JPH04137408A - Oxide superconductive wire material and coil using the material - Google Patents

Oxide superconductive wire material and coil using the material

Info

Publication number
JPH04137408A
JPH04137408A JP2256828A JP25682890A JPH04137408A JP H04137408 A JPH04137408 A JP H04137408A JP 2256828 A JP2256828 A JP 2256828A JP 25682890 A JP25682890 A JP 25682890A JP H04137408 A JPH04137408 A JP H04137408A
Authority
JP
Japan
Prior art keywords
metal
ceramic
superconductor
oxide
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256828A
Other languages
Japanese (ja)
Other versions
JP2532986B2 (en
Inventor
Toshihide Namatame
俊秀 生田目
Yukio Saito
幸雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2256828A priority Critical patent/JP2532986B2/en
Publication of JPH04137408A publication Critical patent/JPH04137408A/en
Application granted granted Critical
Publication of JP2532986B2 publication Critical patent/JP2532986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a current path against quenching of an oxide superconductor by forming the superconductor over both ceramics and metal. CONSTITUTION:An oxide superconductor 3, a ceramics 1 and a metal 3 are continuously formed and the metal 2 is constructed to have continuous contact with the oxide superconductor 3 in the direction of carrying a current. The oxide superconductor 3 shows high Jc if composed on the single-crystal ceramics board 1. On the other hand, if the superconductor 3 is formed directly on the metal board 2, no high Jc occurs. The metal board 2, however, serves as a stabilizer such as a current path when the superconductor 3 is quenched. It is thus possible to form the high-Jc oriented superconductor 3 which provides the current path against quenching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導線材に係わり、さらに詳しくは
、高いJcを有する酸化物超電導体がクエンチした場合
の電流バスを有する酸化物超電導線材に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an oxide superconducting wire, and more specifically, an oxide superconducting wire having a current bus when an oxide superconductor having a high Jc is quenched. Regarding.

〔従来の技術〕[Conventional technology]

層状ペロブスカイト構造を有するY−Ba−Cu−0系
、B 1−3r−Ca−Cu−り系、T l−Ba−C
a−Cu−0系の酸化物超電導材料では、臨界温度(T
c)が液体窒素温度(77K)以上であるため、超電導
磁石、コイル或いはエレクトロニクスデバイスへの広い
応用が期待されている。
Y-Ba-Cu-0 system, B1-3r-Ca-Cu-based system, T1-Ba-C having layered perovskite structure
In a-Cu-0-based oxide superconducting materials, the critical temperature (T
Since c) is higher than the liquid nitrogen temperature (77K), it is expected to be widely applied to superconducting magnets, coils, and electronic devices.

セラミックス単結晶基板を用いた酸化物超電導体の合成
方法で、これまで106^/cm”オーダの高いJcを
得ており、例えばアプライド、フィジックス、レターズ
(Appl、Phys、Lett、 )  53(16
) 、 1557 (1988)に記載されているとお
りである。
A high Jc on the order of 106^/cm" has been obtained using a method for synthesizing oxide superconductors using a ceramic single crystal substrate. For example, Applied, Phys, Lett, ) 53 (16
), 1557 (1988).

さらにその他のn型、P型の超電導材もすでに公知であ
る。
Furthermore, other n-type and p-type superconducting materials are already known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記に示したセラミックス単結晶基板を
用いた酸化物超電導体は、高いJcを得ることが比較的
容易である反面、酸化物超電導体のテープ状線材におい
て、超電導体がクエンチした場合の電流バスについて考
慮されておらず、実用面で問題があった。
However, in the oxide superconductor using the ceramic single crystal substrate shown above, it is relatively easy to obtain a high Jc, but on the other hand, in the tape-shaped wire of the oxide superconductor, the current when the superconductor is quenched is Buses were not taken into account, and there were practical problems.

本発明の目的は、高いJcを有する酸化物超電導線材に
おいて、超電導体がクエンチした場合の電流バスを有す
る酸化物超電導線材及びそれを用いたコイルを提供する
ことにある。
An object of the present invention is to provide an oxide superconducting wire having a high Jc that has a current bus when the superconductor is quenched, and a coil using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、酸化物超電導
体とセラミックスと金属とが連続的に形成され、前記金
属は前記酸化物超電導体と電流を流す方向に連続して接
触している構造を有することを特徴とする酸化物超電導
線材としたものであり、また、本発明では、酸化物超電
導体と導電性セラミックスと金属とが連続的に形成され
、前記酸化物超電導体と金属とで導電性セラミックスを
はさんだ構造を有することを特徴とする酸化物超電導線
材としたものである。
In order to achieve the above object, the present invention provides a structure in which an oxide superconductor, a ceramic, and a metal are continuously formed, and the metal is in continuous contact with the oxide superconductor in the direction of current flow. Further, in the present invention, an oxide superconductor, a conductive ceramic, and a metal are continuously formed, and the oxide superconductor and the metal are This is an oxide superconducting wire characterized by having a structure in which conductive ceramics are sandwiched.

また、上記目的を達成するために、本発明では、酸化物
超電導体とセラミックスと金属とが連続的に形成され、
前記セラミックスの長手方向に形成された凹部及び/又
は乙部に金属が連続して形成されており、かつ前記セラ
ミックスと金属の共有する面が平坦であり、該平坦な基
板面に酸化物超電導体が形成されていることを特徴とす
る酸化物超電導線材としたものであり、また、本発明で
は、うずまき状に凹部が形成されたセラミックス基板の
該凹部に金属を連続して形成した基板において、前記金
属とセラミックスにまたがって酸化物超電導線材がうず
まき状に形成されているディスク状コイル構造を有する
ことを特徴とする酸化物超電導線材としたものである。
Moreover, in order to achieve the above object, in the present invention, an oxide superconductor, a ceramic, and a metal are continuously formed,
A metal is continuously formed in a recess and/or a groove formed in the longitudinal direction of the ceramic, and a surface shared by the ceramic and the metal is flat, and an oxide superconductor is placed on the flat substrate surface. The present invention provides an oxide superconducting wire material characterized in that the metal is continuously formed in the concave portion of a ceramic substrate in which a concave portion is formed in a spiral shape. The oxide superconducting wire is characterized by having a disk-shaped coil structure in which the oxide superconducting wire is formed in a spiral shape spanning metal and ceramics.

上記において、セラミックスとしては、光アシストゾル
ゲル法で製造されたものがよく、材料はMgO1SrT
iOs、YSZ、 TazOsから選ばれた1種以上か
らなるものを用いるのがよく、また、フレキシブルYS
Zテープからなるものも使用できる。
In the above, the ceramic is preferably one manufactured by a light-assisted sol-gel method, and the material is MgO1SrT.
It is preferable to use one or more selected from iOs, YSZ, and TazOs, and flexible YS
A material made of Z tape can also be used.

導電性セラミックスとしては、Reds、TiOlTi
aSCrewから選ばれた1種以上からなるセラミック
スを用いるのが好適である。
As conductive ceramics, Reds, TiOlTi
It is preferable to use a ceramic made of one or more selected from aSCrew.

また、本発明において使用できる金属としては、AuS
Ag、 CU% Ni−Cr合金(ハステロイ)から選
ばれた1種以上を用いるのがよいが、他の金属でも導電
性をもち、超電導体と反応しない金属なら使用すること
ができる。
Further, as metals that can be used in the present invention, AuS
It is preferable to use one or more selected from Ag and CU% Ni-Cr alloy (Hastelloy), but other metals can also be used as long as they have conductivity and do not react with the superconductor.

本発明の酸化物超電導線材は、コイル状に巻くことによ
り酸化物超電導コイルとなり、また、前記のうずまき状
に形成したディスク状コイルを、超電導材で上下連結し
て多層構造の超電導コイルとすることができる。
The oxide superconducting wire of the present invention can be wound into a coil to form an oxide superconducting coil, and the spirally formed disk-shaped coils can be connected up and down with a superconducting material to form a multilayered superconducting coil. I can do it.

〔作 用〕[For production]

セラミックスのMg0(100)又は5rTi口、 (
100)単結晶基板上へ酸化物超電導体を合成すると、
基板の影響を受けて、基板の格子定数と比較的近い結晶
の配向した超電導体が形成できる。また、両者の熱膨張
係数が近いため、熱処理に伴うクラック等を抑制でき、
さらにセラミックスと超電導体の反応性も小さいため、
超電導特性を向上でき、高いJcを示す。
Mg0 (100) or 5rTi mouth of ceramics, (
100) When oxide superconductor is synthesized on a single crystal substrate,
Under the influence of the substrate, a superconductor with crystal orientation relatively close to the lattice constant of the substrate can be formed. In addition, since the coefficients of thermal expansion of both are similar, cracks caused by heat treatment can be suppressed.
Furthermore, since the reactivity between ceramics and superconductors is small,
It can improve superconducting properties and exhibits high Jc.

一方、直接金属基板への超電導体の形成は、熱膨張係数
の違いによるクラックの発生及び金属と超電導体の高反
応性、さらに超電導体の無配向化により、高いJcは得
られない。しかし、金属基板は、超電導体がクエンチし
た場合の電流パス等の安定化材としての働きがある。従
って、このセラミックスと金属を組み合せた基板へ酸化
物超電導体を形成することで、超電導体がクエンチした
場合の電流パスを有する、配向した高Jcな超電導体を
形成できる。
On the other hand, when forming a superconductor directly on a metal substrate, a high Jc cannot be obtained due to the occurrence of cracks due to differences in thermal expansion coefficients, high reactivity between the metal and the superconductor, and non-orientation of the superconductor. However, the metal substrate acts as a stabilizer for current paths and the like when the superconductor quenches. Therefore, by forming an oxide superconductor on a substrate combining ceramics and metal, it is possible to form an oriented high Jc superconductor that has a current path when the superconductor is quenched.

また、超電導体と金属との間の中間体として、導電性セ
ラミックスを用いると、基板と超電導体の反応の抑制、
配向した超電導結晶及び超電導体と金属間の電流パスと
しての働きがある。
In addition, when conductive ceramics are used as an intermediate between the superconductor and the metal, the reaction between the substrate and the superconductor can be suppressed,
It acts as a current path between oriented superconducting crystals and superconductors and metals.

従って、前記中間体として導電性セラミックスを用いた
場合に、高Jcな超電導体が形成でき、さらに超電導体
がクエンチした場合の電流パス等の安定化材としての働
きがある。
Therefore, when a conductive ceramic is used as the intermediate, a high Jc superconductor can be formed, and it also functions as a stabilizing material for current paths, etc. when the superconductor is quenched.

金属へのセラミックス膜の形成方法は、低温度で光アシ
ストゾルゲル法により行える。また、広い温度領域で金
属へのセラミックス膜或いはセラミックスへの金属膜の
形成方法は、各種スパッタ法、蒸着法、レーザ・デポジ
ション法等のPVD法及び化学気相成長法(CVD)等
の通常の成膜法で行える。
Ceramic films can be formed on metals using a light-assisted sol-gel method at low temperatures. In addition, methods for forming ceramic films on metal or metal films on ceramics in a wide temperature range include various sputtering methods, vapor deposition methods, PVD methods such as laser deposition methods, and conventional methods such as chemical vapor deposition (CVD). This film formation method can be used.

前記金属とセラミックスで構成された基板への酸化物超
電導体の形成は、前記PVD法及びCVD法などの通常
の成膜法、及びドクターブレード法の塗布技術、さらに
は粉末を出発原料とした線引き一圧延法により行える。
The formation of the oxide superconductor on the substrate made of metal and ceramics can be carried out by using the usual film forming methods such as the PVD method and CVD method, the coating technique of the doctor blade method, and furthermore, the wire drawing method using powder as a starting material. This can be done by one rolling method.

〔実施例〕〔Example〕

以下、本発明を具体的実施例によりさらに詳細に説明す
るが、本発明はこれらに限定されない。
Hereinafter, the present invention will be explained in more detail with reference to specific examples, but the present invention is not limited thereto.

実施例1 本発明の実施例を第1図に斜視図として示す。Example 1 An embodiment of the invention is shown in perspective view in FIG.

MgO1の側面にまずRFスパッタリング法により、A
u膜2を0.1 mm厚で成膜し、Mg0−Au基板と
した。次にRFマグネトロンスパッタリング法により、
表1に示す条件下で、前記MgO−へ〇基板上へ、LB
a2CusL−δ酸化物超電導膜の形成を行った。
First, A was deposited on the side surface of MgO1 by RF sputtering method.
A u film 2 was formed to a thickness of 0.1 mm to form an Mg0-Au substrate. Next, by RF magnetron sputtering method,
Under the conditions shown in Table 1, onto the MgO-〇 substrate, LB
An a2CusL-δ oxide superconducting film was formed.

表 スパッタ条件 第2図に、成膜したY1Ba*Cu5L−δ酸化物超電
導膜の微小部X線回折パターンを示す。MgO基板上の
前記超電導膜3は、(oon)面に基づく回折ピークの
みが明瞭に認められ、基板面に対してC軸配向した膜で
あることがわかる。さらに、基板と超電導膜の反応層は
10nm以下であることが、SEM像より観察できた。
Surface sputtering conditions FIG. 2 shows a minute X-ray diffraction pattern of the Y1Ba*Cu5L-δ oxide superconducting film formed. In the superconducting film 3 on the MgO substrate, only the diffraction peak based on the (oon) plane is clearly observed, indicating that the film is C-axis oriented with respect to the substrate surface. Furthermore, it was observed from the SEM image that the reaction layer between the substrate and the superconducting film was 10 nm or less.

一方、^U基板上の前記超電導膜4は、(oon)ピー
ク以外に各方位の面ピークが同定できることにより、無
配向な膜であることがわかる。この超電導膜の抵抗が零
となる臨界温度(Tc)及び77にでの臨界電流密度(
Jc)の測定を、四端子法を用いて行った。Tcは87
に1零磁場のJcは7.2 X 105A/cm2であ
った。また、前記超電導膜に機械的にクラックを導入し
、大電流を流した場合のクラック前後での電圧測定した
ところ、Auの抵抗に値する電圧を測定できた。
On the other hand, it can be seen that the superconducting film 4 on the ^U substrate is a non-oriented film since plane peaks in each direction can be identified in addition to the (oon) peak. The critical temperature (Tc) at which the resistance of this superconducting film becomes zero and the critical current density at 77 (
Jc) was measured using the four-terminal method. Tc is 87
Jc of 1 zero magnetic field was 7.2 × 105 A/cm2. Furthermore, when a crack was mechanically introduced into the superconducting film and a large current was passed through it, the voltage before and after the crack was measured, and a voltage equivalent to the resistance of Au could be measured.

以上、セラミックス−金属基板へ酸化物超電導膜を形成
するとC軸配向した高Jcな膜を形成でき、しかも、金
属が、前記超電導体がクエンチした場合の電流パス等の
安定化材として働くことが明らかである。
As mentioned above, when an oxide superconducting film is formed on a ceramic-metal substrate, a C-axis oriented film with high Jc can be formed, and the metal can also act as a stabilizing material for current paths, etc. when the superconductor is quenched. it is obvious.

実施例2 SrTiOs、YSZSTa、03セラミツクスへ、金
属としてAgを実施例1に示す方法で、0.25〜2m
m厚で成膜し、セラミックス−Ag基板とした。次に、
LBazCusOt−δ超電導膜を実施例1に示す条件
下で、前記基板上へ形成した。いずれの基板上でも超電
導膜が形成されたが、SrTi05−Ag基板の場合に
最もよい特性、Tc=87に、77KにおけるJc=8
.Ox l O’^/cm’が得られた。
Example 2 SrTiOs, YSZSTa, 03 ceramics were coated with Ag as a metal by the method shown in Example 1, and the thickness was 0.25 to 2 m.
A film was formed to a thickness of m to form a ceramic-Ag substrate. next,
A LBazCusOt-δ superconducting film was formed on the substrate under the conditions shown in Example 1. A superconducting film was formed on any substrate, but the SrTi05-Ag substrate had the best characteristics, Tc = 87, and Jc = 8 at 77K.
.. Ox l O'^/cm' was obtained.

また、超電導膜を幅20μmで前記基板の長手方向と垂
直にエツチングして、超電導膜を完全に消失させた状態
で、このエツチング前後で電圧測定をしたところ、Ag
の抵抗に値する電圧を測定できた。
Furthermore, when the superconducting film was etched to a width of 20 μm perpendicular to the longitudinal direction of the substrate and the superconducting film completely disappeared, the voltage was measured before and after this etching.
We were able to measure the voltage equivalent to the resistance of .

以上、セラミックス−金属基板を用いることで、高Jc
な超電導膜を形成でき、しかも、金属が電流パス等の安
定化材として働くことが明らかである。
As mentioned above, by using a ceramic-metal substrate, high Jc can be achieved.
It is clear that a superconducting film can be formed and that the metal acts as a stabilizing material for current paths, etc.

実施例3 Ni−Cr合金(ハステロイX)テープへReOs、T
lO2、CrLセラミックス膜を酸素分圧2〜3mto
rr下、RF−スパッタリング法により約10μm厚で
成膜した。また、ハステロイXテープへ窒素分圧1O−
4tOrr下、イオンビームアシスト法によりTiN膜
を20μm厚で形成した。
Example 3 ReOs, T to Ni-Cr alloy (Hastelloy X) tape
lO2, CrL ceramic film with oxygen partial pressure of 2 to 3 mto
A film with a thickness of about 10 μm was formed by RF sputtering under RR. In addition, nitrogen partial pressure 1O- to Hastelloy X tape
A TiN film with a thickness of 20 μm was formed by the ion beam assist method under 4 tOrr.

Reds、TlO2、Cr01TiNを形成したハステ
ロイXテープ上へ、Y+BazCusOt−σ粉末をド
クターブレード法により塗布し、900℃で5時間熱処
理後、450で50時間酸素アニールして超電導膜を形
成した。
Y+BazCusOt-σ powder was applied by a doctor blade method onto the Hastelloy

この膜の斜視図を第3図に示す。第3図において、2は
Ni−Cr合金、5は導電性セラミックスである。いず
れの導電性セラミックスを用いた場合でも、C軸配向し
ており、Tc>83K。
A perspective view of this membrane is shown in FIG. In FIG. 3, 2 is a Ni-Cr alloy, and 5 is a conductive ceramic. No matter which conductive ceramic is used, the C-axis is oriented and Tc>83K.

Jc> 10 ’A/c+n2の超電導特性を示した。It exhibited superconducting properties of Jc>10'A/c+n2.

前記超電導膜及びReds、 TiO2、Cr01Ti
N膜まで機械的にクラックを導入して、このクラック前
後で電圧測定をしたところ、各々の導電性セラミックス
の抵抗及びハステロイXの抵抗に値する電圧を測定でき
た。
The superconducting film and Reds, TiO2, Cr01Ti
When a crack was mechanically introduced up to the N film and the voltage was measured before and after the crack, it was possible to measure the voltage corresponding to the resistance of each conductive ceramic and the resistance of Hastelloy X.

以上、金属と超電導体の間に導電性セラミックスを形成
することで、高いJcの超電導膜を形成でき、しかも超
電導体がクエンチした場合の電流パスとして導電性セラ
ミックスが中間段の働きをすることが明らかである。
As described above, by forming conductive ceramics between metal and superconductor, a high Jc superconducting film can be formed, and moreover, conductive ceramics can act as an intermediate stage as a current path when the superconductor quenches. it is obvious.

実施例4 押し出し成型法により凹に成型したフレキシブルなYS
ZS−テープ上ほみへCuアルコキシドを用いたゾル−
ゲルを流し込み、このゾル−ゲルを水銀ランプの紫外線
照射することで分解・結晶させ、200℃の低温度でC
u膜を形成した。このYSZ−Cu面を研磨して平坦に
して基板とした。700℃に加熱した前記基板上ヘレー
ザ・デポジション法1こより、日I 1. s (pb
o、 4)SraCa2Cu、Oxを形成した後、大気
中845℃で50時間アニールして超電導膜を得た。
Example 4 Flexible YS molded into a concave shape by extrusion molding
ZS-Tape sol using Cu alkoxide
Pour the gel, decompose and crystallize this sol-gel by irradiating it with ultraviolet light from a mercury lamp, and heat it at a low temperature of 200°C.
A u film was formed. This YSZ-Cu surface was polished to be flat and used as a substrate. From the above-mentioned laser deposition method 1 on the substrate heated to 700° C., day I 1. s (pb
o, 4) After forming SraCa2Cu and Ox, a superconducting film was obtained by annealing in the atmosphere at 845° C. for 50 hours.

この膜の斜視図を第4図に示す。第4図において、1は
YSZテープ、2はCu膜、3の超電導膜はC軸配向し
ており、Tcが108に、Jcが1、2 X 10 ’
A/cm”であった。また、Cu面上の超電導膜を実施
例1に示す方法で、クラックを導入して電圧測定したと
ころ、Cuの抵抗に値する電圧を計測できた。
A perspective view of this membrane is shown in FIG. In Fig. 4, 1 is a YSZ tape, 2 is a Cu film, and 3 is a superconducting film with C-axis orientation, Tc is 108, Jc is 1, 2 x 10'
A/cm''. Furthermore, when a crack was introduced into the superconducting film on the Cu surface by the method shown in Example 1 and the voltage was measured, a voltage equivalent to the resistance of Cu could be measured.

以上、前記形状のYSZ−Cu基板を用いることでC軸
配向した高Jcな超電導膜を形成でき、しかも超電導体
がクエンチした場合の電流パスとしてCuが働くことが
明らかである。
As described above, it is clear that by using the YSZ-Cu substrate of the above shape, a C-axis oriented superconducting film with high Jc can be formed, and that Cu acts as a current path when the superconductor is quenched.

実施例5 S1ウエハーに先づRFスパッタリングによりMgO膜
を厚さ0.5μmで成膜した。幅1 mmでくり抜かれ
ているうずまき状のパターンを用いて、レーザ光で前言
己ウェハー全体を照射し、前記パターン形状に沿ってM
gO膜をエツチングしてパターン成型を行った。次に、
前記パターンを用いてへg膜をMgO膜の厚さと同一に
なるまで、RFスパッタリングにより成膜した。前記M
gO−へg81基板へ幅3mmのうずまき状パターンを
用いて、実施例1に示す条件でLBa2CuJt−δ膜
を形成した。
Example 5 First, an MgO film with a thickness of 0.5 μm was formed on the S1 wafer by RF sputtering. Using a spiral pattern hollowed out with a width of 1 mm, the entire wafer was irradiated with a laser beam, and M was formed along the pattern shape.
The gO film was etched to form a pattern. next,
Using the above pattern, a Heg film was formed by RF sputtering until it had the same thickness as the MgO film. Said M
An LBa2CuJt-δ film was formed on a gO-g81 substrate under the conditions shown in Example 1 using a spiral pattern with a width of 3 mm.

この膜の構成断面図を第5図に示す。第5図において、
1はMgO12はAgで、6は超電導膜である。四端子
法による超電導特性は、Tc=84に、Jc=1.4X
10’^/cm’ (77K、 OT)であった。また
超電導膜の一部を電子ビームでエツチングした後、前記
エンチング前後で電圧測定したところAgの抵抗に値す
る電圧が計測された。
A cross-sectional view of the structure of this film is shown in FIG. In Figure 5,
1 is MgO12 is Ag, and 6 is a superconducting film. The superconducting properties by the four-terminal method are Tc = 84, Jc = 1.4X
It was 10'^/cm' (77K, OT). Further, after etching a part of the superconducting film with an electron beam, the voltage was measured before and after the etching, and a voltage equivalent to the resistance of Ag was measured.

以上、前記うずまき形状のへg膜を用いることで比較的
高いJcの超電導膜を形成でき、しかも超電導体がクエ
ンチした場合の電流バスとして八gが働くことが明らか
である。
As described above, it is clear that by using the spiral-shaped heg film, a superconducting film with a relatively high Jc can be formed, and moreover, the 8g acts as a current bus when the superconductor is quenched.

実施例6 実施例5で得られたうずまき状の超電導膜の端部を超電
導膜6で接続して多層に重ね、第6図に示す構造にする
ことで多層型ディスク状コイルを形成でき、前記ディス
ク状コイルの77にの磁場は1.OT発生した。また、
実施例1で得られた超電導テープを導体に巻きつけるこ
とでテープ状コイルを作成し、77にの磁場は0、9 
T発生した。
Example 6 A multilayer disc-shaped coil can be formed by connecting the ends of the spiral superconducting film obtained in Example 5 with a superconducting film 6 to form a multilayer structure as shown in FIG. The magnetic field at 77 of the disc-shaped coil is 1. OT occurred. Also,
A tape-shaped coil was created by wrapping the superconducting tape obtained in Example 1 around a conductor, and the magnetic field at 77 was set to 0 and 9.
T occurred.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セラミックスと金属の両者にまたがっ
て酸化物超電導体を形成することで、セラミックスと前
記超電導体の間では両者の反応を抑制でき、しかもC軸
配向した超電導体が形成できたので、77に、OTで高
いJcが得られた。また、前記超電導体が金属と接触し
ているので、超電導体がクエンチした場合の電流バスと
して前記金属が働く効果がある。さらに、金属と超電導
体の間に導電性セラミックスを用いることにより、セラ
ミックスと超電導体の反応が抑制され、しかもC軸配向
した膜であることより、77に、OTで高いJcが得ら
れた。また、超電導体がクエンチした場合に、電流が導
電性セラミックスを通して金属へ通電できることより、
安定化材として働く効果がある。
According to the present invention, by forming an oxide superconductor spanning both ceramics and metal, it is possible to suppress the reaction between the ceramics and the superconductor, and to form a C-axis oriented superconductor. Therefore, a high Jc of 77 was obtained in OT. Furthermore, since the superconductor is in contact with the metal, there is an effect that the metal acts as a current bus when the superconductor is quenched. Furthermore, by using conductive ceramics between the metal and the superconductor, the reaction between the ceramics and the superconductor was suppressed, and because the film was C-axis oriented, a high Jc was obtained in OT in 77. In addition, when the superconductor quenches, current can pass through the conductive ceramics to the metal.
It has the effect of acting as a stabilizing agent.

以上、高Jcな超電導体が形成でき、しかも超電導体が
クエンチした場合の電流バスとして働くことより、超電
導コイル等の線材への応用がはかれる効果がある。
As described above, since a high Jc superconductor can be formed and the superconductor acts as a current bus when quenched, it is possible to apply it to wire materials such as superconducting coils.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の超電導線材の斜視図、第
2図は、本発明のMgO1Au板上に形成した超電導膜
のX線回折パターン図、第3図は、本発明の超電導体と
金属の間に導電性セラミックスを有する超電導線材の斜
視図、第4図は、本発明の他の実施例の超電導線材の斜
視図、第5図は、本発明の金属をうずまき状に形成した
セラミックス板に超電導体を形成した模式図、第6図は
、本発明の多層型ディスク状コイルの模式図である。 1・・・セラミックス、2・・・金属、3・・・C軸配
向した超電導膜、4・・・無配向な超電導膜、5・・・
導電性セラミックス、6・・・超電導膜、7・・・Si
ウェハー
FIG. 1 is a perspective view of a superconducting wire according to an embodiment of the present invention, FIG. 2 is an X-ray diffraction pattern diagram of a superconducting film formed on an MgO1Au plate of the present invention, and FIG. 3 is a perspective view of a superconducting wire according to an embodiment of the present invention. FIG. 4 is a perspective view of a superconducting wire having conductive ceramics between the body and the metal; FIG. 4 is a perspective view of a superconducting wire according to another embodiment of the present invention; FIG. FIG. 6 is a schematic diagram of a multilayer disk-shaped coil of the present invention, in which a superconductor is formed on a ceramic plate. DESCRIPTION OF SYMBOLS 1... Ceramic, 2... Metal, 3... C-axis oriented superconducting film, 4... Non-oriented superconducting film, 5...
Conductive ceramics, 6... superconducting film, 7... Si
wafer

Claims (11)

【特許請求の範囲】[Claims] 1.酸化物超電導体とセラミックスと金属とが連続的に
形成され、前記金属は前記酸化物超電導体と電流を流す
方向に連続して接触している構造を有することを特徴と
する酸化物超電導線材。
1. An oxide superconducting wire material having a structure in which an oxide superconductor, a ceramic, and a metal are continuously formed, and the metal is in continuous contact with the oxide superconductor in a direction in which a current flows.
2.酸化物超電導体と導電性セラミックスと金属とが連
続的に形成され、前記酸化物超電導体と金属とで導電性
セラミックスをはさんだ構造を有することを特徴とする
酸化物超電導線材。
2. An oxide superconducting wire material having a structure in which an oxide superconductor, a conductive ceramic, and a metal are continuously formed, and the conductive ceramic is sandwiched between the oxide superconductor and the metal.
3.酸化物超電導体とセラミックスと金属とが連続的に
形成され、前記セラミックスの長手方向に形成された凹
部及び/又は■部に金属が連続して形成されており、か
つ前記セラミックスと金属の共有する面が平坦であり、
該平坦な基板面に酸化物超電導体が形成されていること
を特徴とする酸化物超電導線材。
3. An oxide superconductor, a ceramic, and a metal are continuously formed, and the metal is continuously formed in the recessed part and/or the part (■) formed in the longitudinal direction of the ceramic, and the ceramic and the metal share a common property. The surface is flat,
An oxide superconducting wire characterized in that an oxide superconductor is formed on the flat substrate surface.
4.うずまき状に凹部が形成されたセラミックス基板の
該凹部に金属を連続して形成した基板において、前記金
属とセラミックスにまたがって酸化物超電導体がうずま
き状に形成されているディスク状コイル構造を有するこ
とを特徴とする酸化物超電導線材。
4. A ceramic substrate having a concave portion formed in a spiral shape, with a metal continuously formed in the concave portion, having a disk-shaped coil structure in which an oxide superconductor is formed in a spiral shape spanning the metal and the ceramic. An oxide superconducting wire characterized by:
5.請求項1〜4のいずれか1項記載において、前記セ
ラミックスが光アシストゾルゲル法で製造されたもので
あることを特徴とする酸化物超電導線材。
5. The oxide superconducting wire according to any one of claims 1 to 4, wherein the ceramic is manufactured by a light-assisted sol-gel method.
6.請求項1〜4のいずれか1項記載において、前記金
属が、Au、Ag、Cu、Ni−Cr合金から選ばれた
1種以上からなることを特徴とする酸化物超電導線材。
6. The oxide superconducting wire according to any one of claims 1 to 4, wherein the metal is one or more selected from Au, Ag, Cu, and Ni-Cr alloy.
7.請求項1、3又は4記載において、前記セラミック
スが、MgO、SrTiO_3、YSZ、Ta_2O_
3かから選ばれた1種以上からなることを特徴とする酸
化物超電導線材。
7. In claim 1, 3 or 4, the ceramic is MgO, SrTiO_3, YSZ, Ta_2O_
An oxide superconducting wire characterized by comprising one or more selected from three types.
8.請求項2記載において、導電性セラミックスが、R
eO_3、TiO、TiN、CrO_2から選ばれた1
種以上からなることを特徴とする酸化物超電導線材。
8. In claim 2, the conductive ceramic is R
1 selected from eO_3, TiO, TiN, CrO_2
An oxide superconducting wire characterized by comprising more than one species.
9.請求項1、3又は4記載において、前記セラミック
スが、フレキシブルYSZテープからなることを特徴と
する酸化物超電導線材。
9. The oxide superconducting wire according to claim 1, 3 or 4, wherein the ceramic is made of a flexible YSZ tape.
10.請求項1記載の酸化物超電導線材を、コイル状に
巻いたことを特徴とする酸化物超電導コイル。
10. An oxide superconducting coil characterized in that the oxide superconducting wire according to claim 1 is wound into a coil shape.
11.請求項4記載の酸化物超電導線材のディスク状コ
イルを、超電導材で上下連結して多層構造としたことを
特徴とする酸化物超電導コイル。
11. An oxide superconducting coil characterized in that the disc-shaped coil of the oxide superconducting wire according to claim 4 is vertically connected with a superconducting material to form a multilayer structure.
JP2256828A 1990-09-28 1990-09-28 Oxide superconducting wire and coil using the same Expired - Fee Related JP2532986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256828A JP2532986B2 (en) 1990-09-28 1990-09-28 Oxide superconducting wire and coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256828A JP2532986B2 (en) 1990-09-28 1990-09-28 Oxide superconducting wire and coil using the same

Publications (2)

Publication Number Publication Date
JPH04137408A true JPH04137408A (en) 1992-05-12
JP2532986B2 JP2532986B2 (en) 1996-09-11

Family

ID=17297994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256828A Expired - Fee Related JP2532986B2 (en) 1990-09-28 1990-09-28 Oxide superconducting wire and coil using the same

Country Status (1)

Country Link
JP (1) JP2532986B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292532A (en) * 1987-05-26 1988-11-29 Fujikura Ltd Manufacture of semiconductive electric circuit
JPS63292518A (en) * 1987-05-26 1988-11-29 Sumitomo Electric Ind Ltd Compound ceramic superconductor
JPS6454617A (en) * 1987-08-25 1989-03-02 Furukawa Electric Co Ltd Manufacture of ceramic superconductive wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292532A (en) * 1987-05-26 1988-11-29 Fujikura Ltd Manufacture of semiconductive electric circuit
JPS63292518A (en) * 1987-05-26 1988-11-29 Sumitomo Electric Ind Ltd Compound ceramic superconductor
JPS6454617A (en) * 1987-08-25 1989-03-02 Furukawa Electric Co Ltd Manufacture of ceramic superconductive wire

Also Published As

Publication number Publication date
JP2532986B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US4994435A (en) Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor
JP4041672B2 (en) Bonding high temperature superconducting coated tape
JP3854551B2 (en) Oxide superconducting wire
JPH02177381A (en) Tunnel junction element of superconductor
JP2003529201A (en) Long superconducting structure and its manufacturing method
JPH04137408A (en) Oxide superconductive wire material and coil using the material
JP4128358B2 (en) Manufacturing method of oxide superconductor
JPH01167221A (en) Production of superconducting thin film
JP3061634B2 (en) Oxide superconducting tape conductor
JPH01166419A (en) Manufacture of superconductive membrane
JPH01286920A (en) Superconductor
JPH02183915A (en) Oxide superconducting compact
JP2691065B2 (en) Superconducting element and fabrication method
JPH01302752A (en) Integrated circuit package
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01179779A (en) Method for protecting multi-ply oxide superconductor
JPH01167218A (en) Production of superconducting thin film
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JPH02217306A (en) Production of oxide superconductor
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2544760B2 (en) Preparation method of superconducting thin film
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof
JPH01176216A (en) Production of superconducting thin film of compound oxide
JPH01105412A (en) Manufacture of oxide superconductive compact

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees