JP2721322B2 - Oxide superconducting compact - Google Patents

Oxide superconducting compact

Info

Publication number
JP2721322B2
JP2721322B2 JP7227619A JP22761995A JP2721322B2 JP 2721322 B2 JP2721322 B2 JP 2721322B2 JP 7227619 A JP7227619 A JP 7227619A JP 22761995 A JP22761995 A JP 22761995A JP 2721322 B2 JP2721322 B2 JP 2721322B2
Authority
JP
Japan
Prior art keywords
layer
superconductor
alloy
superconducting
sputtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7227619A
Other languages
Japanese (ja)
Other versions
JPH0891964A (en
Inventor
章二 志賀
昭人 矢原
中裕 原田
正則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7227619A priority Critical patent/JP2721322B2/en
Publication of JPH0891964A publication Critical patent/JPH0891964A/en
Application granted granted Critical
Publication of JP2721322B2 publication Critical patent/JP2721322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、酸化物超電導成形体に
関する。 【0002】 【従来の技術とその問題点】近年、液体H2 、Neさら
にN2 温度以上で超電導を示す酸化物超電導成形体(以
下超電導体と略記)、例えば希土類元素、アルカリ土金
属及びCuからなる複合酸化物等のK2 NiF4 型又は
3層ペロブスカイト型構造のものが見出され、スパッタ
リング法、蒸着法、イオンプレーティング法等のPVD
法又はCVD法等により薄膜化して超電導体として利用
する試みがなされている。上記のスパッタリング法等の
気相法は、いずれも真空中で成膜が行われるが、例えば
AB2 Cu3 X (式中AはY、Sc又は希土類元素、
Bはアルカリ土金属、Cuは銅、Oは酸素、X=7−δ
但し1≧δ>0)で示される酸化物を形成する場合は分
解反応等の副反応によりO2 が不足するので、O2 を若
干添加した真空が利用されるが、最適な組成に維持する
ことが困難で、このため形成膜は無定形状になり易く、
従って超電導特性に劣り又は全く超電導特性を示さな
い。このようなことから成膜後酸素含有雰囲気中で90
0〜1,000℃の高温に加熱して、酸素等の組成及び
結晶構造の調整を行って超電導体となしているが、この
加熱処理の際に超電導体の構成成分が界面や表面に偏析
したり、甚だしい場合は、揮発して目的とする超電導特
性が十分に得られないという問題があった。 【0003】ところで上記の超電導体物質は一般に脆い
ため、SUSやAl2 3 等の耐熱性材料を基体として
この上に成膜して用いることが試みられている。基体上
に成膜する場合は、基体温度を650℃以上に加熱する
と上記の超電導体物質が結晶化して析出する。しかしこ
の場合もO2 の欠損部分が残存して特性が十分に発現さ
れないため、更に酸素含有雰囲気中で900℃前後の加
熱処理が通常施されており、従って前記の構成成分の偏
析や揮発による特性低下の問題は残されている。又これ
らの超電導体は、使用中外気に直接触れると、外気中の
水分や微量のSO2 、NOX 、H2 S、Cl2 等によっ
て、急速に変質して超電導体特性が劣化するという問
題、更には、使用時に液体窒素等の冷媒中で冷却される
が、使用を中断する時常温に戻すので厳しいヒートサイ
クル条件下で使用され、この際超電導体には熱的な応力
や歪みが加わり、超電導特性が低下するばかりでなく、
剥離や断線を起こすという問題もあった。本発明はかか
る状況に鑑みなされたもので、その目的とするところは
機械的、熱的な応力、歪みに耐え、経時劣化せずに、高
い性能を長期間安定して保持できる酸化物超電導体を提
供することにある。 【0004】 【課題を解決するための手段】本発明は、超電導体層の
上に貴金属を介してNi、Ni合金、Cr又はCr合金
の群から選ばれたいずれかの卑金属からなる層が形成さ
れている事を特徴とするものである。 【0005】本発明において、超電導体層とは、前述の
層状ペロブスカイトやK2 NiF4型物質などであり、
例えばYBa2 Cu3 X 、YSr0.5 Ba1.5 Cu3
X、Y0.75Sc0.25Ba1.5 Sr0.5 Cu3 X 、L
aBa2 Cu3 X 、ErBa2 Cu3 X 、DyBa
2 Cu3 X 、MsBa2 Cu3 X (Msはミッシュ
メタル)、La−Ba−Cu−O系酸化物、La−Sr
−Cu−O系酸化物などである。上記に例示した酸化物
のうち前記のAB2 Cu3 X の式で示される酸化物
は、液体窒素温度で超電導体となるので特に有用であ
る。上記式で示される代表的酸化物は、YBa2 Cu3
X 、ErBa1.75Sr0. 25Cu3 X 等で、いずれも
3層ペロブスカイト型構造を呈する。又上記酸化物にお
いてOの一部をF等のアニオン、Cuの一部をAg、N
i等のカチオンで置換したものも含まれる。上記のよう
な超電導体を基体上に膜状に形成する方法としては、ス
パッタリング法、真空蒸着法、イオンプレーティング
法、MOCVD法等があり、そのターゲットには、超電
導体と同一の物質又は上記物質を構成する元素やその酸
化物等が用いられる。本発明において超電導体層の厚さ
は、0.1μm〜1mm特に0.5〜100μmの厚さ
又は直径に形成するのが好ましく、厚すぎると超電導体
の熱的及び磁気的安定性が低下しクエンチ現象を起こし
易くなる。 【0006】本発明において超電導体層上に貴金属を介
して形成されるNi、Ni合金、Cr又はCr合金の群
から選ばれたいずれかの卑金属からなる層は、表面に緻
密な酸化膜を形成して外気からの水分やSO2 、N
2 、H2 S、Cl2 等の有害ガスの侵入を防止する作
用を有する。この卑金属層はスパッタリング等のPVD
法やCVD法等により形成される。本発明に用いられる
卑金属は、Cr又はNi単体よりも、Cr合金やNi合
金の方が、可撓性やH2 脆性等の耐食性の優れていて適
している。上記合金としては、Cr−Fe、Cr−M
o、Cr−Ni、Cr−Cu、Cr−Ti、Ni−P
(P=5〜25%)、Ni−W−P、Ni−Cu−P、
Ni−Mo−P、Ni−Cu、Ni−Cr、Ni−Z
n、オーステナイト系Fe−Cr−Ni等の各系の合金
が適用される。卑金属層の厚さは得られる超電導成形体
の用途にもよるが通常0.1μm以上で特に1〜100
μmの範囲内が好ましい。 【0007】本発明において酸化物層と卑金属層との中
間に介在させる貴金属層は双方の層間の過剰な反応を抑
制して、超電導体層の劣化を防止するもので、超電導成
形体に製造後施される熱処理、アニール又は歪とり等の
加熱工程において特に有効な働きを発揮するものであ
る。又貴金属層は、高温においても超電導体層と反応せ
ずに酸素を透過するので、加熱処理においてアルカリ土
金属やCu等の成分元素が偏析や揮発せずに、超電導体
物質の組成及び結晶構造の最適化がなされ、特性に優れ
た超電導体を形成させる作用をもたらす。特にAgはO
2 の透過性及び導電性に優れ、更に安価なため最も有用
である。上記Ag層の下地にPd、Pt等のPt族元素
を薄く形成しておくと実用上更に望ましい場合が多い。
本発明において貴金属層には、上記のAg、Pd、Pt
の他にIn、Rh、Ru、Os、Au等の元素又はこれ
らの合金が適用され、厚さは通常0.1μm以上、特に
1〜100μmの範囲内が好ましい。本発明において卑
金属層の上にCu、Al、又はその合金の層を形成して
おくと超電導体層の熱的、磁気的安定化に有効に作用す
るとともに外部との電気接続においても効果がある。 【0008】 【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)高周波マグネトロンスパッタ装置を用い
て、SUS310テープ(厚さ0.10mm)上にPt
を0.16μmスパッタし、この上に上記のテープを6
70℃に加熱しながら、ターゲットにYBa2.2 Cu
4.5 X 組成のペレットを用いて、Ar+O2 (20m
Torr、O2 20%)雰囲気中で出力300Wで厚さ
1.9μmの超電導体層をスパッタし、次いでこの超電
導体層上にAgを0.16μmスパッタした。しかるの
ち、得られた成形体を大気中で850℃15分間加熱
後、これを2℃/minの速度で室温まで冷却したの
ち、更にこのAg層上に上記のスパッタ装置を用いてモ
ネル合金(Ni−35%Cu)を厚さ1.2μmスパッ
タして超電導成形体を製造した。上記において超電導体
層以外のスパッタ雰囲気をAr10mTorrとした。 【0009】(実施例2)超電導体層の厚さを2.0μ
mとし、モネル合金の代りにNi−12%P合金を1.
8μmスパッタした他は実施例1と同じ方法により超電
導成形体を製造した。 【0010】(実施例3)モネル合金の代りにCrを
1.8μmスパッタした他は実施例1と同じ方法により
超電導成形体を製造した。 【0011】(実施例4)モネル合金の代りにCr−N
i合金を0.6μmスパッタした他は実施例1と同じ方
法により超電導成形体を製造した。 【0012】(実施例5)多元電子ビーム蒸着機を用い
て、SUS310テープ(厚さ0.1mm)上にPtを
0.16μmスパッタし、この上に上記テープを690
℃に加熱しながら、Cu、Er、Cu−Ba合金の3種
の蒸発源を用いてCu、Ba、Erが3:2:1になる
ように電子ビーム及びシャッタ速度を制御して厚さ1.
5μmの超電導体層をスパッタし、次いで超電導体層上
にPd0.02μm及びAg0.4μmを順次スパッタ
したのち、1気圧のO2 雰囲気中で550℃1時間加熱
した。次いでテープの加熱を止め、Ar1×10-3To
rrの雰囲気中で上記超電導体層上にFe−21%Cr
−11%Ni合金を1.2μmスパッタした。 【0013】(比較例1〜5)実施例1〜5において、
それぞれ卑金属層の形成を省略した以外は同様に行って
各々の超電導成形体を製造した。 【0014】(比較例6)Ni−12%P合金に代えて
Cuを2μmスパッタした他は実施例2と同じ方法によ
り超電導成形体を製造した。 【0015】(比較例7)超電導体層上にPd/Agの
貴金属層を設けず、又550℃1時間の加熱処理を行わ
なかった他は、実施例5と同様にして超電導成形体を製
造した。 【0016】斯くの如くして得た各々の超電導成形体を
上記成形体の厚さの2,000倍の円筒に巻きつけて、
これを液体N2 中と室温との間で50回ヒートサイクル
試験を行ったのち、各々のサンプルについて液体窒素
(77K)中でJcを測定し、次いでこのサンプルを相
対湿度90%、温度40℃のチャンバー内に250時間
保持して加湿試験を行ったのち、再び上記と同様にして
Jcを測定した。結果は、超電導成形体の主な構成等を
併記して表1に示した。 【0017】〔表1〕【0018】表1より明らかなように、本発明品(実施
例1〜5)は、各試験後においてJcが高い値を示して
いるが、卑金属層を設けていない比較例1〜5は加湿試
験後においてJcが低い値を示している。比較例6は本
発明の卑金属層の代わりにCuを設けたものであるが、
ヒートサイクル試験後に既にJcが大きく低下してい
る。また貴金属層を介在させなかった比較例7のもの
は、貴金属層を介在さた実施例、特に実施例5のものに
比べてヒートサイクル試験によるJc低下が目立つ。 【0019】 【発明の効果】以上に述べたように、本発明によれば、
超電導体層の上方に卑金属層が設けられているので外気
からの水分等の侵入が防止される。更に上記2層の中間
に貴金属層を介在させたので、加熱工程における上記2
層の過剰な反応が阻止され、高い超電導特性が長期間安
定して保持した酸化物超電導成形体が得られるものであ
り、本発明の酸化物超電導成形体は各種導体やマイスナ
効果応用の磁気シールド材などに利用して、顕著な効果
を奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting compact. 2. Description of the Related Art In recent years, oxide superconducting compacts (hereinafter abbreviated as superconductors) exhibiting superconductivity at temperatures of liquid H 2 , Ne and N 2 or higher, such as rare earth elements, alkaline earth metals and Cu K 2 NiF 4 type or three-layer perovskite type structure such as a composite oxide composed of PVD such as a sputtering method, a vapor deposition method, and an ion plating method.
Attempts have been made to use a thin film formed by a method or a CVD method as a superconductor. In any of the gas phase methods such as the above sputtering method, a film is formed in a vacuum. For example, AB 2 Cu 3 O X (where A is Y, Sc or a rare earth element,
B is an alkaline earth metal, Cu is copper, O is oxygen, X = 7−δ
However, when an oxide represented by 1 ≧ δ> 0) is formed, O 2 is insufficient due to a side reaction such as a decomposition reaction. Therefore, a vacuum to which O 2 is slightly added is used, but the optimum composition is maintained. It is difficult to do this, so the formed film tends to be amorphous,
Therefore, the superconducting properties are inferior or do not show any superconducting properties. For this reason, after film formation, 90 minutes in an oxygen-containing atmosphere.
It is heated to a high temperature of 0 to 1,000 ° C. to adjust the composition and crystal structure of oxygen and the like to form a superconductor. During this heat treatment, the components of the superconductor segregate at the interface and surface. In the case where the superconductivity is extremely high, there is a problem that the desired superconductivity cannot be sufficiently obtained due to volatilization. [0003] Since the above-mentioned superconductor materials are generally brittle, attempts have been made to use a heat-resistant material such as SUS or Al 2 O 3 as a substrate on the substrate. When a film is formed on a substrate, when the substrate temperature is heated to 650 ° C. or higher, the above-mentioned superconductor substance is crystallized and deposited. However, also in this case, since the deficient portion of O 2 remains and the characteristics are not sufficiently exhibited, a heat treatment at about 900 ° C. is further usually performed in an oxygen-containing atmosphere. The problem of characteristic deterioration remains. Also these superconductors, the direct contact with the outside air during use, SO 2, NO X water and trace in the outside air, H 2 S, by Cl 2 or the like, that superconductor characteristics rapidly deteriorated to deteriorate problem In addition, it is cooled in a coolant such as liquid nitrogen at the time of use, but it is used under severe heat cycle conditions because it returns to normal temperature when use is interrupted, and thermal stress and strain are applied to the superconductor at this time , Not only the superconducting property deteriorates,
There was also a problem of causing peeling and disconnection. The present invention has been made in view of such circumstances, and its object is to withstand mechanical and thermal stresses and strains, without deterioration with time, and to maintain high performance stably for a long period of time. Is to provide. According to the present invention, a layer made of any one of base metals selected from the group consisting of Ni, Ni alloy, Cr and Cr alloy is formed on a superconductor layer via a noble metal. It is characterized by being done. In the present invention, the superconductor layer is the above-mentioned layered perovskite, K 2 NiF 4 type material, etc.
For example, YBa 2 Cu 3 O X , YSr 0.5 Ba 1.5 Cu 3
O X , Y 0.75 Sc 0.25 Ba 1.5 Sr 0.5 Cu 3 O X , L
aBa 2 Cu 3 O X , ErBa 2 Cu 3 O X , DyBa
2 Cu 3 O X, MsBa 2 Cu 3 O X (Ms is misch metal), La-Ba-Cu- O based oxide, La-Sr
—Cu—O-based oxides and the like. Among the oxides exemplified above, the oxide represented by the above formula of AB 2 Cu 3 O X is particularly useful because it becomes a superconductor at the temperature of liquid nitrogen. A typical oxide represented by the above formula is YBa 2 Cu 3
O X, in ErBa 1.75 Sr 0. 25 Cu 3 O X etc., both exhibit a three-layer perovskite type structure. In the above oxides, part of O is an anion such as F, part of Cu is Ag, and
Those substituted with a cation such as i are also included. As a method for forming the above-described superconductor in a film shape on a substrate, there are a sputtering method, a vacuum deposition method, an ion plating method, an MOCVD method, and the like. Elements constituting the substance, oxides thereof, and the like are used. In the present invention, the thickness of the superconductor layer is preferably formed to a thickness or diameter of 0.1 μm to 1 mm, particularly 0.5 to 100 μm. If the thickness is too large, the thermal and magnetic stability of the superconductor decreases. Quench phenomenon is easily caused. In the present invention, the layer made of any base metal selected from the group consisting of Ni, Ni alloy, Cr and Cr alloy formed on the superconductor layer via a noble metal forms a dense oxide film on the surface. And moisture from the outside air, SO 2 , N
It has an effect of preventing intrusion of harmful gases such as O 2 , H 2 S, Cl 2 and the like. This base metal layer is formed by PVD such as sputtering.
It is formed by a method or a CVD method. Base metals to be used in the present invention, than Cr or Ni alone, who Cr alloy and Ni alloy are suitable have excellent corrosion resistance, such as flexible or H 2 brittleness. As the above alloy, Cr-Fe, Cr-M
o, Cr-Ni, Cr-Cu, Cr-Ti, Ni-P
(P = 5 to 25%), Ni-WP, Ni-Cu-P,
Ni-Mo-P, Ni-Cu, Ni-Cr, Ni-Z
n, an austenitic Fe-Cr-Ni alloy or the like is applied. Although the thickness of the base metal layer depends on the use of the obtained superconducting molded body, it is usually 0.1 μm or more, especially 1 to 100 μm.
It is preferably within the range of μm. In the present invention, the noble metal layer interposed between the oxide layer and the base metal layer suppresses an excessive reaction between the two layers and prevents deterioration of the superconductor layer. It exerts a particularly effective function in a heating step such as heat treatment, annealing or strain relief. Also, since the noble metal layer transmits oxygen without reacting with the superconductor layer even at high temperatures, the constituent elements such as alkaline earth metals and Cu do not segregate or volatilize during the heat treatment, and the composition and crystal structure of the superconductor material And the effect of forming a superconductor having excellent characteristics is brought about. Especially Ag is O
2 is most useful because it has excellent transparency and conductivity and is inexpensive. It is often desirable in practice to form a thin Pt group element such as Pd or Pt under the Ag layer.
In the present invention, the above-mentioned Ag, Pd, Pt
In addition, elements such as In, Rh, Ru, Os, and Au or alloys thereof are applied, and the thickness is usually 0.1 μm or more, particularly preferably in the range of 1 to 100 μm. In the present invention, if a layer of Cu, Al, or an alloy thereof is formed on the base metal layer, it effectively acts on the thermal and magnetic stabilization of the superconductor layer and has an effect on the external electrical connection. . Hereinafter, the present invention will be described in detail with reference to examples. (Example 1) Using a high-frequency magnetron sputtering apparatus, Pt was placed on a SUS310 tape (0.10 mm thick).
Is sputtered 0.16 μm, and the above tape is
While heating to 70 ° C, the target was made of YBa 2.2 Cu
4.5 The pellets of O X compositions, Ar + O 2 (20m
A superconductor layer having a thickness of 1.9 μm was sputtered at a power of 300 W in an atmosphere of (Torr, O 2 20%), and then Ag was sputtered on this superconductor layer at a thickness of 0.16 μm. Thereafter, the obtained molded body was heated in the air at 850 ° C. for 15 minutes, cooled at a rate of 2 ° C./min to room temperature, and further formed on the Ag layer by using the monel alloy ( Ni-35% Cu) was sputtered at a thickness of 1.2 μm to produce a superconducting molded body. In the above, the sputtering atmosphere other than the superconductor layer was set to Ar 10 mTorr. (Example 2) The thickness of the superconductor layer was set to 2.0 μm.
m, and Ni-12% P alloy instead of Monel alloy.
A superconducting molded body was manufactured in the same manner as in Example 1 except that 8 μm was sputtered. Example 3 A superconducting compact was manufactured in the same manner as in Example 1 except that 1.8 μm of Cr was sputtered instead of the Monel alloy. (Embodiment 4) Instead of Monel alloy, Cr-N
A superconducting compact was produced in the same manner as in Example 1 except that the i-alloy was sputtered at 0.6 μm. (Example 5) Pt was sputtered on a SUS310 tape (0.1 mm thick) by 0.16 μm using a multi-element electron beam evaporator, and the above tape was 690 mm thick.
While heating to 3 ° C., the electron beam and the shutter speed were controlled using three types of evaporation sources of Cu, Er, and Cu—Ba alloy so that Cu, Ba, and Er became 3: 2: 1, and the thickness was adjusted to 1 mm. .
A 5 μm superconductor layer was sputtered, then Pd 0.02 μm and Ag 0.4 μm were sequentially sputtered on the superconductor layer, and then heated at 550 ° C. for 1 hour in a 1 atm O 2 atmosphere. Then, heating of the tape was stopped and Ar1 × 10 −3 To
Fe-21% Cr on the superconductor layer in an atmosphere of rr
A -11% Ni alloy was sputtered at 1.2 μm. (Comparative Examples 1 to 5) In Examples 1 to 5,
Each superconducting molded article was manufactured in the same manner except that the formation of the base metal layer was omitted. Comparative Example 6 A superconducting compact was manufactured in the same manner as in Example 2 except that Cu was sputtered at 2 μm in place of the Ni-12% P alloy. Comparative Example 7 A superconducting molded body was manufactured in the same manner as in Example 5 except that a Pd / Ag noble metal layer was not provided on the superconductor layer and heat treatment was not performed at 550 ° C. for 1 hour. did. Each superconducting molded body thus obtained is wound around a cylinder 2,000 times the thickness of the molded body,
After performing a heat cycle test 50 times between liquid N 2 and room temperature, Jc of each sample was measured in liquid nitrogen (77 K), and then the sample was subjected to a relative humidity of 90% and a temperature of 40 ° C. After performing the humidification test by holding the sample in the chamber for 250 hours, Jc was measured again in the same manner as above. The results are shown in Table 1 together with the main configuration of the superconducting molded body. [Table 1] As is clear from Table 1, the products of the present invention (Examples 1 to 5) show a high value of Jc after each test, while Comparative Examples 1 to 5 without the base metal layer were humidified. Jc shows a low value after the test. Comparative Example 6 provided Cu instead of the base metal layer of the present invention.
Jc has already greatly decreased after the heat cycle test. In the case of Comparative Example 7 in which the noble metal layer was not interposed, Jc was significantly reduced by the heat cycle test as compared with the example in which the noble metal layer was interposed, particularly in Example 5. As described above, according to the present invention,
Since the base metal layer is provided above the superconductor layer, entry of moisture and the like from the outside air is prevented. Further, since the noble metal layer is interposed between the two layers,
Excessive reaction of the layer is prevented, and an oxide superconducting molded article having high superconducting properties stably maintained for a long period of time is obtained. It has a remarkable effect when used as a material.

Claims (1)

(57)【特許請求の範囲】 1.酸化物超電導体層の上に貴金属層を介してNi、N
i合金、Cr又はCr合金の群から選ばれたいずれかの
卑金属からなる層が形成されている事を特徴とする酸化
物超電導成形体。
(57) [Claims] Ni, N on the oxide superconductor layer via a noble metal layer
An oxide superconducting compact, characterized in that a layer made of any base metal selected from the group consisting of i-alloy, Cr and Cr alloy is formed.
JP7227619A 1995-09-05 1995-09-05 Oxide superconducting compact Expired - Lifetime JP2721322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227619A JP2721322B2 (en) 1995-09-05 1995-09-05 Oxide superconducting compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227619A JP2721322B2 (en) 1995-09-05 1995-09-05 Oxide superconducting compact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62278710A Division JPH01120715A (en) 1987-11-04 1987-11-04 Oxide superconducting molding

Publications (2)

Publication Number Publication Date
JPH0891964A JPH0891964A (en) 1996-04-09
JP2721322B2 true JP2721322B2 (en) 1998-03-04

Family

ID=16863777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227619A Expired - Lifetime JP2721322B2 (en) 1995-09-05 1995-09-05 Oxide superconducting compact

Country Status (1)

Country Link
JP (1) JP2721322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490049B2 (en) * 2003-05-14 2010-06-23 株式会社フジクラ Superconducting conductor and manufacturing method thereof
JP5028222B2 (en) * 2007-11-01 2012-09-19 株式会社フジクラ High resistance material composite oxide superconducting tape

Also Published As

Publication number Publication date
JPH0891964A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
US6956012B2 (en) Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
US20100065417A1 (en) Methods for forming superconducting conductors
US7432229B2 (en) Superconductors on iridium substrates and buffer layers
US7445808B2 (en) Method of forming a superconducting article
JP2721322B2 (en) Oxide superconducting compact
JPH01120715A (en) Oxide superconducting molding
JP3061634B2 (en) Oxide superconducting tape conductor
US20090203529A1 (en) Superconducting material
JPH01221810A (en) Oxide superconductive mold and its manufacture
JP2643972B2 (en) Oxide superconducting material
JPH0365502A (en) Preparation of superconductive thin film
JPH0524806A (en) Oxide superconductor
JPH08157213A (en) Oxide superconductive film and its production
JPH01115009A (en) Oxide superconducting compact and manufacture thereof
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH01105412A (en) Manufacture of oxide superconductive compact
JPS63236794A (en) Production of superconductive thin film of oxide
JPH02152110A (en) Oxide superconducting compact and manufacture thereof
JPH01125878A (en) Thin film multilayer superconductor
JP2919955B2 (en) Superconducting member manufacturing method
JP2004273246A (en) Oxide superconductor wire and substrate therefor
JPH0562534A (en) Superconductive member
JPH05330992A (en) Production of yttrium-based oxide superconducting film