JP2010153090A - Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod - Google Patents

Tape shape substrate for superconductive wire rod, its manufacturing method, and superconductive wire rod Download PDF

Info

Publication number
JP2010153090A
JP2010153090A JP2008327519A JP2008327519A JP2010153090A JP 2010153090 A JP2010153090 A JP 2010153090A JP 2008327519 A JP2008327519 A JP 2008327519A JP 2008327519 A JP2008327519 A JP 2008327519A JP 2010153090 A JP2010153090 A JP 2010153090A
Authority
JP
Japan
Prior art keywords
tape
substrate
superconducting wire
plating layer
metal plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008327519A
Other languages
Japanese (ja)
Other versions
JP5435448B2 (en
Inventor
Yoshinori Nagasu
義則 長洲
Hisaki Sakamoto
久樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008327519A priority Critical patent/JP5435448B2/en
Publication of JP2010153090A publication Critical patent/JP2010153090A/en
Application granted granted Critical
Publication of JP5435448B2 publication Critical patent/JP5435448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive wire rod substrate from which a low-cost superconductive wire rod without variations in quality and having no deterioration in characteristics can be obtained, its manufacturing method, and a superconductive wire rod. <P>SOLUTION: The superconductive wire rod substrate is equipped with a tape-shape substrate and a metal plated layer of a thickness 0.1-5 μm which is formed by grinding the surface of the tape-shape substrate and formed on single side or both sides of the tape-shape substrate. The surface of the metal plated layer is applied with a mirror face rolling and heat treatment, and the surface roughness Ra of the metal plated layer is 10 nm or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超電導線材用テープ状基材、その製造方法、及びその超電導線材用テープ状基材を含む超電導線材に関する。   The present invention relates to a superconducting wire rod-shaped substrate, a method for producing the same, and a superconducting wire including the superconducting wire tape-shaped substrate.

従来、無配向金属基板(例えば、ハステロイ(商標)からなる金属基板)を用いた高温超電導線としては、金属基材上にIBAD(イオンビームアシスト蒸着)法を用いて中間層を形成し、その上にYBCOなどの酸化物超電導層を配向形成したものが知られている。(例えば、特許文献1参照)。   Conventionally, as a high-temperature superconducting wire using a non-oriented metal substrate (for example, a metal substrate made of Hastelloy (trademark)), an intermediate layer is formed on a metal substrate by using an IBAD (ion beam assisted vapor deposition) method. An oxide superconducting layer such as YBCO formed thereon is known. (For example, refer to Patent Document 1).

このように、表面にIBAD法により中間層を形成した基板(いわゆるIBAD基板)に使用される無配向金属基材の表面は、高性能化(高平滑性、高平坦性)が求められ、圧延工程の最適化と、高精密機械研磨等により、表面粗さRaが数nm級の無配向金属基材が製作されている。   As described above, the surface of a non-oriented metal substrate used for a substrate (so-called IBAD substrate) having an intermediate layer formed on the surface by the IBAD method is required to have high performance (high smoothness, high flatness), and rolling. A non-oriented metal substrate having a surface roughness Ra of several nanometers is manufactured by optimizing the process and high-precision mechanical polishing.

このような従来の無配向金属基材の製造方法では、無配向金属素材に点在する表層欠陥や、溶体化熱処理後の表層と圧延ロールのカジリ傷の転写等により生ずる表面欠陥が中間層および超電導層の結晶成長に影響を及ぼし、局部的な超電導特性の劣化の要因になっていた。この無配向金属素材の圧延工程において発生した欠陥は、無配向金属基材表面及び表面層に内在し、その欠陥の確認、削除が困難であった。その結果、1)無配向金属基材の品質のバラツキ、2)無配向金属基材の局部的欠陥を主因とする超電導線材の特性劣化、3)低コストの超電導線材が得られない、という問題があった。以下、それぞれの問題について分説する。   In such a conventional method for producing a non-oriented metal base material, surface layer defects scattered in the non-oriented metal material, surface defects caused by transfer of galling scratches on the surface layer and rolling roll after solution heat treatment, and the like are caused in the intermediate layer and It had an influence on the crystal growth of the superconducting layer, and became a factor of local deterioration of superconducting characteristics. The defects generated in the rolling process of the non-oriented metal material are inherent in the surface of the non-oriented metal substrate and the surface layer, and it is difficult to confirm and delete the defects. As a result, 1) variation in the quality of the non-oriented metal substrate, 2) characteristic deterioration of the superconducting wire mainly due to local defects in the non-oriented metal substrate, and 3) a problem that a low-cost superconducting wire cannot be obtained. was there. Each issue will be discussed below.

1)無配向金属基材品質のばらつきの問題
無配向金属基材の表面特性は、表面粗さRaが数nmであることが求められる。この評価はAFM(原子間力顕微鏡)によって測定されるが、その測定範囲は10μm角から100μm角の範囲内の表面測定で定義される。このため、無配向金属基材の表層に内在する欠陥や、表面に点在する欠陥を直接的に観察できず、表面品質全体を保証することは不可能である。更に、これらの欠陥は目視確認可能な形状及び大きさではなく、光学機器での確認も感度設定等と品質判定の再現性に課題が多い。
1) Problem of variation in quality of non-oriented metal substrate The surface property of a non-oriented metal substrate is required to have a surface roughness Ra of several nm. This evaluation is measured by AFM (Atomic Force Microscope), and the measurement range is defined by surface measurement within a range of 10 μm square to 100 μm square. For this reason, the defects inherent in the surface layer of the non-oriented metal substrate and the defects scattered on the surface cannot be directly observed, and it is impossible to guarantee the entire surface quality. Furthermore, these defects are not in the shape and size that can be visually confirmed, and there are many problems in the reproducibility of the sensitivity setting and the quality determination in the confirmation with the optical device.

2)無配向金属基材の局部的欠陥を主因とする超電導線材の臨界電流値特性劣化
Y系などの酸化物超電導線で超電導特性の高いものを製造するには、基板表面に中間層としてのGd−Zr酸化物層や、CeOなどの酸化物層をエピタキシャル成長することが要求される。このとき、無配向金属基材の表層に内包する欠陥が点在すると、超電導層までの結晶成長が阻害され、局部的な欠陥点が存在し、臨界電流値特性の低下の問題が生ずる。
2) Degradation of critical current characteristics of superconducting wires due mainly to local defects in non-oriented metal substrates To produce high-conductivity superconducting wires such as Y-based superconducting wires, an intermediate layer is formed on the substrate surface. It is required to epitaxially grow a Gd—Zr oxide layer or an oxide layer such as CeO 2 . At this time, if the defects included in the surface layer of the non-oriented metal base material are scattered, the crystal growth to the superconducting layer is inhibited, the local defect point exists, and the problem of deterioration of the critical current value characteristic arises.

3)超電導線材のコスト
従来の製造方法では、無配向金属基材の欠陥位置の特定や、超電導性能に及ぼす影響が正確に把握できず、超電導線材となってはじめて欠陥が確認され、超電導線材の歩留を低下させるという問題があった。このことは、低コストの超電導線材を製造する上で大きな課題であった。
特開平04−329867号公報
3) Cost of superconducting wire With conventional manufacturing methods, the location of defects in non-oriented metal substrates and the effect on superconducting performance cannot be accurately grasped. There was a problem of lowering the yield. This is a big problem in producing a low-cost superconducting wire.
Japanese Patent Laid-Open No. 04-329867

本発明は、以上のような事情の下になされ、品質のバラツキのない、特性の劣化を生ずることのない、低コストの超電導線材を得ることを可能とする超電導線材用基板、その製造方法、及び超電導線材を提供することを目的とする。   The present invention is made under the circumstances as described above, does not cause variations in quality, does not cause deterioration of characteristics, and can obtain a low-cost superconducting wire, a manufacturing method thereof, And it aims at providing a superconducting wire.

上記課題を解決するため、本発明の第1の態様は、テープ状基材と、このテープ状基材の片面または両面に形成された、厚さ0.1μm〜5μmの金属メッキ層とを具備し、前記テープ状基材の表面は、研磨が施され、前記金属メッキ層表面は、少なくとも鏡面仕上げ圧延及び熱処理が施され、前記金属メッキ層の表面粗さRaが10nm以下であることを特徴とする超電導線材用テープ状基材を提供する。   In order to solve the above problems, a first aspect of the present invention comprises a tape-shaped substrate and a metal plating layer having a thickness of 0.1 μm to 5 μm formed on one or both surfaces of the tape-shaped substrate. The surface of the tape-like substrate is polished, the surface of the metal plating layer is subjected to at least mirror finish rolling and heat treatment, and the surface roughness Ra of the metal plating layer is 10 nm or less. A tape-like substrate for a superconducting wire is provided.

前記金属メッキ層表面は、精密研磨が施されることにより、前記金属メッキ層の表面粗さRaを5nm以下とすることが出来る。   By subjecting the surface of the metal plating layer to precise polishing, the surface roughness Ra of the metal plating layer can be set to 5 nm or less.

前記金属メッキ層として、Ni、W、Mo、V、Ag、Au、Cr、Cu、Sn、及びPからなる群から選ばれる少なくとも1種を含むものを用いることが出来る。   As the metal plating layer, a layer containing at least one selected from the group consisting of Ni, W, Mo, V, Ag, Au, Cr, Cu, Sn, and P can be used.

前記テープ状基材として、1〜80原子%のW、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi合金を用いることが出来る。   As the tape-shaped substrate, 1 to 80 atomic% of W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Al, B, and C are included. Ni alloy can be used.

本発明の第2の態様は、圧延によりテープ状基材を形成する工程と、前記テープ状基材の展延性を回復させるための熱処理工程と、前記テープ状基材表面を研磨する工程と、前記テープ状基材表面に金属メッキ層を形成する工程と、前記金属メッキ層の表面に鏡面仕上げ圧延を施す工程とを具備する超電導線材用テープ状基材の製造方法を提供する。   The second aspect of the present invention includes a step of forming a tape-shaped substrate by rolling, a heat treatment step for recovering the spreadability of the tape-shaped substrate, a step of polishing the surface of the tape-shaped substrate, There is provided a method for producing a tape-like substrate for a superconducting wire comprising a step of forming a metal plating layer on the surface of the tape-like substrate and a step of performing mirror finish rolling on the surface of the metal plating layer.

テープ状基材の展延性を回復させるための熱処理工程は、前記テープ状基材を、アルゴンガスに対して0.5〜5vol.%の水素を含む混合ガス雰囲気中で、750℃〜1150℃で3分以上保持することにより行うことが望ましい。   In the heat treatment step for recovering the spreadability of the tape-shaped substrate, the tape-shaped substrate is 750 ° C. to 1150 ° C. in a mixed gas atmosphere containing 0.5 to 5 vol. It is desirable to carry out by holding for 3 minutes or more.

前記鏡面仕上げ圧延の後に、平坦性を改善するための熱処理を施す工程を更に具備することが出来る。前記平坦性を改善するための熱処理は、前記テープ状基材を、アルゴンガスに対して0.5〜5vol.%の水素を含む混合ガス雰囲気中で、750℃〜850℃で10秒以上保持することにより行うことが望ましい。   A step of performing a heat treatment for improving flatness may be further provided after the mirror finish rolling. In the heat treatment for improving the flatness, the tape-shaped substrate is held at 750 ° C. to 850 ° C. for 10 seconds or more in a mixed gas atmosphere containing 0.5 to 5 vol. It is desirable to do so.

前記金属メッキ層として、Ni、W、Mo、V、Ag、Au、Cr、Cu、Sn、及びPからなる群から選ばれる少なくとも1種を含むものを用いることが出来る。   As the metal plating layer, a layer containing at least one selected from the group consisting of Ni, W, Mo, V, Ag, Au, Cr, Cu, Sn, and P can be used.

前記金属メッキ層は、湿式めっきにより0.1μm〜30μmの厚さに形成することが望ましい。   The metal plating layer is preferably formed to a thickness of 0.1 μm to 30 μm by wet plating.

前記テープ状基材として、1〜80原子%のW、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi基合金を用いることが出来る。   The tape-shaped substrate is at least one selected from the group consisting of 1 to 80 atomic% W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Si, Al, B, and C. Ni-based alloys containing can be used.

前記金属メッキ層の表面の仕上げ圧延工程により、前記金属メッキ層の表面粗さRaを5〜10nmにすることが望ましい。   It is desirable that the surface roughness Ra of the metal plating layer is 5 to 10 nm by a finish rolling process of the surface of the metal plating layer.

前記圧延によりテープ状基材を形成する工程は、圧延加工率50%〜80%の範囲内で行うことが望ましく、これにより、超電導線材用テープ状基材の0.2%耐力を1GPa以上とすることができる。   The step of forming the tape-shaped base material by rolling is desirably performed within a range of 50% to 80% of the rolling process rate, whereby the 0.2% proof stress of the tape-shaped base material for superconducting wire is 1 GPa or more. can do.

前記圧延によりテープ状基材を形成する工程の前に、テープ状基材の表面を研磨する工程を更に具備することが出来る。   A step of polishing the surface of the tape-shaped substrate can be further included before the step of forming the tape-shaped substrate by rolling.

また、前記鏡面仕上げ圧延を施す工程の後に、前記金属メッキ層の表面を精密研磨する工程を更に具備することが出来る。なお、精密研磨により、前記金属メッキ層の表面粗さRaを5nm以下にすることができる。   Moreover, the process of carrying out the mirror surface finish rolling can further comprise the process of carrying out the precision grinding | polishing of the surface of the said metal plating layer. Note that the surface roughness Ra of the metal plating layer can be reduced to 5 nm or less by precision polishing.

本発明の第3の態様は、上述した超電導線材用テープ状基材の表面に直接または中間層を介して超電導層を形成してなることを特徴とする超電導線材を提供する。   According to a third aspect of the present invention, there is provided a superconducting wire characterized by forming a superconducting layer directly or via an intermediate layer on the surface of the tape-like base material for a superconducting wire described above.

本発明によると、品質のバラツキのない、特性の劣化を生ずることのない、低コストの超電導線材を得ることを可能とする超電導線材用基板、その製造方法、及び超電導線材を提供することが出来る。   According to the present invention, it is possible to provide a substrate for a superconducting wire, a method for manufacturing the same, and a superconducting wire capable of obtaining a low-cost superconducting wire without quality variation and without causing deterioration of characteristics. .

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の一実施形態に係る超電導線材用金属基板の断面構造を示す模式図である。本実施形態に係る超電導線材用金属基板は、テープ状基材1と、このテープ状基材1の表面に形成された金属メッキ層2とから構成される。   FIG. 1 is a schematic diagram showing a cross-sectional structure of a metal substrate for a superconducting wire according to an embodiment of the present invention. The metal substrate for a superconducting wire according to this embodiment includes a tape-like base material 1 and a metal plating layer 2 formed on the surface of the tape-like base material 1.

テープ状基材1は、Ni合金であることが望ましい。Ni合金としては、W、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi合金を挙げることが出来る。これらの添加元素の添加量は、1〜80原子%であることが望ましい。   The tape-shaped substrate 1 is desirably a Ni alloy. Examples of the Ni alloy include an Ni alloy containing at least one selected from the group consisting of W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Si, Al, B, and C. I can do it. The addition amount of these additive elements is desirably 1 to 80 atomic%.

具体的なNi合金としては、ハステロイ(商標)、インコネル(商標)、ステンレスを挙げることが出来る。   Specific examples of the Ni alloy include Hastelloy (trademark), Inconel (trademark), and stainless steel.

金属メッキ層2は、Ni、W、Mo、V、Ag、Au、Cr、Cu、Sn、及びPからなる群から選ばれる少なくとも1種を含む金属材料から構成されるのが望ましい。金属メッキ層2の膜厚は、0.1μm〜5μmである。金属メッキ層2の膜厚が0.1μm未満では、下地表層に内包する欠陥の影響を受け、超電導層までの結晶成長が阻害され、局部的な欠陥点が存在し、臨界電流値特性の低下の要因となり、5μmを越えると、金属メッキコストが高くなり経済的に好ましくない。   The metal plating layer 2 is preferably made of a metal material containing at least one selected from the group consisting of Ni, W, Mo, V, Ag, Au, Cr, Cu, Sn, and P. The film thickness of the metal plating layer 2 is 0.1 μm to 5 μm. If the thickness of the metal plating layer 2 is less than 0.1 μm, it is affected by defects contained in the underlying surface layer, and crystal growth up to the superconducting layer is hindered, local defect points exist, and the critical current value characteristic is degraded. If the thickness exceeds 5 μm, the metal plating cost increases, which is not preferable economically.

金属メッキ層2は、例えば、Ni−Ag−Cu−Snメッキ、Ni−W合金メッキ、Ni−W−Pメッキでもよい。また、金属メッキ層は2層以上の構造でもよい。また、金属メッキ層は、テープ状基材1の片面に限らず、両面に設けられていてもよい。   The metal plating layer 2 may be, for example, Ni—Ag—Cu—Sn plating, Ni—W alloy plating, or Ni—WP plating. Further, the metal plating layer may have a structure of two or more layers. In addition, the metal plating layer is not limited to one side of the tape-shaped substrate 1 and may be provided on both sides.

本実施形態に係る超電導線材用金属基板において、金属メッキ層の表面粗さRaは10nm以下である。金属メッキ層の表面粗さRaが10nmを越えると、中間層の平滑性に影響を与え、鏡面仕上げ圧延及び熱処理後に行う精密研磨コスト、精密研磨品質が低下し、その後の成膜コストが高くなり経済的にも品質的にも好ましくない。   In the metal substrate for a superconducting wire according to the present embodiment, the surface roughness Ra of the metal plating layer is 10 nm or less. If the surface roughness Ra of the metal plating layer exceeds 10 nm, the smoothness of the intermediate layer will be affected, the precision polishing cost and precision polishing quality performed after mirror finish rolling and heat treatment will decrease, and the subsequent film formation cost will increase. It is not preferable economically and in quality.

なお、表面粗さRaとは、JIS B 0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。   The surface roughness Ra is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameter defined in JIS B 0601-2001.

このような表面粗さは、テープ状基材1の表面に金属メッキ層が形成され、金属メッキ層表面に圧延及び研磨が施されることにより、得ることが可能となった。   Such a surface roughness can be obtained by forming a metal plating layer on the surface of the tape-shaped substrate 1 and rolling and polishing the surface of the metal plating layer.

本実施形態に係る超電導線材用金属基板によると、テープ状基材1の表面に金属メッキ層2が形成されているため、テープ状基材1の表面に局部的に存在する凹凸が金属メッキ層2により覆われ、テープ状基材1の素材欠陥が表面に出現するのを防止することが出来る。また、一様な極めて薄いメッキ層で覆われるため、その後の圧延及び研磨により一様な高平滑度の基板表面を得ることが出来る。   According to the metal substrate for a superconducting wire according to the present embodiment, since the metal plating layer 2 is formed on the surface of the tape-like base material 1, the unevenness locally present on the surface of the tape-like base material 1 is a metal plating layer. 2 to prevent material defects of the tape-like substrate 1 from appearing on the surface. Moreover, since it is covered with a uniform and extremely thin plating layer, a uniform and highly smooth substrate surface can be obtained by subsequent rolling and polishing.

以上説明した超電導線材用金属基板は、図2に示すプロセスにより製造することが出来る。   The metal substrate for a superconducting wire described above can be manufactured by the process shown in FIG.

まず、プロセスのスタート時において、Ni合金からなるテープ状基材を準備する。テープ状基材は、素材を圧延加工及びスリット加工することにより、所定の寸法のものを得ることが出来る。なお、圧延の前に表面(片面又は両面)の粗研磨を行っても良い。   First, at the start of the process, a tape-shaped substrate made of a Ni alloy is prepared. The tape-shaped substrate can be obtained with a predetermined size by rolling and slitting the material. In addition, you may perform rough grinding | polishing of the surface (one side or both sides) before rolling.

次に、テープ状基材の表面(片面又は両面)に機械研磨を施す。この機械研磨により、その後の圧延工程におけるロール表面カジリを防止するとともに、素材の地肌レベルの統一化を図ることが出来る。   Next, mechanical polishing is performed on the surface (one side or both sides) of the tape-like substrate. By this mechanical polishing, roll surface galling in the subsequent rolling process can be prevented, and the background level of the material can be unified.

なお、この機械研磨の前に、基材の展延性(伸び)を回復させるための熱処理(BA処理:光輝焼鈍処理)を行っても良い。BA処理は、テープ状基材を、アルゴンガスに対し、0.5〜5vol.%の水素を含む混合ガス雰囲気中で、750℃〜1150℃で3分以上保持することにより行われる。   In addition, you may perform the heat processing (BA process: Bright annealing process) for recovering the extensibility (elongation) of a base material before this mechanical polishing. The BA treatment is performed by holding the tape-like substrate at 750 ° C. to 1150 ° C. for 3 minutes or more in a mixed gas atmosphere containing 0.5 to 5 vol.% Hydrogen with respect to the argon gas.

次いで、テープ状基板表面(片面又は両面)に湿式メッキによる金属メッキ層が施される。なお、メッキは無光沢メッキでも光沢メッキでもよく、必ずしも湿式メッキに限られず、乾式メッキ法も適用することが出来る。また、スパッター法で、例えばAgを数nmの厚みに成膜した後、湿式メッキ法で、例えばNiW合金を数μmの厚さに積層してもよい。或いは、乾式メッキ法、湿式メッキでそれぞれ複数層を構成することも可能である。   Next, a metal plating layer by wet plating is applied to the tape-like substrate surface (one side or both sides). The plating may be matte plating or gloss plating, and is not necessarily limited to wet plating, and dry plating can also be applied. Further, for example, a film of Ag having a thickness of several nm may be formed by sputtering, and then a NiW alloy, for example, may be laminated to a thickness of several μm by wet plating. Alternatively, a plurality of layers can be formed by dry plating and wet plating, respectively.

また、乾式メッキ法を用いて、Ta、Nbなどの高融点金属を0.1nm〜数nmの厚さに成膜して、テープ状基板と金属メッキ層間、および異なる金属メッキ層同士の過度の拡散を防止することも可能である。   Further, by using a dry plating method, a refractory metal such as Ta or Nb is formed to a thickness of 0.1 nm to several nm, and an excessive amount of tape-like substrate and metal plating layer and between different metal plating layers are excessive. It is also possible to prevent diffusion.

なお、金属メッキ層の膜厚は、テープ状基材の表面に局部的に存在する凹凸を埋めるように、かつその後の圧延及び研磨による膜厚の減少を考慮して、好ましくは0.1μm〜30μm、より好ましくは1μm〜10μmである。   The metal plating layer preferably has a thickness of 0.1 μm to fill the unevenness locally present on the surface of the tape-like substrate, and considering the reduction of the film thickness due to subsequent rolling and polishing. 30 μm, more preferably 1 μm to 10 μm.

その後、金属メッキ層が施されたテープ状基材に鏡面仕上げ圧延を施す。鏡面仕上げ圧延は、例えば12段又は20段の圧延ロールを用いて、圧延加工率50%〜80%の範囲で、表面粗さRaが5〜10nmとなるように行うことが望ましい。   Thereafter, mirror finish rolling is performed on the tape-like substrate on which the metal plating layer has been applied. The mirror finish rolling is preferably performed using, for example, a 12-stage or 20-stage rolling roll so that the surface roughness Ra is 5 to 10 nm in a range of a rolling rate of 50% to 80%.

なお、金属メッキ層の膜厚で、薄厚条件(0.5μm以下)を選定する場合は、テープ基材表面を予め鏡面圧延により、鏡面表面同等にして金属メッキ層を成膜することも出来る。最後に、平坦性を回復させるための熱処理(TA処理:テンションアニール処理)を行う。 TA処理は、テープ状基材を、アルゴンガスに対して0.5〜5vol.%の水素を含む混合ガス雰囲気中で、750℃〜850℃で10秒以上保持することにより行うことが出来る。   In addition, when selecting thin conditions (0.5 micrometer or less) by the film thickness of a metal plating layer, a metal plating layer can also be formed into a film by making the tape base material surface equivalent to a mirror surface surface by mirror rolling beforehand. Finally, heat treatment (TA treatment: tension annealing treatment) for restoring flatness is performed. TA treatment can be performed by holding the tape-shaped substrate at 750 ° C. to 850 ° C. for 10 seconds or more in a mixed gas atmosphere containing 0.5 to 5 vol.

なお、場合によっては、TA処理後に、仕上げ鏡面研磨を行う。研磨方法としては、機械研磨、電解研磨、化学研磨、それら組み合わせた研磨を採用すること出来る。   In some cases, finish mirror polishing is performed after the TA treatment. As a polishing method, mechanical polishing, electrolytic polishing, chemical polishing, or a combination thereof can be employed.

機械研磨では、研磨粒はダイアモンド粒や酸化物粒、特に酸化アルミニウム、酸化セリウム、酸化クロム、酸化ジルコニウム、酸化鉄などが望ましく、またその溶液(研磨液)は水や界面活性剤や油類や有機溶剤やそれらの混合液、あるいは水に蟻酸や酢酸や硝酸などの酸、あるいは水に水酸化ナトリウムなどのアルカリを混合した溶液であればよいが、特に石けん水が望ましい。   In mechanical polishing, the abrasive grains are preferably diamond grains or oxide grains, especially aluminum oxide, cerium oxide, chromium oxide, zirconium oxide, iron oxide, etc., and the solution (polishing liquid) is water, surfactants, oils, An organic solvent or a mixture thereof, or a solution in which water is mixed with an acid such as formic acid, acetic acid or nitric acid, or an alkali such as sodium hydroxide in water, is particularly desirable.

化学研磨では、研磨液は、基板表面と化学反応する化学溶液であって、例えば硝酸、硫酸、蟻酸、酢酸、塩酸、フッ酸、クロム酸、過酸化水素、シュウ酸、テトラリン酸、氷酢酸などの液体あるいはその混合溶液で、さらにその混合溶液に飽和アルコールやスルホン酸類などの促進剤を混合した溶液が望ましい。   In chemical polishing, the polishing liquid is a chemical solution that chemically reacts with the substrate surface, such as nitric acid, sulfuric acid, formic acid, acetic acid, hydrochloric acid, hydrofluoric acid, chromic acid, hydrogen peroxide, oxalic acid, tetraphosphoric acid, glacial acetic acid, etc. Or a mixed solution thereof, and a solution obtained by further mixing an accelerator such as saturated alcohol or sulfonic acid with the mixed solution.

化学的機械研磨では、研磨粒は上記機械研磨の粒でよく、そこに化学研磨の溶液を含む研磨溶液(スラリー)を用いる。   In chemical mechanical polishing, the abrasive grains may be the above-mentioned mechanically polished grains, and a polishing solution (slurry) containing a chemical polishing solution is used there.

電解研磨では、基板を電解液に浸して、基板を陽極として通電して電解反応で基板表面を研磨する。この電解液は、酸やアルカリでよく、特に硝酸、リン酸、クロム酸、過酸化水素、水酸化カリウム、シアン化カリウムなどが望ましい。   In electrolytic polishing, a substrate is immersed in an electrolytic solution, and the substrate surface is polished by an electrolytic reaction by energizing the substrate as an anode. This electrolytic solution may be an acid or an alkali, and nitric acid, phosphoric acid, chromic acid, hydrogen peroxide, potassium hydroxide, potassium cyanide and the like are particularly desirable.

以上のようにして、高性能化(高平滑性、高平坦性)が維持されたテープ状基材が、圧延工程の履歴の短い製法により可能となり、メッキ工程では500mm幅程度まで製造条件の範囲が広がり、低コスト化に有望である。   As described above, a tape-like base material that maintains high performance (high smoothness, high flatness) is made possible by a manufacturing method with a short rolling process history. In the plating process, the range of manufacturing conditions is up to about 500 mm. Is promising for cost reduction.

なお、テープ状基材上には、その後、中間層が形成され、この中間層上に超電導層が成膜され、超電導線材が得られる。   An intermediate layer is then formed on the tape-shaped substrate, and a superconducting layer is formed on the intermediate layer, whereby a superconducting wire is obtained.

以下に、本発明の実施例を示すが、本発明は、これら実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to these examples.

実施例1
(素材直接研磨+湿式Niメッキ法+冷間圧延+鏡面圧延仕上げ+TA熱処理)
厚さ0.3mm×幅75mm×長さ350mのハステロイ(商標:Ni−16Cr−15.6Mo−6Fe−4W−2Co)からなる金属テープ(BA材:表面粗さRa50〜100μm)の両面を機械研磨により表面粗さRaが30nm程度になるように改質し、その研磨面の片面に無光沢のNiメッキを3μmの厚さに形成して、複合基板とした。
Example 1
(Direct material polishing + wet Ni plating method + cold rolling + mirror rolling finish + TA heat treatment)
Both sides of a metal tape (BA material: surface roughness Ra 50-100 μm) made of Hastelloy (Trademark: Ni-16Cr-15.6Mo-6Fe-4W-2Co) with a thickness of 0.3 mm x width 75 mm x length 350 m are machined. The surface roughness Ra was modified to about 30 nm by polishing, and a matte Ni plating was formed on one side of the polished surface to a thickness of 3 μm to obtain a composite substrate.

このテープ基材をロール径Φ15mmの12段圧延機で0.1mmt×75mm幅×1050m長のテープ基材を製造し、このときの圧延の最終仕上がり工程で、テープ基材表面の表面粗さをRaで8nmの鏡面仕上げとした。   This tape base material is manufactured with a 12-stage rolling mill having a roll diameter of Φ15 mm, and a tape base material having a length of 0.1 mmt × 75 mm width × 1050 m is manufactured. Ra mirror finish of 8 nm.

次いで、テープ基板の平坦性を改善するため、790℃×20秒保持する条件で、3kgf/mmの張力を印加し、アルゴンガスと水素の混合気体の雰囲気で熱処理した。 Next, in order to improve the flatness of the tape substrate, a tension of 3 kgf / mm 2 was applied under the condition of holding at 790 ° C. for 20 seconds, and heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.

このようにして熱処理されたテープ基材にロール圧延を施し、更に仕上がりサイズでスリット加工を施すことにより、厚さ100μm、幅10mm×1050m×6条のテープに仕上げた。このときのテープ表層のNi層の厚さは約1μmであった。これにより圧延工程の加工率60%以上を確保した。   The tape base material thus heat-treated was roll-rolled, and further slitted with a finished size to finish a tape having a thickness of 100 μm and a width of 10 mm × 1050 m × 6. At this time, the thickness of the Ni layer on the surface layer of the tape was about 1 μm. This secured a processing rate of 60% or more in the rolling process.

テープの表層であるNi層は、後の精密研磨工程で表面粗さRa1.5nmに研磨仕上げされるが、このとき、厚さ約0.5μmは精密研磨にて削除される。この精密研磨は電解研磨、機械研磨、化学研磨のいずれの方法でもよい。この場合、精密研磨前の表層が一様であるため、精密研磨コストの低減効果が得られる。   The Ni layer, which is the surface layer of the tape, is polished to a surface roughness Ra of 1.5 nm in a subsequent precision polishing step. At this time, the thickness of about 0.5 μm is deleted by precision polishing. This precision polishing may be any method of electrolytic polishing, mechanical polishing, and chemical polishing. In this case, since the surface layer before precision polishing is uniform, an effect of reducing precision polishing cost can be obtained.

また、テープ基材の表層の厚さを全厚の約1/100以下にすることにより、ほぼ非磁性化が可能になった。   Further, by making the thickness of the surface layer of the tape base material about 1/100 or less of the total thickness, it was possible to make almost non-magnetic.

この仕上がりテープ1条の両端部から採取したサンプルを原子間力顕微鏡(AFM)により10μm角の表面粗さを測定した結果、両端部それぞれ10箇所平均でRa=8.2、8.8nmであり、すべての測定点でRa<9nmであった。 As a result of measuring the surface roughness of 10 μm square by using an atomic force microscope (AFM) for samples taken from both ends of this finished tape, Ra = 8.2 and 8.8 nm in average at both ends. Ra <9 nm at all measurement points.

また、引っ張り試験を室温で行ったところ、0.2%耐力は1.5GPaであった。したがって、高強度、非磁性、高性能の金属テープ基板を製作することができた。   Moreover, when the tension test was done at room temperature, 0.2% yield strength was 1.5 GPa. Therefore, a high-strength, non-magnetic, high-performance metal tape substrate could be manufactured.

IBAD工程
以上のようにして得たテープ基材に、IBAD法を用い、Gd−Zr酸化物中間層(GZO)を約1μmの厚さに成膜し、更に、その上にPLD(パルスレーザデポジション)法にてCeO酸化物中間層を約400nmの厚さに形成した。
IBAD process On the tape substrate obtained as described above, an IBAD method is used to form a Gd-Zr oxide intermediate layer (GZO) with a thickness of about 1 μm. The CeO 2 oxide intermediate layer was formed to a thickness of about 400 nm by the position method.

さらに、中間層上にYBCO超電導体をPLD法によって約1μmの厚さに堆積した。そして、Y系超電導体の上面に銀を高周波スパッター装置を用いて、約10μmの厚さに蒸着して電極層を形成した。   Further, a YBCO superconductor was deposited on the intermediate layer to a thickness of about 1 μm by the PLD method. Then, silver was vapor-deposited to a thickness of about 10 μm on the upper surface of the Y-based superconductor using a high frequency sputtering apparatus to form an electrode layer.

このようにして得た超電導線材50mを液体窒素に浸漬した状態で4端子法を用いて臨界電流を測定した。このとき、測定は1mピッチで、電圧端子は1.2mとして測定した。超電導線の通電特性は1μV/cm定義で、臨界電流値の全測定位置で220A以上を確認し、最小−最大差が16Aとなった。   The critical current was measured using the four-terminal method in a state where 50 m of the superconducting wire thus obtained was immersed in liquid nitrogen. At this time, the measurement was performed with a 1 m pitch and a voltage terminal of 1.2 m. The current-carrying characteristics of the superconducting wire were defined as 1 μV / cm, 220 A or more was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 16 A.

実施例2
(素材冷間圧延+BA熱処理+素材研磨+冷間圧延+湿式Niメッキ法+冷間圧延+鏡面圧延仕上げ+TA熱処理)
ハステロイ(商標:Ni−16Cr−15.6Mo−6Fe−4W−2Co)からなる素材0.5mmt×75mm幅×210m(BA材:表面粗さRa50〜100μm)を、0.3mmの板厚に冷間圧延し、基材の展延性(伸び)を回復させる熱処理(BA処理:光揮焼鈍)を施し、機械研磨を行うことにより、両面の表面粗さRaを30nm程度になるように改質し、更に、ロール径Φ15mmの12段圧延機にて、0.2mmの板厚に圧延し、非配向金属素材表面を圧延加工表面に改質した。
Example 2
(Material cold rolling + BA heat treatment + Material polishing + Cold rolling + Wet Ni plating method + Cold rolling + Mirror finish + TA heat treatment)
A material made of Hastelloy (Trademark: Ni-16Cr-15.6Mo-6Fe-4W-2Co) 0.5 mmt x 75 mm width x 210 m (BA material: surface roughness Ra 50-100 μm) was cooled to a thickness of 0.3 mm. The surface roughness Ra of both surfaces is improved to about 30 nm by performing hot rolling (BA treatment: light annealing) to recover the spreadability (elongation) of the base material by rolling. Furthermore, it was rolled to a sheet thickness of 0.2 mm by a 12-high rolling mill having a roll diameter of Φ15 mm, and the surface of the non-oriented metal material was modified to a rolled surface.

次いで、その圧延面の片面に無光沢のNi合金メッキを1.5μmの厚さに施して、複合基板とした。   Next, matte Ni alloy plating was applied to one side of the rolled surface to a thickness of 1.5 μm to obtain a composite substrate.

このテープ基材をロール径Φ15mmの12段圧延機で0.1mmt×75mm幅×1050mのテープ基材を製造し、このときの圧延の最終仕上がり工程で、テープ基材表面の表面粗さをRaで8nmの鏡面仕上げとした。   A tape base material of 0.1 mmt × 75 mm width × 1050 m was produced with a 12-stage rolling mill having a roll diameter of Φ15 mm, and the surface roughness of the tape base material surface was determined by Ra at the final finishing step of the rolling. The mirror finish was 8 nm.

次いで、テープ基板の平坦性を改善するため、790℃×20秒保持条件で、3kgf/mm2の張力を印加し、アルゴンガスと水素の混合気体雰囲気で熱処理した。   Next, in order to improve the flatness of the tape substrate, a tension of 3 kgf / mm 2 was applied under a condition of 790 ° C. × 20 seconds, and heat treatment was performed in a mixed gas atmosphere of argon gas and hydrogen.

このテープ基材をロール圧延工程と仕上がりサイズでスリット加工することで厚さ100μm幅10mm×1050m×6条のテープに仕上げた。このときの表材のNi層の厚さは0.7μmであった。これにより圧延工程の総加工率は80%を確保した。   This tape base material was finished into a tape having a thickness of 100 μm and a width of 10 mm × 1050 m × 6 by slitting in a roll rolling process and a finished size. The thickness of the Ni layer of the surface material at this time was 0.7 μm. As a result, the total processing rate of the rolling process was secured at 80%.

その後、金属メッキ層であるNi層に電解研磨により精密研磨処理を施し、表面粗さRa1.5nmに研磨仕上げした。このとき、厚さ約0.3μmが精密研磨にて除去される。この精密研磨は電解研磨の他に、機械研磨、化学研磨のいずれの方法でもよい。なお、鏡面仕上げ圧延及びTA処理により、精密研磨前の表層が一様であるため、精密研磨コストが低減される。   Thereafter, the Ni layer as the metal plating layer was subjected to a precision polishing process by electropolishing, and finished to a surface roughness Ra of 1.5 nm. At this time, a thickness of about 0.3 μm is removed by precision polishing. This precision polishing may be either mechanical polishing or chemical polishing in addition to electrolytic polishing. In addition, since the surface layer before precision grinding | polishing is uniform by mirror surface finish rolling and TA process, precision grinding | polishing cost is reduced.

また、テープ基材表面の金属メッキ層の厚さを全厚の約1/140以下にすることにより、ほぼ非磁性化が可能になった。   Further, by making the thickness of the metal plating layer on the surface of the tape base material to be about 1/140 or less of the total thickness, almost non-magnetization is possible.

以上のようにして得た仕上がりテープ状基材1条の両端部から採取したサンプルについて、原子間力顕微鏡(AFM)により10μm角の表面粗さを測定した結果、両端部それぞれ10箇所平均でRa=8.5、9.1nmであり、すべての測定点でRa<10nmであった。   About the sample extract | collected from the both ends of the finished tape-shaped base material obtained as mentioned above, as a result of measuring the surface roughness of a 10 micrometer square with an atomic force microscope (AFM), Ra is averaged by 10 places at both ends. = 8.5, 9.1 nm, and Ra <10 nm at all measurement points.

また、引っ張り試験を室温で行ったところ、0.2%耐力は1.4GPaであった。したがって、高強度、非磁性、高性能な金属テープ基板を製作することができた。   Moreover, when the tension test was done at room temperature, 0.2% yield strength was 1.4 GPa. Therefore, a high-strength, non-magnetic, high-performance metal tape substrate could be manufactured.

IBAD工程
以上のようにして得たテープ基材に、IBAD法を用い、Gd−Zr酸化物中間層(GZO)を約1μmの厚さに成膜し、更に、その上にPLD法にてCeO酸化物中間層を約500nmの厚さに形成した。
IBAD process A Gd-Zr oxide intermediate layer (GZO) is formed to a thickness of about 1 μm on the tape base material obtained as described above by using the IBAD method, and further, CeO is formed thereon by the PLD method. A two- oxide intermediate layer was formed to a thickness of about 500 nm.

さらに、中間層上にYBCO超電導体をPLD法によって約1μmの厚さに堆積した。そして、Y系超電導体の上面に銀を高周波スパッター装置を用いて、約10μmの厚さに蒸着して電極層を形成した。   Further, a YBCO superconductor was deposited on the intermediate layer to a thickness of about 1 μm by the PLD method. Then, silver was vapor-deposited to a thickness of about 10 μm on the upper surface of the Y-based superconductor using a high frequency sputtering apparatus to form an electrode layer.

このようにして得た超電導線材50mを液体窒素に浸漬した状態で4端子法を用いて臨界電流を測定した。このとき、測定は1mピッチで、電圧端子は1.2mとして測定した。超電導線の通電特性は1μV/cm定義で、臨界電流値の全測定位置で240A以上を確認し、最小−最大差が13Aとなった。   The critical current was measured using the four-terminal method in a state where 50 m of the superconducting wire thus obtained was immersed in liquid nitrogen. At this time, the measurement was performed with a 1 m pitch and a voltage terminal of 1.2 m. The energization characteristic of the superconducting wire was defined as 1 μV / cm, and 240 A or more was confirmed at all measurement positions of the critical current value, and the minimum-maximum difference was 13 A.

実施例3
(素材直接研磨+湿式Niメッキ法+冷間圧延+鏡面圧延仕上げ+TA熱処理)
厚さ0.3mm×幅75mm×長さ350mのハステロイ(商標:Ni−16Cr−15.6Mo−6Fe−4W−2Co)からなる金属テープ(BA材:表面粗さRa50〜100μm)の両面を機械研磨により表面粗さRaが30nm程度になるように改質し、その研磨面の片面に無光沢のNiメッキを2μmの厚さに形成して、複合基板とした。
Example 3
(Direct material polishing + wet Ni plating method + cold rolling + mirror rolling finish + TA heat treatment)
Both sides of a metal tape (BA material: surface roughness Ra 50-100 μm) made of Hastelloy (Trademark: Ni-16Cr-15.6Mo-6Fe-4W-2Co) with a thickness of 0.3 mm x width 75 mm x length 350 m are machined. The surface roughness Ra was modified to about 30 nm by polishing, and a matte Ni plating was formed on one side of the polished surface to a thickness of 2 μm to obtain a composite substrate.

このテープ基材をロール径Φ15mmの12段圧延機で0.1mmt×75mm幅×1050m長のテープ基材を製造し、このときの圧延の最終仕上がり工程で、テープ基材表面の表面粗さをRaで8nmの鏡面仕上げとした。   This tape base material is manufactured with a 12-stage rolling mill having a roll diameter of Φ15 mm, and a tape base material having a length of 0.1 mmt × 75 mm width × 1050 m is manufactured. Ra mirror finish of 8 nm.

次いで、テープ基板の平坦性を改善するため、790℃×20秒保持する条件で、3kgf/mmの張力を印加し、アルゴンガスと水素の混合気体の雰囲気で熱処理した。 Next, in order to improve the flatness of the tape substrate, a tension of 3 kgf / mm 2 was applied under the condition of holding at 790 ° C. for 20 seconds, and heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen.

このようにして熱処理されたテープ基材にロール圧延を施し、更に仕上がりサイズでスリット加工を施すことにより、厚さ100μm、幅10mm×1050m×6条のテープに仕上げた。このときのテープ表層のNi層の厚さは約0.7μmであった。これにより圧延工程の加工率60%以上を確保した。   The tape base material thus heat-treated was roll-rolled, and further slitted with a finished size to finish a tape having a thickness of 100 μm and a width of 10 mm × 1050 m × 6. At this time, the thickness of the Ni layer on the surface layer of the tape was about 0.7 μm. This secured a processing rate of 60% or more in the rolling process.

この仕上がりテープ1条の両端部から採取したサンプルを原子間力顕微鏡(AFM)により10μm角の表面粗さを測定した結果、両端部それぞれ10箇所平均でRa=8.2、8.8nmであり、すべての測定点でRa<9nmであった。   As a result of measuring the surface roughness of 10 μm square by using an atomic force microscope (AFM) for samples taken from both ends of this finished tape, Ra = 8.2 and 8.8 nm in average at both ends. Ra <9 nm at all measurement points.

また、引っ張り試験を室温で行ったところ、0.2%耐力は1.5GPaであった。したがって、高強度、非磁性、高性能の金属テープ基板を製作することができた。   Moreover, when the tension test was done at room temperature, 0.2% yield strength was 1.5 GPa. Therefore, a high-strength, non-magnetic, high-performance metal tape substrate could be manufactured.

IBAD工程
以上のようにして得たテープ基材に、IBAD法を用い、Gd−Zr酸化物中間層(GZO)を約1μmの厚さに成膜し、更に、その上にPLD法にてCeO酸化物中間層を約500nmの厚さに形成した。
IBAD process A Gd-Zr oxide intermediate layer (GZO) is formed to a thickness of about 1 μm on the tape base material obtained as described above by using the IBAD method, and further, CeO is formed thereon by the PLD method. A two- oxide intermediate layer was formed to a thickness of about 500 nm.

さらに、中間層上にYBCO超電導体をPLD法によって約1μmの厚さに堆積した。そして、Y系超電導体の上面に銀を高周波スパッター装置を用いて、約10μmの厚さに蒸着して電極層を形成した。   Further, a YBCO superconductor was deposited on the intermediate layer to a thickness of about 1 μm by the PLD method. Then, silver was vapor-deposited to a thickness of about 10 μm on the upper surface of the Y-based superconductor using a high frequency sputtering apparatus to form an electrode layer.

このようにして得た超電導線材50mを液体窒素に浸漬した状態で4端子法を用いて臨界電流を測定した。このとき、測定は1mピッチで、電圧端子は1.2mとして測定した。超電導線の通電特性は1μV/cm定義で、臨界電流値の全測定位置で205A以上を確認し、最小−最大差が12Aとなった。   The critical current was measured using the four-terminal method in a state in which 50 m of the superconducting wire thus obtained was immersed in liquid nitrogen. At this time, the measurement was performed with a 1 m pitch and a voltage terminal of 1.2 m. The current-carrying characteristics of the superconducting wire were defined as 1 μV / cm, and at least 205 A was confirmed at all measurement positions of the critical current value. The minimum-maximum difference was 12 A.

下記表1に、以上の実施例1及び実施例2、実施例3に係るテープ基材の特性をまとめて示す。なお、表1における基板特性Raについては、精密研磨を実施した実施例1,2については、精密研磨を行う前の基板表面粗さである。

Figure 2010153090
Table 1 below collectively shows the characteristics of the tape base materials according to Example 1, Example 2, and Example 3 described above. In addition, about the board | substrate characteristic Ra in Table 1, about Example 1, 2 which implemented precision grinding | polishing, it is the substrate surface roughness before performing precision grinding | polishing.
Figure 2010153090

上記表1から、基材の表面にNiメッキ層を形成した実施例1、実施例2、及び実施例3により得た超電導線材用テープ状基材は、精密研磨を行う前の表面粗さは9nm未満または10nm未満と低く、σ0.2%(耐力)は、それぞれ1.5GPa、1.4GPaと高く、また超電導線材50mあたりの特性低下箇所が0であり、優れた特性を有していた。   From Table 1 above, the tape-like base material for superconducting wires obtained in Example 1, Example 2, and Example 3 in which the Ni plating layer was formed on the surface of the base material had the surface roughness before performing precision polishing. Less than 9 nm or less than 10 nm, and σ 0.2% (yield strength) is as high as 1.5 GPa and 1.4 GPa, respectively, and the number of places where the property is reduced per 50 m of superconducting wire is 0, and it has excellent characteristics. .

これに対し、基材の表面にNiメッキ層を形成しない従来例では、超電導線材50mあたりの特性低下箇所が2箇所と多く、高性能の超電導線材を得ることは出来なかった。   On the other hand, in the conventional example in which the Ni plating layer is not formed on the surface of the base material, there are many characteristic deterioration portions per 50 m of the superconducting wire, and a high performance superconducting wire could not be obtained.

本発明の一実施形態に係るテープ状基材を示す断面図。Sectional drawing which shows the tape-shaped base material which concerns on one Embodiment of this invention. 本発明の一実施形態に係るテープ状基材を製造するプロセスを示す図。The figure which shows the process which manufactures the tape-shaped base material which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1…テープ状基材、2…金属メッキ層。   DESCRIPTION OF SYMBOLS 1 ... Tape-like base material, 2 ... Metal plating layer.

Claims (16)

テープ状基材と、このテープ状基材の片面または両面に形成された、厚さ0.1μm〜5μmの金属メッキ層とを具備し、前記テープ状基材の表面は、研磨が施され、前記金属メッキ層表面は、少なくとも鏡面仕上げ圧延及び熱処理が施され、前記金属メッキ層の表面粗さRaが10nm以下であることを特徴とする超電導線材用テープ状基材。   It comprises a tape-like substrate and a metal plating layer having a thickness of 0.1 μm to 5 μm formed on one or both sides of the tape-like substrate, and the surface of the tape-like substrate is polished, The surface of the metal plating layer is subjected to at least mirror finish rolling and heat treatment, and the surface roughness Ra of the metal plating layer is 10 nm or less. 前記金属メッキ層表面は、精密研磨が施されることにより、前記金属メッキ層の表面粗さRaが5nm以下であることを特徴とする請求項1に記載の超電導線材用テープ状基材。   The tape-shaped substrate for a superconducting wire according to claim 1, wherein the surface of the metal plating layer is subjected to precision polishing so that the surface roughness Ra of the metal plating layer is 5 nm or less. 前記金属メッキ層が、Ni、W、Mo、V、Ag、Au、Cr、Cu、Sn、及びPからなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1に記載の超電導線材用テープ状基材。   The superconducting wire according to claim 1, wherein the metal plating layer includes at least one selected from the group consisting of Ni, W, Mo, V, Ag, Au, Cr, Cu, Sn, and P. Tape-like substrate. 前記テープ状基材は、1〜80原子%のW、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi合金であることを特徴とする請求項1に記載の超電導線材用テープ状基材。   The tape-shaped substrate contains at least one selected from the group consisting of 1 to 80 atomic% of W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Al, B, and C. The tape-shaped substrate for a superconducting wire according to claim 1, wherein the tape-shaped substrate is a Ni alloy. 圧延によりテープ状基材を形成する工程と、前記テープ状基材表面を研磨する工程と、前記テープ状基材表面に金属メッキ層を形成する工程と、前記金属メッキ層の表面に鏡面仕上げ圧延を施す工程とを具備することを特徴とする超電導線材用テープ状基材の製造方法。   A step of forming a tape-like substrate by rolling, a step of polishing the surface of the tape-like substrate, a step of forming a metal plating layer on the surface of the tape-like substrate, and mirror finish rolling on the surface of the metal plating layer And a method for producing a tape-like base material for a superconducting wire. テープ状基材の展延性を回復させるための熱処理工程は、前記テープ状基材を、アルゴンガスに対し0.5〜5vol.%の水素を含む混合ガス雰囲気中で、750℃〜1150℃で3分以上保持することであることを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   In the heat treatment step for recovering the spreadability of the tape-shaped substrate, the tape-shaped substrate is 750 ° C. to 1150 ° C. in a mixed gas atmosphere containing 0.5 to 5 vol. It is holding for 3 minutes or more, The manufacturing method of the tape-shaped base material for superconducting wires of Claim 5 characterized by the above-mentioned. 前記鏡面仕上げ圧延の後に、平坦性を改善するための熱処理を施す工程を更に具備することを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The method for producing a tape-like substrate for a superconducting wire according to claim 5, further comprising a step of performing a heat treatment for improving flatness after the mirror finish rolling. 前記平坦性を改善するための熱処理は、前記テープ状基材を、アルゴンガスに対し0.5〜5vol.%の水素を含む混合ガス雰囲気中で、1kgf/mm〜10kgf/mmの張力を加えた状態で、750℃〜850℃で10秒以上保持することであることを特徴とする請求項7に記載の超電導線材用テープ状基材の製造方法。 The heat treatment for improving the flatness, the tape-shaped substrate, the argon gas to in a mixed gas atmosphere containing hydrogen of 0.5~5vol.%, The tension of 1kgf / mm 2 ~10kgf / mm 2 The method for producing a tape-like base material for a superconducting wire according to claim 7, wherein the tape is held at 750 ° C. to 850 ° C. for 10 seconds or longer in a state in which is added. 前記金属メッキ層が、Ni、W、Mo、V、Ag、Au、Cr、Cu、Sn、及びPからなる群から選ばれる少なくとも1種を含むことを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The superconducting wire according to claim 5, wherein the metal plating layer contains at least one selected from the group consisting of Ni, W, Mo, V, Ag, Au, Cr, Cu, Sn, and P. For producing a tape-shaped base material for use. 前記金属メッキ層は、湿式めっきにより0.1μm〜30μmの厚さに形成されることを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The said metal plating layer is formed in the thickness of 0.1-30 micrometers by wet plating, The manufacturing method of the tape-shaped base material for superconducting wires of Claim 5 characterized by the above-mentioned. 前記テープ状基材は、1〜80原子%のW、Mo、Cr、V、Fe、Cu、Nb、Ta、Ti、Si、Al、B、及びCからなる群から選ばれる少なくとも1種を含むNi基合金であることを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The tape-shaped substrate contains at least one selected from the group consisting of 1 to 80 atomic% of W, Mo, Cr, V, Fe, Cu, Nb, Ta, Ti, Si, Al, B, and C. It is a Ni-based alloy, The manufacturing method of the tape-shaped base material for superconducting wires of Claim 5 characterized by the above-mentioned. 前記金属メッキ層の表面の仕上げ圧延工程は、前記金属メッキ層の表面粗さRaを10nm以下にすることを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The method for producing a tape-like substrate for a superconducting wire according to claim 5, wherein the surface rolling Ra of the surface of the metal plating layer has a surface roughness Ra of 10 nm or less. 前記圧延によりテープ状基材を形成する工程は、圧延加工率50%〜80%の範囲内で行うことを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The method for producing a tape-shaped substrate for a superconducting wire according to claim 5, wherein the step of forming the tape-shaped substrate by rolling is performed within a range of a rolling rate of 50% to 80%. 前記圧延によりテープ状基材を形成する工程の前に、テープ状基材の表面を研磨する工程を更に具備することを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   6. The method for producing a tape-shaped substrate for a superconducting wire according to claim 5, further comprising a step of polishing the surface of the tape-shaped substrate before the step of forming the tape-shaped substrate by the rolling. . 前記鏡面仕上げ圧延を施す工程の後に、前記金属メッキ層の表面を精密研磨する工程を更に具備することを特徴とする請求項5に記載の超電導線材用テープ状基材の製造方法。   The method for producing a tape-like substrate for a superconducting wire according to claim 5, further comprising a step of precisely polishing the surface of the metal plating layer after the step of performing the mirror finish rolling. 請求項1に記載の超電導線材用テープ状基材の表面に直接または中間層を介して超電導層を形成してなることを特徴とする超電導線材。   A superconducting wire formed by forming a superconducting layer directly or via an intermediate layer on the surface of the tape-like base material for a superconducting wire according to claim 1.
JP2008327519A 2008-12-24 2008-12-24 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire Active JP5435448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327519A JP5435448B2 (en) 2008-12-24 2008-12-24 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327519A JP5435448B2 (en) 2008-12-24 2008-12-24 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire

Publications (2)

Publication Number Publication Date
JP2010153090A true JP2010153090A (en) 2010-07-08
JP5435448B2 JP5435448B2 (en) 2014-03-05

Family

ID=42571980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327519A Active JP5435448B2 (en) 2008-12-24 2008-12-24 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire

Country Status (1)

Country Link
JP (1) JP5435448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049086A (en) * 2010-08-30 2012-03-08 Sumitomo Electric Ind Ltd Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP2012064519A (en) * 2010-09-17 2012-03-29 Fujikura Ltd Substrate for oxide superconductor and method of producing the same, oxide superconductor and method of producing the same
WO2013008851A1 (en) * 2011-07-11 2013-01-17 古河電気工業株式会社 Superconducting thin film and method for manufacturing superconducting thin film
JPWO2013073002A1 (en) * 2011-11-15 2015-04-02 古河電気工業株式会社 Superconducting wire substrate, manufacturing method of superconducting wire substrate, and superconducting wire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421597A (en) * 1990-05-14 1992-01-24 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Substrate for oxide superconductor
JPH0524806A (en) * 1991-07-25 1993-02-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductor
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same
JP2008303404A (en) * 2007-06-05 2008-12-18 Kyushu Electric Power Co Inc Metal plated composite base material
JP2008311222A (en) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The Superconductive wire and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421597A (en) * 1990-05-14 1992-01-24 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Substrate for oxide superconductor
JPH0524806A (en) * 1991-07-25 1993-02-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductor
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same
JP2008311222A (en) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The Superconductive wire and its manufacturing method
JP2008303404A (en) * 2007-06-05 2008-12-18 Kyushu Electric Power Co Inc Metal plated composite base material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049086A (en) * 2010-08-30 2012-03-08 Sumitomo Electric Ind Ltd Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP2012064519A (en) * 2010-09-17 2012-03-29 Fujikura Ltd Substrate for oxide superconductor and method of producing the same, oxide superconductor and method of producing the same
WO2013008851A1 (en) * 2011-07-11 2013-01-17 古河電気工業株式会社 Superconducting thin film and method for manufacturing superconducting thin film
US9064620B2 (en) 2011-07-11 2015-06-23 Furukawa Electric Co., Ltd. Superconducting thin film and method of manufacturing superconducting thin film
JPWO2013073002A1 (en) * 2011-11-15 2015-04-02 古河電気工業株式会社 Superconducting wire substrate, manufacturing method of superconducting wire substrate, and superconducting wire

Also Published As

Publication number Publication date
JP5435448B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5074083B2 (en) Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
US20120040840A1 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP6214637B2 (en) Method for producing a substrate for a superconducting layer
JP5435448B2 (en) Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire
US10748678B2 (en) Substrate for superconducting wire, production method therefor, and superconducting wire
Varanasi et al. Biaxially textured copper and copper–iron alloy substrates for use in YBa2Cu3O7− x coated conductors
JP5950900B2 (en) Superconducting wire substrate, manufacturing method of superconducting wire substrate, and superconducting wire
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
US9002424B2 (en) Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method
Eickemeyer et al. Textured Ni–7.5 at.% W substrate tapes for YBCO-coated conductors
Tomov et al. YBa2Cu3O7− δ coated conductor deposited onto non-magnetic ternary alloy NiCrW RABiTS tape by in situ pulsed laser deposition
JP2010192349A (en) Superconductiing wire rod
WO2011142449A1 (en) Substrate for superconductive wire material, method of manufacturing substrate for superconductive wire material, and superconductive wire material
Bindi et al. High critical current density in YBCO coated conductors prepared by thermal co-evaporation
JP5904869B2 (en) Method for producing rolled copper foil for superconducting film formation
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
Kursumovic et al. Investigation of the growth and stability of (1 0 0)[0 0 1] NiO films grown by thermal oxidation of textured (1 0 0)[0 0 1] Ni tapes for coated conductor applications during oxygen exposure from 700 to 1400 C
JP5578939B2 (en) Manufacturing method of oxide superconducting wire
JP6537131B2 (en) Iron plate and method of manufacturing the same
JP5650099B2 (en) Rolled copper foil for superconducting film formation
Wang et al. Effect of low temperature annealing on microstructure and properties of copper foil
JP2011249026A (en) Method for manufacturing substrate for oxide superconductive wire material
Inoue et al. Development of RHQ-processed Nb/sub 3/Ga wire
Soubeyroux et al. Industrial Fe-Ni alloys for HTS coated conductor tapes
Yoo et al. Formation of strongly biaxial-textured Ni Layer for YBCO coated conductor by electrodeposition process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R151 Written notification of patent or utility model registration

Ref document number: 5435448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350