta,Nb,Ni,Zr,ステンレス,ハステロ
イ,インコネル,ニクロム、Cu−Ni合金からなる群から
選択される1種からなる金属製基材の表面に、酸化物層
が形成され、この酸化物層上にAu,Pt,Ag,Pdからなる群
から選択される少なくとも一種の非酸化性金属からなる
非酸化層が形成され、この非酸化層上に酸化物超電導層
が形成されてなることを特徴とする酸化物系超電導材。
An oxide is formed on the surface of a metal substrate made of one selected from the group consisting of Ag, Ti, Ta, Nb, Ni, Zr, stainless steel, Hastelloy, Inconel, Nichrome, and Cu-Ni alloy. A layer is formed, a non-oxidized layer made of at least one non-oxidizable metal selected from the group consisting of Au, Pt, Ag, and Pd is formed on the oxide layer, and an oxide superconducting layer is formed on the non-oxidized layer. An oxide superconducting material comprising a layer formed.
JP63047217A 1988-02-29 1988-02-29 Oxide superconducting material Expired - Fee Related JP2643972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047217A JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047217A JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01220872A JPH01220872A (en) 1989-09-04
JP2643972B2 true JP2643972B2 (en) 1997-08-25

Family

ID=12769002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047217A Expired - Fee Related JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2643972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393932B1 (en) * 1989-04-17 1995-04-05 Ngk Insulators, Ltd. Superconducting structure for magnetic shielding
US6743531B2 (en) * 2001-06-22 2004-06-01 Fujikura Ltd. Oxide superconducting conductor and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305574A (en) * 1987-06-06 1988-12-13 Chichibu Cement Co Ltd Substrate for superconductor
JPS6450580A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Superconductor substrate and manufacture thereof
JP2899285B2 (en) * 1988-02-15 1999-06-02 松下電器産業株式会社 Superconductor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.51(25),(21 December 1987),PP.2155−2157
Appl.Phys.Lett.51(25),(21 December 1987),PP.2164−2166

Also Published As

Publication number Publication date
JPH01220872A (en) 1989-09-04

Similar Documents

Publication Publication Date Title
KR970005157B1 (en) Oxide superconductor shaped body and method of manufacturing
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
EP0292959B1 (en) Superconducting member
AU2004200987A1 (en) Enhanced High Temperature Coated Superconductors
JP2643972B2 (en) Oxide superconducting material
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JP2563315B2 (en) Superconductor wire and method of manufacturing the same
EP0324220A1 (en) Superconducting thin films
JP2590142B2 (en) Superconductor
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
JP3061634B2 (en) Oxide superconducting tape conductor
JP2721322B2 (en) Oxide superconducting compact
JPS6161555B2 (en)
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JPH02183915A (en) Oxide superconducting compact
JP2813287B2 (en) Superconducting wire
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2001236834A (en) Oxide superconducting conductor
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2821885B2 (en) Superconducting thin film forming method
JPH03252007A (en) Oxide superconductor and manufacture thereof
JP2634186B2 (en) Method for producing oxide-based superconducting material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees