JPH0524806A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH0524806A
JPH0524806A JP3208552A JP20855291A JPH0524806A JP H0524806 A JPH0524806 A JP H0524806A JP 3208552 A JP3208552 A JP 3208552A JP 20855291 A JP20855291 A JP 20855291A JP H0524806 A JPH0524806 A JP H0524806A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3208552A
Other languages
Japanese (ja)
Inventor
Kazunori Onabe
和憲 尾鍋
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP3208552A priority Critical patent/JPH0524806A/en
Publication of JPH0524806A publication Critical patent/JPH0524806A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide c-axis orientation to the direction of crystal orientation in forming an oxide superconducting thin film on a substrate, enable formation of the superconducting thin film having high characteristics and obtain a superconductor having excellent characteristics. CONSTITUTION:An oxide superconductor 1 is characterized in that a substrate 2 prepared by forming an unreactive film 5 composed of a noble metal on the surface of a core material 4 composed of a metallic material having a higher service temperature than the film-forming temperature of an oxide superconducting thin film 3 in an oxide superconductor having the oxide superconducting thin film formed on the substrate and the unreactive film surface is subjected to smoothing treatment is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導マグネット、超
電導送電、超電導エネルギー貯蔵、超電導素子、医用機
器などの超電導応用分野において用いられる酸化物超電
導体に関し、平滑な基体上に酸化物超電導膜を成膜する
ことにより高特性の超電導体を得るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor used in superconducting applications such as superconducting magnets, superconducting power transmission, superconducting energy storage, superconducting elements and medical equipment. By forming a film, a superconductor with high characteristics is obtained.

【0002】[0002]

【従来の技術】近年、臨界温度(Tc)が液体窒素温度
(約77K)よりも高い酸化物超電導体として、例えば
Y−Ba−Cu−O系、Bi−Sr−Ca−Cu−O
系、Tl−Ba−Ca−Cu−O系などの酸化物超電導
体が発見されている。そしてこれらの酸化物超電導体
を、電力輸送、超電導マグネット、超電導デバイスなど
の種々の超電導利用機器に応用させるべく、酸化物超電
導体の線材化あるいはコイル化など実用化に向けての研
究が種々なされている。
2. Description of the Related Art In recent years, oxide superconductors having a critical temperature (Tc) higher than the liquid nitrogen temperature (about 77K) have been used, for example, Y-Ba-Cu-O system, Bi-Sr-Ca-Cu-O system.
Oxide superconductors such as those based on Tl-Ba-Ca-Cu-O system have been discovered. In order to apply these oxide superconductors to various superconducting devices such as electric power transport, superconducting magnets, and superconducting devices, various researches have been conducted toward practical application such as wire-forming or coiling oxide superconductors. ing.

【0003】このような酸化物超電導体の製造方法の1
つとして、化学気相蒸着法(CVD法)、レーザ蒸着
法、イオンクラスタービーム法、MBE法(モレキュラ
ービームエピタキシー法)、スパッタリング法などの薄
膜形成手段によって、金属基板(ハステロイ、ステンレ
ス鋼など)などの基材表面に直接あるいは中間層を介し
て酸化物超電導薄膜を成膜する方法が知られている。こ
のように薄膜形成手段により形成した酸化物超電導薄膜
は、臨界電流密度(Jc)が大きく、優れた超電導特性
を有する材料が得られることから、実用的な製造方法と
して注目されている。
One of the methods for producing such an oxide superconductor
As a method, a thin film forming means such as a chemical vapor deposition method (CVD method), a laser vapor deposition method, an ion cluster beam method, an MBE method (molecular beam epitaxy method), and a sputtering method can be used to form a metal substrate (Hastelloy, stainless steel, etc.), etc. There is known a method of forming an oxide superconducting thin film directly on the surface of the base material or through an intermediate layer. The oxide superconducting thin film thus formed by the thin film forming means has a large critical current density (Jc), and a material having excellent superconducting properties can be obtained. Therefore, it is attracting attention as a practical manufacturing method.

【0004】上記薄膜形成手段を用いて基体上に酸化物
超電導薄膜を成膜する場合には、通常600〜800℃
程度まで基体を加熱し、また、CVD法やレーザ蒸着法
にあってはチャンバ内に酸素ガスを導入して酸化雰囲気
下で成膜を行なう。また、超電導コイルや超電導電線な
どとして用いられる長尺線材を作製するための長尺基板
には、耐熱性、耐酸化性、加工性、可撓性、酸化物超電
導体との非反応性などの点で優れた材料を選ぶ必要があ
る。従来このような基板としては金属基板が多く研究さ
れており、特に耐熱性、耐酸化性に優れたハステロイ合
金などの耐熱合金や、酸化物超電導体と反応し難い銀等
が用いられていた。
When an oxide superconducting thin film is formed on a substrate by using the above thin film forming means, it is usually 600 to 800 ° C.
The substrate is heated to a certain degree, and in the case of the CVD method or the laser deposition method, oxygen gas is introduced into the chamber to form a film in an oxidizing atmosphere. In addition, a long substrate for producing a long wire used as a superconducting coil or a superconducting wire includes heat resistance, oxidation resistance, workability, flexibility, non-reactivity with oxide superconductors, etc. It is necessary to select a material that is superior in terms. Conventionally, a lot of studies have been made on metal substrates as such substrates, and heat-resistant alloys such as Hastelloy alloys, which are particularly excellent in heat resistance and oxidation resistance, and silver, which does not easily react with oxide superconductors, have been used.

【0005】しかしハステロイ合金は、その上に直接酸
化物超電導膜を成膜すると反応してしまい、超電導体が
生成されないために、ハステロイ合金基板と超電導膜と
の間に、中間層を形成する必要があった。この中間層と
しては、チタン酸ストロンチウムや安定化ジルコニア等
が用いられる。しかしこれらは酸化物系の薄膜であるた
め、基板上に形成する際の成膜速度が遅く、また、テー
プ導体にした場合に曲げ歪に弱いという問題点がある。
一方、銀のみを基板として用いる場合は、一度高温で成
膜を行なった後は基板が軟化してしまい、実用基板とし
て適用が難しい問題があった。そこで、ハステロイの硬
度と銀の低反応性を併せ持った基板を用いれば、高温超
電導体の長尺体(線材やテープなど)の作製を容易に行
なうことができる。このような基板材料の一例として、
ハステロイの表面に、酸化物超電導体と反応し難い銀な
どの貴金属をメッキした長尺体などが提案されている。
However, the hastelloy alloy reacts when an oxide superconducting film is directly formed on it, and no superconductor is generated. Therefore, it is necessary to form an intermediate layer between the hastelloy alloy substrate and the superconducting film. was there. As the intermediate layer, strontium titanate, stabilized zirconia, or the like is used. However, since these are oxide-based thin films, there is a problem that the film formation rate when forming them on the substrate is slow, and that they are weak against bending strain when formed into a tape conductor.
On the other hand, when only silver is used as the substrate, there is a problem that it is difficult to apply it as a practical substrate because the substrate is softened once the film is formed at a high temperature. Therefore, if a substrate having both hardness of Hastelloy and low reactivity of silver is used, a long body of high-temperature superconductor (such as a wire or tape) can be easily manufactured. As an example of such a substrate material,
There has been proposed a long body in which the surface of hastelloy is plated with a noble metal such as silver that is difficult to react with an oxide superconductor.

【0006】[0006]

【発明が解決しようとする課題】前記薄膜形成手段を用
い、基体上に酸化物超電導薄膜を形成する際には、結晶
配向方向をc軸配向(基板面に対し、長方形をなす結晶
が垂直に並んだ状態)とすることが望ましく、c軸配向
された酸化物超電導薄膜は、優れた超電導特性を示すこ
とが知られている。しかし基体面が粗いと結晶配向が乱
れてc軸配向が得られず、酸化物超電導薄膜の特性が劣
化してしまうことになる。そこで、成膜用の基体表面
は、可能な限り平滑とする必要がある。しかしながら、
耐熱合金の線材やテープ材の表面に、均一にしかも平滑
に銀をメッキするのは非常に難しく、また、耐熱合金の
表面も平滑なものを得ることは困難であるので、銀メッ
キ表面は粗いものとなってしまう。このためメッキ表面
に成膜される超電導薄膜の配向状態が悪化し、超電導薄
膜の特性が劣化してしまう問題があった。本発明は上記
事情に鑑みてなされたもので、優れた超電導特性を有す
る酸化物超電導体を提供することを目的としている。
When an oxide superconducting thin film is formed on a substrate using the thin film forming means, the crystal orientation direction is c-axis orientation (rectangular crystals are perpendicular to the substrate surface). It is known that the oxide superconducting thin film with c-axis orientation exhibits excellent superconducting properties. However, if the surface of the substrate is rough, the crystal orientation is disturbed and the c-axis orientation cannot be obtained, and the characteristics of the oxide superconducting thin film are deteriorated. Therefore, the surface of the substrate for film formation needs to be as smooth as possible. However,
It is very difficult to plate the surface of heat-resistant alloy wire or tape with silver evenly and smoothly, and it is difficult to obtain a smooth surface of heat-resistant alloy, so the silver-plated surface is rough. It becomes a thing. Therefore, there is a problem that the orientation state of the superconducting thin film formed on the plated surface is deteriorated and the characteristics of the superconducting thin film are deteriorated. The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide superconductor having excellent superconducting properties.

【0007】[0007]

【課題を解決するための手段】本発明は、基体上に酸化
物超電導膜が形成されてなる酸化物超電導体において、
前記基体が、酸化物超電導膜の成膜温度よりも高い耐用
温度の金属材料からなる芯材の表面に、貴金属からなる
非反応膜を設け、該非反応膜表面を平滑処理した基体を
用いたことによって、上記課題を解消した。また、この
基体の表面粗さは500オングストローム(Å)以下と
するのが望ましい。
The present invention provides an oxide superconductor comprising an oxide superconducting film formed on a substrate,
A non-reacting film made of a noble metal is provided on the surface of a core material made of a metal material having a service temperature higher than the film forming temperature of the oxide superconducting film, and the non-reacting film surface is subjected to smoothing treatment. Solves the above problem. The surface roughness of this substrate is preferably 500 angstroms (Å) or less.

【0008】[0008]

【作用】高い耐用温度の金属材料からなる芯材の表面
に、貴金属からなる非反応膜を設け、該非反応膜表面を
平滑処理した基体を用いたことによって、基体上に酸化
物超電導薄膜を形成する際に、結晶配向方向がc軸配向
となり、得られる酸化物超電導薄膜は優れた超電導特性
を示す。
[Function] An oxide superconducting thin film is formed on a substrate by providing a non-reactive film made of a noble metal on the surface of a core material made of a metal material having a high service temperature and using a substrate having the surface of the non-reactive film smoothed. In doing so, the crystal orientation direction becomes c-axis orientation, and the obtained oxide superconducting thin film exhibits excellent superconducting properties.

【0009】[0009]

【実施例】図1は、本発明に係わる酸化物超電導体の一
実施例を示すものであって、符号1は超電導テープ導体
である。この超電導テープ導体1は、基板2上に酸化物
超電導薄膜3を成膜して構成されている。この酸化物超
電導薄膜3としては、Y−Ba−Cu−O系、Bi−S
r−Ca−Cu−O系、Tl−Ba−Ca−Cu−O系
などの各種の酸化物超電導体が使用可能である。この酸
化物超電導薄膜3の厚さは特に限定されない。また、こ
の酸化物超電導薄膜3を成膜するための手段は、化学気
相蒸着法(CVD法)、レーザ蒸着法、イオンクラスタ
ービーム法、MBE法(モレキュラービームエピタキシ
ー法)、スパッタリング法などの酸化物を成膜可能な各
種の薄膜形成手段から適宜選択される。
1 shows an embodiment of an oxide superconductor according to the present invention, in which reference numeral 1 is a superconducting tape conductor. This superconducting tape conductor 1 is formed by forming an oxide superconducting thin film 3 on a substrate 2. As the oxide superconducting thin film 3, Y-Ba-Cu-O system, Bi-S are used.
Various oxide superconductors such as r-Ca-Cu-O system and Tl-Ba-Ca-Cu-O system can be used. The thickness of the oxide superconducting thin film 3 is not particularly limited. The means for forming the oxide superconducting thin film 3 is formed by oxidation such as chemical vapor deposition (CVD), laser vapor deposition, ion cluster beam, MBE (molecular beam epitaxy), and sputtering. It is appropriately selected from various thin film forming means capable of forming a film.

【0010】上記基板2は、酸化物超電導薄膜3の成膜
温度よりも高い耐用温度の金属材料からなる芯材4の表
面に、貴金属からなる非反応膜5を設け、かつ非反応膜
5表面を平滑化してなるものである。芯材4の材料とし
ては、ハステロイ合金、インコネル合金などの耐熱合金
や銅などが好適に使用される。また、非反応膜5は、成
膜時の600〜800℃の温度でも酸化物超電導体と反
応することのない非反応性の金属材料が用いられ、銀、
金、白金などが好適に用いられる。芯材4表面に銀など
の非反応膜5を形成する方法としては、比較的均一な厚
さで短時間に膜を形成できるメッキ法が好適に用いられ
る。
In the substrate 2, a non-reacting film 5 made of a noble metal is provided on the surface of a core material 4 made of a metal material having a durable temperature higher than the film forming temperature of the oxide superconducting thin film 3, and the surface of the non-reacting film 5 is made. Is smoothed. As the material of the core material 4, heat-resistant alloys such as Hastelloy alloy and Inconel alloy, and copper are preferably used. The non-reactive film 5 is made of a non-reactive metal material that does not react with the oxide superconductor even at a temperature of 600 to 800 ° C. at the time of film formation.
Gold and platinum are preferably used. As a method of forming the non-reactive film 5 of silver or the like on the surface of the core material 4, a plating method capable of forming a film with a relatively uniform thickness in a short time is preferably used.

【0011】この基板2は、表面が平滑処理され、表面
粗さが500Å以下となるように形成されている。基板
2表面の平滑処理法としては、ロール圧延法が好適に用
いられる。このロール圧延法による平滑処理において
は、芯材4表面に非反応膜5を形成した基材を圧延ロー
ルで1回あるいは複数回圧延することによって、該基材
の厚さを数%〜数十%減少させるが、圧延率と表面平滑
度とは直接関係なく、基板表面の平滑度を小さくするた
めには、表面粗さの小さいロールを用いる必要がある。
The surface of the substrate 2 is smoothed so that the surface roughness is 500 Å or less. A roll rolling method is preferably used as a method for smoothing the surface of the substrate 2. In the smoothing treatment by this roll rolling method, the base material having the non-reactive film 5 formed on the surface of the core material 4 is rolled once or plural times by a rolling roll to reduce the thickness of the base material from several% to several tens. %, But there is no direct relation between the rolling rate and the surface smoothness, and in order to reduce the smoothness of the substrate surface, it is necessary to use a roll having a small surface roughness.

【0012】図2は、基板2の作製方法を工程順に示す
図であって、ハステロイ合金などの耐熱合金からなる芯
材6を用意し、この芯材6の表面に銀などの貴金属をメ
ッキする。このメッキ層7の厚さは特に限定されない
が、10μm〜100μm程度が望ましい。次に、この基材
8をロール圧延装置にて圧延し、表面を平滑処理する。
このロール圧延は、前述したように表面粗さの小さい平
滑ローラを用いて行なわれる。この平滑処理によって、
表面粗さが500Å以下の平滑な表面を有するテープ状
の基板2が得られる。得られた基板2は、薄膜形成手段
のチャンバ内で酸化物超電導薄膜を成膜して、図1に示
す超電導テープ導体1とする。
FIG. 2 is a diagram showing a method of manufacturing the substrate 2 in the order of steps. A core material 6 made of a heat-resistant alloy such as Hastelloy alloy is prepared, and the surface of the core material 6 is plated with a noble metal such as silver. . The thickness of the plating layer 7 is not particularly limited, but is preferably about 10 μm to 100 μm. Next, the base material 8 is rolled by a roll rolling device to smooth the surface.
This roll rolling is performed using a smooth roller having a small surface roughness as described above. By this smoothing process,
A tape-shaped substrate 2 having a smooth surface with a surface roughness of 500 Å or less is obtained. An oxide superconducting thin film is formed on the obtained substrate 2 in the chamber of the thin film forming means to obtain the superconducting tape conductor 1 shown in FIG.

【0013】この超電導テープ導体1は、ハステロイな
どの高い耐用温度の金属材料からなる芯材4の表面に、
銀などの貴金属からなる非反応膜5を設け、該非反応膜
表面を平滑処理した基板2を用いたことによって、基板
2上に酸化物超電導薄膜3を形成する際に、結晶配向方
向がc軸配向となり、高い臨界電流密度が得られるなど
優れた超電導特性を示す。
The superconducting tape conductor 1 has a core material 4 made of a metal material having a high service temperature such as Hastelloy.
By providing the non-reactive film 5 made of a noble metal such as silver and smoothing the surface of the non-reactive film, the crystal orientation direction is c-axis when the oxide superconducting thin film 3 is formed on the substrate 2. Orientation results in excellent superconducting properties such as high critical current density.

【0014】(実験例)幅5mm、厚さ0.3mm、長さ100mm
のハステロイテープの表面に約30μm厚の銀メッキを施
した基材を用いて、これをロール圧延により、ハステロ
イテープの厚さが0.18mm、銀メッキ厚さ20μmにまで圧
延し、成膜用基板とした。この成膜用基板の表面粗さは
500Å以下であった。この成膜用基板をレーザ蒸着装置
のチャンバ内に配置し、またターゲットにY−Ba−C
u−O系超電導体を用い、チャンバ外からターゲットに
向けてエキシマレーザを照射して基板上に超電導薄膜を
成膜した。約30分の蒸着により基板上に厚さ約1μm
のY−Ba−Cu−O系超電導薄膜が成膜された。得ら
れたY−Ba−Cu−O系超電導体の特性を測定した結
果、臨界温度(Tc)=90K、臨界電流密度(Jc)
=5×103A/cm2(77K、0T)と優れた特性を
示した。
(Experimental example) width 5 mm, thickness 0.3 mm, length 100 mm
Substrate for film formation by rolling the base material of Hastelloy tape with a thickness of about 30 μm and silver-rolling it to a roll of Hastelloy tape of 0.18 mm and silver plating thickness of 20 μm. And The surface roughness of this film-forming substrate is
It was less than 500Å. This film forming substrate is placed in the chamber of the laser vapor deposition apparatus, and the target is Y-Ba-C.
A uO superconductor was used to irradiate a target from the outside of the chamber with an excimer laser to form a superconducting thin film on the substrate. About 1 μm thick on the substrate by vapor deposition for about 30 minutes
Y-Ba-Cu-O-based superconducting thin film was deposited. As a result of measuring the characteristics of the obtained Y-Ba-Cu-O-based superconductor, the critical temperature (Tc) = 90K and the critical current density (Jc).
= 5 × 10 3 A / cm 2 (77K, 0T), showing excellent characteristics.

【0015】(比較例)上記ハステロイテープに銀メッ
キを施したものを成膜用基板としてY−Ba−Cu−O
系超電導体を作製した。この基板の表面粗さは2000Å以
上であった。先の実験例と同様に、基板をチャンバ内に
配置してレーザ蒸着を行ない、約30分の蒸着で厚さ約
1μmの超電導薄膜を成膜した。得られた超電導体の特
性は、Tc=90K、Jc=103A/cm2以下であ
り、かつ特性にバラツキがあった。
Comparative Example Y-Ba-Cu-O was prepared by using the above Hastelloy tape plated with silver as a substrate for film formation.
A superconductor was prepared. The surface roughness of this substrate was 2000 liters or more. Similar to the above experimental example, the substrate was placed in the chamber for laser vapor deposition, and a superconducting thin film having a thickness of approximately 1 μm was deposited by vapor deposition for approximately 30 minutes. The characteristics of the obtained superconductor were Tc = 90K and Jc = 10 3 A / cm 2 or less, and the characteristics varied.

【0016】[0016]

【発明の効果】以上説明したように、この発明の酸化物
超電導体は、高い耐用温度の金属材料からなる芯材の表
面に、貴金属からなる非反応膜を設け、該非反応膜表面
を平滑処理した基体を用いたことによって、基体上に酸
化物超電導薄膜を形成する際に、結晶配向方向がc軸配
向となり高特性の超電導薄膜が成膜できるので、優れた
特性の超電導体が得られる。
As described above, in the oxide superconductor of the present invention, a non-reactive film made of a noble metal is provided on the surface of a core material made of a metal material having a high service temperature, and the surface of the non-reactive film is smoothed. By using such a substrate, when forming an oxide superconducting thin film on the substrate, the crystal orientation direction becomes c-axis orientation, and a superconducting thin film with high characteristics can be formed, so that a superconductor with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の酸化物超電導体の一実施例を示す超
電導テープ導体の断面図である。
FIG. 1 is a cross-sectional view of a superconducting tape conductor showing an embodiment of an oxide superconductor of the present invention.

【図2】 基板の作製方法を工程順に示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a method of manufacturing a substrate in the order of steps.

【符号の説明】[Explanation of symbols]

1…超電導テープ導体、2…基板、3…超電導薄膜、4
…芯材、5…非反応膜
1 ... Superconducting tape conductor, 2 ... Substrate, 3 ... Superconducting thin film, 4
… Core material, 5… Non-reactive film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Saito             1-5-1 Kiba, Koto-ku, Tokyo Fujikuraden             Line Co., Ltd. (72) Inventor, Kono             1-5-1 Kiba, Koto-ku, Tokyo Fujikuraden             Line Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体上に酸化物超電導膜が形成されてな
る酸化物超電導体において、前記基体に、酸化物超電導
膜の成膜温度よりも高い耐用温度の金属材料からなる芯
材の表面に貴金属からなる非反応膜を設け、該非反応膜
表面を平滑処理したものを用いたことを特徴とした酸化
物超電導体。
1. An oxide superconductor comprising an oxide superconducting film formed on a substrate, wherein the substrate has a core material made of a metal material having a durability temperature higher than a film forming temperature of the oxide superconducting film. An oxide superconductor characterized by comprising a non-reactive film made of a noble metal, the surface of which is smoothed.
【請求項2】 前記基体の表面粗さが500オングスト
ローム以下であることを特徴とした請求項1記載の酸化
物超電導体。
2. The oxide superconductor according to claim 1, wherein the surface roughness of the substrate is 500 angstroms or less.
JP3208552A 1991-07-25 1991-07-25 Oxide superconductor Pending JPH0524806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208552A JPH0524806A (en) 1991-07-25 1991-07-25 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208552A JPH0524806A (en) 1991-07-25 1991-07-25 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0524806A true JPH0524806A (en) 1993-02-02

Family

ID=16558079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208552A Pending JPH0524806A (en) 1991-07-25 1991-07-25 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0524806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251649A (en) * 1993-02-24 1994-09-09 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of ceramic superconducting member
JP2007200870A (en) * 2006-01-26 2007-08-09 Ls Cable Ltd Method of producing substrate for superconductive cables
US7296964B2 (en) 2005-09-27 2007-11-20 General Electric Company Apparatus and methods for minimizing solid particle erosion in steam turbines
JP2010153090A (en) * 2008-12-24 2010-07-08 Furukawa Electric Co Ltd:The Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251649A (en) * 1993-02-24 1994-09-09 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Manufacture of ceramic superconducting member
US7296964B2 (en) 2005-09-27 2007-11-20 General Electric Company Apparatus and methods for minimizing solid particle erosion in steam turbines
JP2007200870A (en) * 2006-01-26 2007-08-09 Ls Cable Ltd Method of producing substrate for superconductive cables
JP2010153090A (en) * 2008-12-24 2010-07-08 Furukawa Electric Co Ltd:The Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod

Similar Documents

Publication Publication Date Title
US7087113B2 (en) Textured substrate tape and devices thereof
US5872080A (en) High temperature superconducting thick films
US6451450B1 (en) Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
JP4602911B2 (en) Rare earth tape oxide superconductor
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
US6154599A (en) Superconducting wires fabricated using thin optical fibers
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP3521182B2 (en) Oxide superconducting wire and superconducting device
US4990491A (en) Insulation for superconductors
JP3837749B2 (en) Oxide superconducting conductor and manufacturing method thereof
Ihara et al. High-Tc BiSrCaCuO superconductor grown by CVD technique
JPH0524806A (en) Oxide superconductor
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JP3061634B2 (en) Oxide superconducting tape conductor
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2721322B2 (en) Oxide superconducting compact
JP2813287B2 (en) Superconducting wire
JPH08157213A (en) Oxide superconductive film and its production
JP2670362B2 (en) Method for manufacturing conductor for current lead
JP2585366B2 (en) Oxide superconducting wire
JPH06283056A (en) Oxide superconductive wire
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JPH11329118A (en) Oxide superconducting composite material and its manufacture