JP2532986B2 - Oxide superconducting wire and coil using the same - Google Patents
Oxide superconducting wire and coil using the sameInfo
- Publication number
- JP2532986B2 JP2532986B2 JP2256828A JP25682890A JP2532986B2 JP 2532986 B2 JP2532986 B2 JP 2532986B2 JP 2256828 A JP2256828 A JP 2256828A JP 25682890 A JP25682890 A JP 25682890A JP 2532986 B2 JP2532986 B2 JP 2532986B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- superconductor
- oxide
- film
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導線材に係わり、さらに詳しく
は、高いJcを有する酸化物超電導体がクエンチした場合
の電流パスを有する酸化物超電導線材に関する。Description: TECHNICAL FIELD The present invention relates to an oxide superconducting wire, and more specifically, to an oxide superconducting wire having a current path when an oxide superconductor having a high Jc is quenched. Regarding
層状ペロブスカイト構造を有するY−Ba−Cu−O係、
Bi−Sr−Ca−Cu−O係、Ti−Ba−Ca−Cu−C系の酸化物
超電導材料では、臨界温度(Tc)が液体窒素温度(77
K)以上であるため、超電導磁石、コイル或いはエレク
トロニクスデバイスへの広い応用が期待されている。Y-Ba-Cu-O layer having a layered perovskite structure,
In the case of Bi-Sr-Ca-Cu-O and Ti-Ba-Ca-Cu-C based oxide superconducting materials, the critical temperature (Tc) is the liquid nitrogen temperature (77).
Since it is above K), it is expected to be widely applied to superconducting magnets, coils or electronic devices.
セラミックス単結晶基板を用いた酸化物超電導体の合
成方法で、これまで106A/cm2オーダの高いJcを得てお
り、例えばアプライド、フィジックス、レターズ(App
l.Phys.Lett.)53(16),1557(1988)に記載されてい
るとおりである。We have obtained high Jc of the order of 10 6 A / cm 2 by the method of synthesizing oxide superconductors using ceramics single crystal substrate. For example, Applied, Physics, Letters (App
L. Phys. Lett.) 53 (16), 1557 (1988).
さらにその他のn型,P型の超電導線材もすでに公知で
ある。Furthermore, other n-type and P-type superconducting wires are already known.
しかしながら、上記に示したセラミックス単結晶基板
を用いた酸化物超電導体は、高いJcを得ることが比較的
容易である反面、酸化物超電導体のテープ状線材におい
て、超電導体がクエンチした場合の電流パスについて考
慮されておらず、実用面で問題があった。However, while the oxide superconductor using the ceramic single crystal substrate shown above is relatively easy to obtain a high Jc, in the tape-shaped wire rod of the oxide superconductor, the current when the superconductor is quenched There was a problem in practical use because the pass was not considered.
本発明の目的は、高いJcを有する酸化物超電導線材に
おいて、超電導体がクエンチした場合の電流パスを有す
る酸化物超電導線材及びそれを用いたコイルを提供する
ことにある。An object of the present invention is to provide an oxide superconducting wire having a high Jc, which has a current path when the superconductor is quenched, and a coil using the oxide superconducting wire.
上記目的を達成するために、本発明では、酸化物超電
導体と導電性セラミックスと金属とが連続的に形成さ
れ、前記酸化物超電導体と金属とで導電性セラミックス
をはさんだ構造を有すると共に、前記導電性セラミック
スが、ReO3、TiO、CrO2から選ばれた1種以上からなる
ことを特徴とする酸化物超電導線材としたものである。In order to achieve the above object, in the present invention, an oxide superconductor, a conductive ceramics, and a metal are continuously formed, and a structure having a conductive ceramics sandwiched between the oxide superconductor and the metal, The oxide superconducting wire is characterized in that the conductive ceramic is made of one or more selected from ReO 3 , TiO and CrO 2 .
また、上記目的を達成するために、本発明では、酸化
物超電導体と導電性セラミックスと金属とが連続的に形
成され、前記導電性セラミックスの長手方向に形成され
た凹部及び/又は 部に金属が連続して形成されており、かつ前記導電性セ
ラミックスと金属の共有する面が平坦であり、該平坦な
基板面に酸化物超電導体が形成されていることを特徴と
する酸化物超電導線材としたものであり、また、本発明
では、うずまき状に凹部が形成されたセラミックス基板
の該凹部に金属を連続して形成した基板において、前記
金属とセラミックスにまたがって酸化物超電導体がうず
まき状に形成されているディスク状コイル構造を有する
ことを特徴とする酸化物超電導線材としたものである。Further, in order to achieve the above object, in the present invention, an oxide superconductor, a conductive ceramics, and a metal are continuously formed, and a recess and / or a recess formed in the longitudinal direction of the conductive ceramics. An oxide characterized in that a metal is continuously formed in the portion, a surface shared by the conductive ceramic and the metal is flat, and an oxide superconductor is formed on the flat substrate surface. In the present invention, a superconducting wire is used, and in the present invention, in a substrate in which a metal is continuously formed in the recess of a ceramic substrate in which a recess is formed in a spiral shape, an oxide superconductor is spread over the metal and the ceramic. An oxide superconducting wire having a disc-shaped coil structure formed in a spiral shape.
上記において、導電性セラミックスとしては、ReO2、
TiO、CrO2から選ばれた1種以上からなるセラミックス
を用いるのが好適であり、光アシストゾルゲル法で製造
されたものがよい。In the above, as the conductive ceramics, ReO 2 ,
It is preferable to use ceramics composed of at least one selected from TiO and CrO 2 , and those manufactured by the photo-assisted sol-gel method are preferable.
セラミックスとしては、MgO、SrTiO3、YSZ、Ta2O3か
ら選ばれた1種以上からなるものを用いるのがよく、ま
た、フレキシブルYSZテープからなるものも使用でき
る。As the ceramic, it is preferable to use one made of at least one selected from MgO, SrTiO 3 , YSZ, and Ta 2 O 3 , and a flexible YSZ tape can also be used.
また、本発明において使用できる金属としては、Au、
Ag、Cu、Ni−Cr合金(ハステロイ)から選ばれた1種以
上を用いるのがよいが、他の金属でも導電性をもち、超
電導体と反応しない金属なら使用することができる。Further, as the metal that can be used in the present invention, Au,
It is preferable to use at least one selected from Ag, Cu and Ni-Cr alloy (Hastelloy), but other metals can be used as long as they have conductivity and do not react with the superconductor.
本発明の酸化物超電導線材は、コイル状に巻くことに
より酸化物超電導コイルとなり、また、前記のうずまき
状に形成したディスク状コイルを、超電導材で上下連結
して多層構造の超電導コイルとすることができる。The oxide superconducting wire of the present invention becomes an oxide superconducting coil by winding it in a coil shape, and the disc-shaped coils formed in the spiral shape are vertically connected by a superconducting material to form a superconducting coil having a multilayer structure. You can
セラミックスのMgO(100)又はSrTiO3(100)単結晶
基板上へ酸化物超電導体を合成すると、基板の影響を受
けて、基板の格子定数と比較的近い結晶の配向した超電
導体が形成できる。また、両者の熱膨張係数が近いた
め、熱処理に伴うクラック等を制御でき、さらにセラミ
ックスと超電導体の反応性も小さいため、超電導特性を
向上でき、高いJcを示す。When an oxide superconductor is synthesized on a ceramic MgO (100) or SrTiO 3 (100) single crystal substrate, a crystal oriented superconductor relatively close to the lattice constant of the substrate can be formed under the influence of the substrate. Further, since the thermal expansion coefficients of the two are close to each other, cracks and the like due to heat treatment can be controlled, and since the reactivity between the ceramic and the superconductor is small, the superconducting property can be improved and high Jc is exhibited.
一方、直接金属基板への超電導体の形成は、熱膨張係
数の違いによるクラックの発生及び金属と超電導体の高
反応性、さらに超電導体の無配向化により、高いJcは得
られない。しかし、金属基板は、超電導体がクエンチし
た場合の電流パス等の安定化材としての働きがある。従
って、このセラミックスと金属を組み合せた基板へ酸化
物超電導体を形成することで、超電導体がクエンチした
場合の電流パスを有する、配向した高Jcな超電導体を形
成できる。On the other hand, when a superconductor is directly formed on a metal substrate, a high Jc cannot be obtained because of the generation of cracks due to the difference in thermal expansion coefficient, the high reactivity between the metal and the superconductor, and the non-oriented superconductor. However, the metal substrate has a function as a stabilizing material such as a current path when the superconductor is quenched. Therefore, by forming an oxide superconductor on a substrate in which this ceramic and metal are combined, an oriented high Jc superconductor having a current path when the superconductor is quenched can be formed.
また、超電導体と金属との間の中間体として、導電性
セラミックスを用いると、基板と超電導体の反応の抑
制、配向した超電導結晶及び超電導体と金属間の電流パ
スとしての働きがある。従って、前記中間体として導電
性セラミックスを用いた場合に、高Jcな超電導体が形成
でき、さらに超電導体がクエンチした場合の電流パス等
の安定化材としての働きがある。Further, when a conductive ceramic is used as an intermediate between the superconductor and the metal, it functions as suppressing the reaction between the substrate and the superconductor, as an oriented superconducting crystal, and as a current path between the superconductor and the metal. Therefore, when a conductive ceramic is used as the intermediate, a high Jc superconductor can be formed, and further, it functions as a stabilizing material for current paths when the superconductor is quenched.
金属へのセラミックス膜の形成方法は、低温度で光ア
シストゾルゲル法により行える。また、広い温度領域で
金属へのセラミックス膜或いはセラミックスの金属膜の
形成方法は、各種スパッタ法、蒸着法、レーザ・デポジ
ション法等のPVD法及び化学気相成長法(CVD)等の通常
の成膜法で行える。The method of forming the ceramic film on the metal can be performed by the photo-assisted sol-gel method at low temperature. In addition, a method for forming a ceramic film or a metal film of a ceramic on a metal in a wide temperature range is various ordinary sputtering methods such as a sputtering method, a vapor deposition method, a PVD method such as a laser deposition method, and a chemical vapor deposition method (CVD). It can be performed by a film forming method.
前記金属とセラミックスで構成された基板への酸化物
超電導体の形成は、前記PVD法及びCVD法などの通常の成
膜法、及びドクターブレード法の塗布技術、さらには粉
末を出発原料とした線引き−圧延法により行える。The oxide superconductor is formed on the substrate composed of the metal and the ceramics by the ordinary film forming methods such as the PVD method and the CVD method, the coating technology of the doctor blade method, and the drawing using powder as a starting material. -Can be done by rolling method.
以下、本発明を具体的実施例によりさらに詳細に説明
するが、本発明はこれらに限定されない。Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto.
参考例1 本発明の参考例を第1図に斜視図として示す。MgO1の
側面にまずRFスパッタリング法により、Au膜2を0.1mm
厚で成膜し、MgO−Au基板とした。次にRFマグネトロン
スパッタリング法により、表1に示す条件下で、前記Mg
O−Au基板上へ、Y1Ba2Cu3O7- δ酸化物超電導膜の形成を
行った。Reference Example 1 A reference example of the present invention is shown in FIG. 1 as a perspective view. First, the Au film 2 is formed to a thickness of 0.1 mm on the side surface of MgO1 by the RF sputtering method.
A thick film was formed to obtain a MgO-Au substrate. Next, by the RF magnetron sputtering method under the conditions shown in Table 1, the Mg
A Y 1 Ba 2 Cu 3 O 7- δ oxide superconducting film was formed on an O-Au substrate.
第2図に、成膜したY1Ba2Cu3O7- δ酸化物超電導膜の
微小部X回折パターンを示す。MgO基板上の前記超電導
膜3は、(oon)面に基づく回折ピークのみが明瞭に認
められ、基板面に対してC軸配向した膜であることがわ
かる。さらに、基板と超電導膜の反応層は10nm以下であ
ることが、SEM像より観察できた。一方、Au基板上の前
記超電導膜4は、(oon)ピーク以外に各方位の面ピー
クが同定できることにより、無配向な膜であることがわ
かる。この超電導膜の抵抗が零となる臨界温度(Tc)及
び77Kでの臨界電流密度(Jc)の測定を、四端子法を用
いて行った。Tcは87K、零磁場のJcは7.2×105A/cm2であ
った。また、前記超電導膜に機械的にクラックを導入
し、大電流を流した場合のクラック前後での電圧測定し
たところ、Auの抵抗に値する電圧を測定できた。 FIG. 2 shows the X-ray diffraction pattern of the minute portion of the formed Y 1 Ba 2 Cu 3 O 7- δ oxide superconducting film. In the superconducting film 3 on the MgO substrate, only the diffraction peak based on the (oon) plane is clearly recognized, and it can be seen that the film is C-axis oriented with respect to the substrate surface. Furthermore, it was possible to observe from the SEM image that the reaction layer between the substrate and the superconducting film was 10 nm or less. On the other hand, the superconducting film 4 on the Au substrate can be identified as a non-oriented film because the surface peaks in each direction other than the (oon) peak can be identified. The critical temperature (Tc) at which the resistance of the superconducting film becomes zero and the critical current density (Jc) at 77K were measured by the four-terminal method. The Tc was 87 K and the zero-field Jc was 7.2 × 10 5 A / cm 2 . Further, when a voltage was measured before and after the crack when a large current was applied by mechanically introducing a crack into the superconducting film, a voltage corresponding to the resistance of Au could be measured.
以上、セラミックス−金属基板へ酸化物超電導膜を形
成するとC軸配向した高Jcな膜を形成でき、しかも、金
属が、前記超電導体がクエンチした場合の電流パス等の
安定化材として働くことが明らかである。As described above, when an oxide superconducting film is formed on a ceramic-metal substrate, a C-axis oriented high Jc film can be formed, and moreover, the metal acts as a stabilizing material for a current path or the like when the superconductor is quenched. it is obvious.
参考例2 SrTiO3、YSZ、Ta2O3セラミックスへ、金属としてAgを
参考例1に示す方法で、0.25〜2mm厚で成膜し、セラミ
ックス−Ag基板とした。次に、Y1Ba2Cu3O7- δ超電導膜
を参考例1に示す条件下で、前記基板上へ形成した。い
ずれの基板上でも超電導膜が形成されたが、SrTiO2−Ag
基板の場合に最もよい特性、Tc=87K、77KにおけるJc=
8.0×105A/cm2が得られた。また、超電導膜を幅20μm
で前記基板の長手方向と垂直にエッチングして、超電導
膜を完全に消失させた状態で、このエッチング前後で電
圧測定をしたところ、Agの抵抗に値する電圧を測定でき
た。Reference Example 2 SrTiO 3 , YSZ, and Ta 2 O 3 ceramics were deposited with a thickness of 0.25 to 2 mm as a metal by the method shown in Reference Example 1 to obtain a ceramics-Ag substrate. Next, a Y 1 Ba 2 Cu 3 O 7- δ superconducting film was formed on the substrate under the conditions shown in Reference Example 1. Superconducting films were formed on both substrates, but SrTiO 2 -Ag
Best characteristics for substrate, Tc = 87K, Jc at 77K =
8.0 × 10 5 A / cm 2 was obtained. The width of the superconducting film is 20 μm.
When the voltage was measured before and after this etching in a state where the superconducting film was completely removed by etching perpendicularly to the longitudinal direction of the substrate, a voltage equivalent to the resistance of Ag could be measured.
以上、セラミックス−金属基板を用いることで、高Jc
な超電導膜を形成でき、しかも、金属が電流パス等の安
定化材として働くことが明らかである。As described above, by using the ceramics-metal substrate, high Jc
It is clear that a superconducting film can be formed and that the metal acts as a stabilizing material for current paths and the like.
実施例1 Ni−Cr合金(ハステロイX)テープへReO3、TiO、CrO
2セラミックス膜を酸素分圧2〜3mtorr下、RF−スパッ
タリング法により約10μm厚で成膜した。ReO3、TiO、C
rO2を形成したハステロイXテープ上へ、Y1Ba2Cu3O7- δ
粉末をドクターブレード法により塗布し、900℃で5時
間熱処理後、450℃で50時間酸素アリールして超電導膜
を形成した。Example 1 Ni-Cr alloy ReO 3 to (Hastelloy X) tape, TiO, CrO
(2) A ceramic film was formed with an oxygen partial pressure of 2-3 mtorr to a thickness of about 10 μm by the RF-sputtering method. ReO 3 , TiO, C
On the Hastelloy X tape with rO 2 formed, Y 1 Ba 2 Cu 3 O 7- δ
The powder was applied by the doctor blade method, heat-treated at 900 ° C. for 5 hours, and then aryl-oxygenated at 450 ° C. for 50 hours to form a superconducting film.
この膜の斜視図を第3図に示す。第3図において、2
はNi−Cu合金、5は導電性セラミックスである。いずれ
の導電性セラミックスを用いた場合でも、C軸配向して
おり、Tc>83K、Jc>104A/cm2の超電導特性を示した。
前記超電導膜及びReO3、TiO、CrO2膜まで機械的にクラ
ックを導入して、このクラック前後で電圧測定をしたと
ころ、各々の導電性セラミックスの抵抗及びハステロイ
X抵抗に値する電圧を測定できた。A perspective view of this membrane is shown in FIG. In FIG. 3, 2
Is a Ni-Cu alloy, and 5 is a conductive ceramic. No matter which conductive ceramic was used, it was C-axis oriented and exhibited superconducting properties of Tc> 83K and Jc> 10 4 A / cm 2 .
A crack was mechanically introduced into the superconducting film and the ReO 3 , TiO, and CrO 2 films, and the voltage was measured before and after the crack, and the voltage corresponding to the resistance of each conductive ceramic and the Hastelloy X resistance could be measured. .
以上、金属と超電導体の間に導電性セラミックスを形
成することで、高いJcの超電導膜を形成でき、しかも超
電導体がクエンチした場合の電流パスとして導電性セラ
ミックスが中間役の働きをすることが明らかである。As described above, by forming the conductive ceramics between the metal and the superconductor, a high Jc superconducting film can be formed, and the conductive ceramics can act as an intermediate role as a current path when the superconductor is quenched. it is obvious.
参考例3 押し出し成型法により凹に成型したフレキシブルなYS
Zテープ上のくぼみへCuアルコキシドを用いたゾル−ゲ
ルを流し込み、このゾル−ゲルを水銀ランプの紫外線照
射することで分解・結晶させ、200℃の低温度でCu膜を
形成した。このYSZ−Cu面を研磨して平坦にして基板と
した。700℃に加熱した前記基板上へレーザ・デボジシ
ョン凹により、Bi1.8(Pb0.4)Sr2Ca2Cu3Oxを形成した
後、大気中845℃で50時間アニールして超電導膜を得
た。Reference Example 3 Flexible YS molded in a concave shape by extrusion molding
A sol-gel containing Cu alkoxide was poured into the depression on the Z tape, and the sol-gel was decomposed and crystallized by irradiating it with ultraviolet rays from a mercury lamp to form a Cu film at a low temperature of 200 ° C. The YSZ-Cu surface was polished and flattened to obtain a substrate. Bi 1.8 (Pb 0.4 ) Sr 2 Ca 2 Cu 3 Ox was formed on the substrate heated to 700 ° C. by laser debossing and then annealed at 845 ° C. for 50 hours in the atmosphere to obtain a superconducting film.
この膜の斜視図を第4図に示す。第4図において、1
はYSZテープ、2はSu膜、3の超電導膜はC軸配向して
おり、Tcが108K、Jcが1.2×105A/cm2であった。また、C
u面上の超電導膜を参考例1に示す方法で、クラックを
導入して電圧測定したところ、Cuの抵抗に値する電圧を
計測できた。A perspective view of this membrane is shown in FIG. In FIG. 4, 1
The YSZ tape, the Su film, the superconducting film of 3, and the superconducting film of 3 were C-axis oriented, and Tc was 108K and Jc was 1.2 × 10 5 A / cm 2 . Also, C
When a voltage was measured by introducing cracks in the superconducting film on the u surface by the method shown in Reference Example 1, the voltage corresponding to the resistance of Cu could be measured.
以上、前記形状のYSZ−Cu基板を用いることでC軸配
向した高Lcな超電導膜を形成でき、しかも超電導体がク
エンチした場合の電流パスとしてCuが働くことが明らか
である。As described above, it is clear that by using the YSZ-Cu substrate having the above-described shape, a C-axis oriented high Lc superconducting film can be formed, and Cu acts as a current path when the superconductor is quenched.
実施例2 Siウェハーに先づRFスパッタリングによりMgの膜を厚
さ0.5μmで成膜した。幅1mmでくり抜かれているうずま
き状のパターンを用いて、レーザ光で前記ウェハー全体
を照射し、前記パターン形状に沿ってMgO膜をエッチン
グしてパターン成型を行った。次に、前記パターンを用
いてAg膜をMgO膜の厚さと同一になるまで、RFスパッタ
リングにより成膜した。前記MgO−Ag−Si基板へ幅3mmの
うずまき状パターンを用いて、参考例1に示す条件でY1
Ba2Cu3O7- δ膜を形成した。Example 2 An Mg film having a thickness of 0.5 μm was formed by RF sputtering on a Si wafer. A spiral pattern having a width of 1 mm was used to irradiate the entire wafer with laser light, and the MgO film was etched along the pattern shape to perform pattern molding. Next, using the above pattern, an Ag film was formed by RF sputtering until it had the same thickness as the MgO film. Using a spiral pattern having a width of 3 mm on the MgO-Ag-Si substrate, Y 1 was formed under the conditions shown in Reference Example 1.
A Ba 2 Cu 3 O 7- δ film was formed.
この膜の構成断面図を第5図に示す。第5図におい
て、1はMgO、2はAgで、6は超電導膜である。四端子
法による超電導特性はTc=84K、Jc=1.4×104A/cm2(77
K,0T)であった。また超電導膜の一部を電子ビームでエ
ッチングした後、前記エッチング前後で電圧測定したと
ころAgの抵抗に値する電圧が計測された。A sectional view of the structure of this film is shown in FIG. In FIG. 5, 1 is MgO, 2 is Ag, and 6 is a superconducting film. The superconducting characteristics by the four-terminal method are Tc = 84K, Jc = 1.4 × 10 4 A / cm 2 (77
K, 0T). Further, when a voltage was measured before and after the etching after etching a part of the superconducting film with an electron beam, a voltage corresponding to the resistance of Ag was measured.
以上、前記うずまき形状のAg膜を用いることで比較的
高いJcの超電導膜を形成でき、しかも超電導体がクエン
チした場合の電流パスとしてAgが働くことが明らかであ
る。As described above, it is clear that by using the spiral Ag film, a relatively high Jc superconducting film can be formed, and Ag acts as a current path when the superconductor is quenched.
実施例3 実施例2で得られたうずまき状の超電導膜の端部の超
電導膜6で接続して多層に重ね、第6図に示す構造にす
ることで多層型ディスク状コイルを形成でき、前記ディ
スク状コイルの77Kの磁場は1.0T発生した。また、実施
例1で得られた超電導テープを導体に巻きつけることで
テープ状コイルを作成し、77Kの磁場は0.9T発生した。Example 3 A multilayer disc-shaped coil can be formed by connecting with the superconducting film 6 at the end of the spiral-shaped superconducting film obtained in Example 2 and stacking them in multiple layers to form the structure shown in FIG. The magnetic field of 77K in the disk coil generated 1.0T. A tape coil was prepared by winding the superconducting tape obtained in Example 1 around a conductor, and a magnetic field of 77K was generated at 0.9T.
本発明によれば、セラミックスと金属の両者にまたが
って酸化物超電導体を形成することで、セラミックスと
前記超電導体の間では両者の反応を抑制でき、しかもC
軸配向した超電導体が形成できたので、77K,0Tで高いJc
が得られた。また、前記超電導体が金属としているの
で、超電導体がクエンチした場合の電流パスとして前記
金属が働く効果がある。さらに、金属と超電導体の間に
導電性セラミックスを用いることにより、セラミックス
と超電導体の反応が抑制され、しかもC軸配向した膜で
あることにより、77K,0Tで高いJcが得られた。また、超
電導体がクエンチした場合に、電流が導電性セラミック
スを通して金属へ通電できることより、安定化材として
働く効果がある。According to the present invention, by forming the oxide superconductor over both the ceramic and the metal, the reaction between the ceramic and the superconductor can be suppressed, and further, C
Since an axially oriented superconductor could be formed, high Jc at 77K, 0T
was gotten. Further, since the superconductor is made of metal, the metal has an effect of acting as a current path when the superconductor is quenched. Further, by using the conductive ceramics between the metal and the superconductor, the reaction between the ceramics and the superconductor was suppressed, and due to the C-axis oriented film, a high Jc was obtained at 77K, 0T. Further, when the superconductor is quenched, an electric current can flow to the metal through the conductive ceramics, which has an effect of acting as a stabilizing material.
以上、高Jcな超電導体が形成でき、しかも超電導体が
クエンチした場合の電流パスとして働くことより、超電
導コイル等の線材への応用がはかれる効果がある。As described above, a superconductor with high Jc can be formed, and since it functions as a current path when the superconductor is quenched, it has an effect of being applicable to a wire rod such as a superconducting coil.
第1図は、参考例1の超電導線材の斜視図、第2図は、
参考例1のMgO、Au板上に形成した超電導膜のX線回折
パターン図、第3図は、本発明の超電導体と金属の間に
導電性セラミックスを有する超電導線材の斜視図、第4
図は、参考例3の超電導線材の斜視図、第5図は、本発
明の金属をうずまき状に形成したセラミックス板に超電
導体を形成した模式図、第6図は、本発明の多層型ディ
スク状コイルの模式図である。 1……セラミックス、2……金属、3……C軸配向した
超電導膜、4……無配向な超電導膜、5……導電性セラ
ミックス、6……超電導膜、7……SiウェハーFIG. 1 is a perspective view of the superconducting wire of Reference Example 1, and FIG.
FIG. 3 is an X-ray diffraction pattern diagram of the superconducting film formed on the MgO and Au plates of Reference Example 1, and FIG. 3 is a perspective view of the superconducting wire having conductive ceramics between the superconductor and the metal of the present invention.
FIG. 5 is a perspective view of a superconducting wire of Reference Example 3, FIG. 5 is a schematic view in which a superconductor is formed on a ceramic plate in which the metal of the present invention is formed into a spiral shape, and FIG. 6 is a multilayer disc of the present invention. It is a schematic diagram of a spiral coil. 1 ... Ceramics, 2 ... Metal, 3 ... C-axis oriented superconducting film, 4 ... Non-oriented superconducting film, 5 ... Conductive ceramics, 6 ... Superconducting film, 7 ... Si wafer
Claims (5)
属とが連続的に形成され、前記酸化物超電導体と金属と
で導電性セラミックスをはさんだ構造を有すると共に、
前記導電性セラミックスが、ReO3、TiO、CrO2から選ば
れた1種以上からなることを特徴とする酸化物超電導線
材。1. An oxide superconductor, a conductive ceramic, and a metal are continuously formed, and the oxide superconductor and the metal have a structure in which the conductive ceramic is sandwiched between the oxide superconductor and the metal.
An oxide superconducting wire characterized in that the conductive ceramic is made of one or more selected from ReO 3 , TiO, and CrO 2 .
属とが連続的に形成され、前記導電性セラミックスの長
手方向に形成された凹部及び/又は に金属が連続して形成されており、かつ前記導電性セラ
ミックスと金属の共有する面が平坦であり、該平坦な基
板面に酸化物超電導体が形成されていることを特徴とす
る酸化物超電導線材。2. A recess and / or a recess formed in the longitudinal direction of the conductive ceramic in which an oxide superconductor, a conductive ceramic and a metal are continuously formed. An oxide superconductor is formed by continuously forming a metal on the surface of the conductive ceramics, a surface shared by the conductive ceramics and the metal is flat, and an oxide superconductor is formed on the flat substrate surface. wire.
セラミックスが光アシストゾルゲル法で製造されたもの
であることを特徴とする酸化物超電導線材。3. The oxide superconducting wire according to claim 1 or 2, wherein the conductive ceramic is manufactured by a photo-assisted sol-gel method.
ス基板の該凹部に金属を連続して形成した基板におい
て、前記金属とセラミックスにまたがって酸化物超電導
体がうずまき状に形成されているディスク状コイル構造
を有することを特徴とする酸化物超電導線材。4. A ceramic substrate in which a recess is formed in a spiral shape, in which a metal is continuously formed in the recess, and a disk shape in which an oxide superconductor is formed in a spiral shape across the metal and the ceramic. An oxide superconducting wire having a coil structure.
ク状コイルを、超電導材で上下連結して多層構造とした
ことを特徴とする酸化物超電導コイル。5. An oxide superconducting coil, wherein the disk-shaped coils of the oxide superconducting wire according to claim 4 are vertically connected by a superconducting material to form a multilayer structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256828A JP2532986B2 (en) | 1990-09-28 | 1990-09-28 | Oxide superconducting wire and coil using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256828A JP2532986B2 (en) | 1990-09-28 | 1990-09-28 | Oxide superconducting wire and coil using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04137408A JPH04137408A (en) | 1992-05-12 |
JP2532986B2 true JP2532986B2 (en) | 1996-09-11 |
Family
ID=17297994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2256828A Expired - Fee Related JP2532986B2 (en) | 1990-09-28 | 1990-09-28 | Oxide superconducting wire and coil using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2532986B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63292532A (en) * | 1987-05-26 | 1988-11-29 | Fujikura Ltd | Manufacture of semiconductive electric circuit |
JP2649674B2 (en) * | 1987-05-26 | 1997-09-03 | 住友電気工業株式会社 | Composite ceramic superconductor |
JPS6454617A (en) * | 1987-08-25 | 1989-03-02 | Furukawa Electric Co Ltd | Manufacture of ceramic superconductive wire |
-
1990
- 1990-09-28 JP JP2256828A patent/JP2532986B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04137408A (en) | 1992-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101779B2 (en) | Structure for high critical current superconducting tape | |
US4994435A (en) | Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor | |
EP0884787B1 (en) | Oxide superconductor wire and method of manufacturing the same | |
EP0292959B1 (en) | Superconducting member | |
JPH08502629A (en) | High temperature Josephson junction and method | |
JP3188358B2 (en) | Method for producing oxide superconductor thin film | |
KR100428910B1 (en) | Multilayered composites and process of manufacture | |
JP2532986B2 (en) | Oxide superconducting wire and coil using the same | |
JPH026394A (en) | Superconductive thin layer | |
JPH07102969B2 (en) | Superconductor | |
JPS6161555B2 (en) | ||
JP3061634B2 (en) | Oxide superconducting tape conductor | |
JP2979422B2 (en) | Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film | |
JP3061627B2 (en) | Manufacturing method of oxide superconducting tape conductor | |
JP2643972B2 (en) | Oxide superconducting material | |
JP2813287B2 (en) | Superconducting wire | |
JP2545422B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JP2544759B2 (en) | How to make a superconducting thin film | |
JPH02183915A (en) | Oxide superconducting compact | |
JPH08157213A (en) | Oxide superconductive film and its production | |
JP2545423B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JPH0761870B2 (en) | Method for manufacturing high temperature superconducting thin film | |
JP3473201B2 (en) | Superconducting element | |
JP2501609B2 (en) | Method for producing complex oxide superconducting thin film | |
JP2544760B2 (en) | Preparation method of superconducting thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |