JPH11329118A - Oxide superconducting composite material and its manufacture - Google Patents

Oxide superconducting composite material and its manufacture

Info

Publication number
JPH11329118A
JPH11329118A JP10136441A JP13644198A JPH11329118A JP H11329118 A JPH11329118 A JP H11329118A JP 10136441 A JP10136441 A JP 10136441A JP 13644198 A JP13644198 A JP 13644198A JP H11329118 A JPH11329118 A JP H11329118A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconductor
metal material
silver
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10136441A
Other languages
Japanese (ja)
Inventor
Kazumasa Togano
一正 戸叶
Hiroaki Kumakura
浩明 熊倉
Hitoshi Kitaguchi
仁 北口
Junichi Sato
淳一 佐藤
Takemi Muroga
岳海 室賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
National Research Institute for Metals
Original Assignee
Hitachi Cable Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, National Research Institute for Metals filed Critical Hitachi Cable Ltd
Priority to JP10136441A priority Critical patent/JPH11329118A/en
Publication of JPH11329118A publication Critical patent/JPH11329118A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To improve critical current density (Jc), by regulating a state of the surface of a metal material such as silver, etc., contacting with an oxide superconductor and a state of crystals of the superconductor. SOLUTION: This oxide superconducting composite material is composed of a metal material and an oxide superconductor. Here, the average surface roughness of the metal material contacting with the oxide superconductor is set to be less than 0.5 μm. And the half-width of a locking curve of a (001) main peak in the time of X-ray diffraction the oxide superconductor contacting with the metal material is set to be less than 4 degrees. The manufacture for the oxide superconducting composite material composed of the metal material and the oxide superconductor includes a process in which an oxide superconductive precursor is formed by contacting with the metal material having the average surface roughness of less than 0.5 μm, and a superconducting heat treatment process generating a liquid phase in at least a part of the oxide superconductive precursor. The half-width of the rocking curve of the (001) main peak of the oxide superconductor contacting with the metal material after the heat treatment process is set to be less than 4 degrees when evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化物超電導体の臨
界電流密度を向上させた酸化物超電導複合材およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting composite material in which the critical current density of an oxide superconductor is improved, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、銀または銀合金等の金属材と酸化
物超電導体を複合させた酸化物超電導複合材が知られて
いる。例えば、酸化物超電導複合材がテープ状や丸線の
線材として用いられる場合、酸化物超電導体は銀あるい
は銀合金などの金属基板もしくは金属シース材で被覆さ
れている(例えば、第53回1995年度春季低温工学
・超電導学会講演概要集P77、第57回1997年度
秋季低温工学・超電導学会講演概要集P82)。その理
由は、銀あるいは銀合金との界面部分で酸化物超電導体
の配向組織が得られ、その結果、臨界電流密度(Jc)
が高くなるためである(例えば、第56回1997年度
春季低温工学・超電導学会講演概要集P22)。
2. Description of the Related Art Conventionally, an oxide superconducting composite material in which a metal material such as silver or a silver alloy is combined with an oxide superconductor has been known. For example, when the oxide superconducting composite material is used as a tape or round wire, the oxide superconductor is covered with a metal substrate or a metal sheath material such as silver or a silver alloy (for example, the 53rd 1995 fiscal year). (Summary of Spring Low Temperature Engineering and Superconductivity Society P77, 57th 1997 Autumn Meeting of Low Temperature Engineering and Superconductivity Society P82). The reason is that an oriented structure of the oxide superconductor is obtained at the interface with silver or a silver alloy, and as a result, the critical current density (Jc)
(For example, the 56th 1997 Spring Low Temperature Engineering and Superconductivity Conference Abstracts P22).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、同じよ
うに銀あるいは銀合金を被覆あるいは複合化した線材あ
るいは材料でも臨界電流密度(Jc)が低い、あるいは
ばらつくことが多かった。
However, even in the case of a wire or a material similarly coated or composited with silver or a silver alloy, the critical current density (Jc) is often low or varies.

【0004】そこで本発明の目的は、酸化物超電導体と
接触する銀などの金属材の表面状態と酸化物超電導体の
結晶状態を規定することにより、臨界電流密度(Jc)
を向上させた酸化物超電導複合材およびその製造方法を
提供することにある。
Accordingly, an object of the present invention is to specify the critical current density (Jc) by defining the surface state of a metal material such as silver in contact with the oxide superconductor and the crystal state of the oxide superconductor.
It is an object of the present invention to provide an oxide superconducting composite material having an improved resistance and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明では、金属材と酸化物超電導体とからなる酸
化物超電導複合材であって、酸化物超電導体と接触する
金属材の平均表面粗さが0.5μm以下であり、かつ、
金属材と接触する酸化物超電導体のX線回折時の(00
l)メインピークのロッキングカーブを評価した際、そ
の半値幅が4度以下であることを特徴とする酸化物超電
導複合材を提供する。
According to the present invention, there is provided an oxide superconducting composite material comprising a metal material and an oxide superconductor, wherein an average of the metal material in contact with the oxide superconductor is provided. The surface roughness is 0.5 μm or less, and
(0000) during X-ray diffraction of an oxide superconductor in contact with a metal material
1) An oxide superconducting composite material characterized in that the half width at the time of evaluating the rocking curve of the main peak is 4 degrees or less.

【0006】本発明によれば、酸化物超電導体が、少な
くもBi,Sr,CaおよびCuを含むBi−2212
相酸化物超電導体あるいはBi−2223相酸化物超電
導体であることが好ましく、前者の場合、少なくもB
i,Sr,Ca,CuおよびPbを含むBi−2212
相酸化物超電導体とすることができる。
According to the present invention, the oxide superconductor is Bi-2212 containing at least Bi, Sr, Ca and Cu.
It is preferably a phase oxide superconductor or a Bi-2223 phase oxide superconductor. In the former case, at least B
Bi-2212 containing i, Sr, Ca, Cu and Pb
It can be a phase oxide superconductor.

【0007】また、本発明は、金属材と酸化物超電導体
とからなる酸化物超電導複合材の製造方法において、平
均表面粗さが0.5μm以下の金属材に接触して酸化物
超電導前駆体を設ける工程と、酸化物超電導前駆体の少
なくとも一部分に液相を生じさせる超電導化熱処理工程
を含み、当該熱処理工程後の金属材と接触する酸化物超
電導体の(00l)メインピークのロッキングカーブを
評価した際、その半値幅が4度以下である製造方法を提
供する。
Further, the present invention provides a method for producing an oxide superconducting composite material comprising a metal material and an oxide superconductor, wherein the oxide superconducting precursor is brought into contact with a metal material having an average surface roughness of 0.5 μm or less. And a superconducting heat treatment step of generating a liquid phase in at least a portion of the oxide superconducting precursor. Provided is a manufacturing method in which the half width is 4 degrees or less when evaluated.

【0008】この際、前記超電導化熱処理工程は、温度
700〜950℃、酸素分圧0.01〜10atm の雰囲
気で行われることが好ましい。
At this time, the superconducting heat treatment step is preferably performed in an atmosphere at a temperature of 700 to 950 ° C. and an oxygen partial pressure of 0.01 to 10 atm.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0010】本発明に係る酸化物超電導複合材は、少な
くも酸化物超電導体と接触する金属材の平均表面粗さを
0.5μm以下に調整したものである。このような酸化
物超電導複合材を得るために、銀、あるいは銀基合金を
酸化物超電導体と接触する金属材に用いることが望まし
い。この金属材の一例は、銀基板あるいは銀被覆であ
り、例えば研磨、研削、圧延を含む、機械加工などで平
均表面粗さを調製し、作製することができる。本発明の
複合材の製造には、金属材と複合させた酸化物超電導体
の前駆体を超電導化するための熱処理工程を含むことが
望ましいが、この場合、少なくとも超電導化熱処理の直
前における金属材の平均表面粗さが0.5μm以下であ
る必要がある。超電導化熱処理は、少なくも超電導前駆
体の一部分が液相を生じる条件、すなわち温度700〜
950℃、酸素分圧0.01〜10atm の雰囲気で行う
ことが望ましい。その理由は、酸化物超電導体およびそ
の前駆体が、液相を生じる場合、核生成、成長は銀基板
との接触部から生じ基板から沿面成長し、配向度の良い
組織が得られるためである。配向度を(00l)メイン
ピークのロッキングカーブで評価することにより、酸化
物超電導体の導電面である、ab面が銀基板に対してど
の程度平行に並んでいるか、すなわち超電導電流が流れ
易いかを評価できる。
[0010] The oxide superconducting composite material according to the present invention is obtained by adjusting the average surface roughness of a metal material which is in contact with at least the oxide superconductor to 0.5 μm or less. In order to obtain such an oxide superconducting composite material, it is desirable to use silver or a silver-based alloy as the metal material that comes into contact with the oxide superconductor. An example of the metal material is a silver substrate or a silver coating, and can be manufactured by adjusting the average surface roughness by machining or the like including, for example, polishing, grinding, and rolling. The production of the composite material of the present invention desirably includes a heat treatment step for superconducting the precursor of the oxide superconductor composited with the metal material. In this case, at least the metal material immediately before the superconductivity heat treatment is performed. Must have an average surface roughness of 0.5 μm or less. The superconducting heat treatment is performed under the condition that at least a part of the superconducting precursor forms a liquid phase, that is, a temperature of 700 to 700.
It is desirable to carry out in an atmosphere at 950 ° C. and an oxygen partial pressure of 0.01 to 10 atm. The reason is that, when the oxide superconductor and its precursor generate a liquid phase, nucleation and growth occur from a contact portion with the silver substrate, and the surface of the oxide superconductor grows from the substrate, and a structure with a high degree of orientation is obtained. . The degree of orientation is evaluated by the rocking curve of the (00l) main peak to determine how parallel the ab plane, which is the conductive surface of the oxide superconductor, to the silver substrate, that is, how easily the superconducting current flows. Can be evaluated.

【0011】ロッキングカーブの半値幅の制限は、以下
に示す現象から規定される。4度以下の場合、それぞれ
の酸化物超電導体の結晶のab面が銀基板に対してほぼ
平行に並んでいるため、ab面での結晶粒界での超電導
電流が流れ易いことから、または、c軸方向への結晶の
接触面積が増えるため、電流が流れ易いことから、結果
的に臨界電流密度(Jc)が高くなる。反対に、4度よ
り大きい場合、ab面での結晶粒界で超電導電流が流れ
にくいことから、または、幾何学的にc軸方向への結晶
の接触面積が小さいため、電流が流れにくいことから、
結果的に臨界電流密度(Jc)が低くなるためである。
The limitation of the half width of the rocking curve is defined by the following phenomena. When the angle is 4 degrees or less, since the ab plane of the crystal of each oxide superconductor is arranged substantially parallel to the silver substrate, the superconducting current at the crystal grain boundary on the ab plane is likely to flow, or Since the contact area of the crystal in the c-axis direction increases, current easily flows, and as a result, the critical current density (Jc) increases. On the other hand, if the angle is larger than 4 degrees, the supercurrent does not easily flow at the crystal grain boundary on the ab plane, or the current does not easily flow because the contact area of the crystal in the c-axis direction is geometrically small. ,
As a result, the critical current density (Jc) decreases.

【0012】被覆ないし基板の材料は、銀に代えて銀基
合金を使用できる。この場合、銀を主成分とし、Cd,
Hf,Mg,Mn,Ni,Sn,Ti,Zrのうちの少
なくとも1種を総量で0.01〜5原子%含有し、残部
を不可避の不純物とする銀基合金とすることができる。
これら元素を所定量含有させる主な目的は、得られる酸
化物超電導複合材の強度、例えば0.2%耐力や引張強
さを向上させるためであり、しかも、重要なことは、酸
化物超電導体との反応等により、超電導特性を劣化させ
ないためである。
As a material for the coating or the substrate, a silver-based alloy can be used instead of silver. In this case, the main component is silver, and Cd,
A silver-based alloy containing at least one of Hf, Mg, Mn, Ni, Sn, Ti, and Zr in a total amount of 0.01 to 5 atomic% and the remainder being inevitable impurities can be obtained.
The main purpose of containing these elements in a predetermined amount is to improve the strength, for example, 0.2% proof stress and tensile strength of the obtained oxide superconducting composite material. This is because the superconducting characteristics are not degraded due to the reaction with, for example.

【0013】[0013]

【実施例】実施例1 銀基板として、純度99.99%、幅5mm、厚さ0.0
5mm、長さ30mmで平均表面粗さ(Ra)がそれぞれ
0.23μmのものと0.72μmのものを用意した。
本銀基板を1atm 、大気中で880℃−10分保持後、
5℃/時間の冷却速度で830℃まで徐冷しさらに1時
間保持して炉冷した。得られた銀基板の平均表面粗さを
測定したところ、前者は0.28μm、後者は0.88
μmであった。
EXAMPLE 1 A silver substrate having a purity of 99.99%, a width of 5 mm and a thickness of 0.0 was used.
5 mm, 30 mm in length and 0.23 μm and 0.72 μm average surface roughness (Ra) were prepared.
After keeping the silver substrate at 1 atm in the atmosphere at 880 ° C for 10 minutes,
The mixture was gradually cooled to 830 ° C. at a cooling rate of 5 ° C./hour, held for 1 hour, and cooled in a furnace. When the average surface roughness of the obtained silver substrate was measured, the former was 0.28 μm and the latter was 0.88 μm.
μm.

【0014】一方、組成としてBi2 Sr1 Ca2 Cu
2 x が得られるようにBi2 3、SrCO3 、Ca
2 CO3 、CuOの各粉末を混合し、これを大気中で8
20℃−20hの熱処理を施した後、それを粉砕してB
i−2212相の前駆体粉末を用意した。この粉末をア
ルコール中に懸濁させ、前記2種類の銀基板に約50μ
mずつ片面に塗布した。1atm 、大気中で880℃−1
0分保持後、5℃/時間の冷却速度で830℃まで徐冷
しさらに1時間保持して炉冷し、サンプルを得た。
On the other hand, the composition is Bi 2 Sr 1 Ca 2 Cu
2 O x is Bi 2 O 3 so as to obtain, SrCO 3, Ca
2 CO 3 and CuO powders are mixed and mixed in the atmosphere for 8 hours.
After heat treatment at 20 ° C. for 20 hours, it is pulverized into B
A precursor powder of the i-2212 phase was prepared. This powder is suspended in alcohol, and about 50 μm
m on one side. 1atm, 880 ℃ -1 in air
After holding for 0 minutes, the sample was gradually cooled to 830 ° C. at a cooling rate of 5 ° C./hour, further held for 1 hour, and cooled in a furnace to obtain a sample.

【0015】両サンプルを液体ヘリウム中で、10Tの
外部磁場中で臨界電流を1μV/cmの定義で測定した。
その結果、前者は1500A/mm2 、後者は700A/
mm2のJcであった。なお、これらJcは、臨界電流値
Icを銀基板上に形成した酸化物超電導体層の断面積で
除した値であり、以下の実施例でも同様である。
The critical current of each sample was measured in liquid helium in an external magnetic field of 10 T under the definition of 1 μV / cm.
As a result, the former was 1500 A / mm 2 , and the latter was 700 A / mm 2 .
It was Jc of mm 2 . Note that these Jc are values obtained by dividing the critical current value Ic by the cross-sectional area of the oxide superconductor layer formed on the silver substrate, and the same applies to the following examples.

【0016】Jcの測定後、両サンプルをエッチング液
(水80ccと35%過酸化水素水20ccとアンモニア水
60ccの混合液)に浸漬し、銀を除去した。その銀材と
接触していた側の酸化物超電導体をCuKα線によるθ
−2θのX線回折を行った。X線管電圧は35kV、管電
流は300mAである。いずれも、図1に示すような結果
であり、(00l)メインピーク(強度がもっとも大き
いピーク)は(0010)面であった。ここで、2θ=
28.96度に固定してθを変化させる。すなわち、光
学系はそのままにして試料を移動させる方法で、(00
l)メインピークである(0010)面のロッキングカ
ーブを評価した。その結果を図2に示す。その半値幅
は、前者が3.5度、後者が5.3度であった。すなわ
ち、前者の半値幅のほうが小さく、c軸に垂直なab面
が銀に対してより平行に並んでいることがわかった。
After the measurement of Jc, both samples were immersed in an etching solution (a mixed solution of 80 cc of water, 20 cc of 35% hydrogen peroxide solution and 60 cc of ammonia water) to remove silver. The oxide superconductor on the side that was in contact with the silver material was changed to θ by CuKα radiation.
X-ray diffraction at -2θ was performed. The X-ray tube voltage is 35 kV and the tube current is 300 mA. In each case, the results were as shown in FIG. 1. The (00l) main peak (the peak having the highest intensity) was the (00 10 ) plane. Where 2θ =
28. Fix θ and change θ. That is, the method of moving the sample while keeping the optical system as it is (00
1) The rocking curve of the (00 10 ) plane, which is the main peak, was evaluated. The result is shown in FIG. The full width at half maximum was 3.5 degrees for the former and 5.3 degrees for the latter. That is, it was found that the former half width was smaller and the ab planes perpendicular to the c-axis were arranged more parallel to silver.

【0017】すなわち、表面粗さの小さい銀基板を使用
した酸化物超電導複合材は基板との接触部での配向度が
良好であり、その結果Jcが高かった。
That is, the oxide superconducting composite using a silver substrate having a small surface roughness had a good degree of orientation at a contact portion with the substrate, and as a result, Jc was high.

【0018】実施例2 実施例1と同様のBi−2212相の前駆体粉末を用意
した。一方、銀パイプとして外径15mm、内径11mm、
長さ1000mmのものを2本準備し、それぞれパイプの
内面を研磨し、平均表面粗さ(Ra)がそれぞれ0.3
μmのものと、1.2μmのものを用意した。それぞれ
のパイプ中に前記粉末をタッピング充填して複合ビレッ
トを形成した。これら複合ビレットを直径1.2mmにな
るまで引き抜き加工した。得られた複合線材を所定の長
さに切断し、ぞれを前記と同様のパイプにそれぞれ61
芯組み込んでさらに外径1mmまで引き抜き加工し、さら
に圧延で0.20mm厚さとした。得られたそれぞれの複
合材を長さ約30mmに切断し、1atm 、大気中で880
℃−10分保持後、5℃/時間の冷却速度で830℃ま
で徐冷しさらに1時間保持して炉冷し、61芯の複合材
サンプルを得た。
Example 2 The same Bi-2212 phase precursor powder as in Example 1 was prepared. On the other hand, as a silver pipe, outer diameter 15mm, inner diameter 11mm,
Two pieces each having a length of 1000 mm were prepared, and the inner surface of each pipe was polished, and the average surface roughness (Ra) was 0.3 each.
μm and 1.2 μm were prepared. Each of the pipes was tap-filled with the powder to form a composite billet. These composite billets were drawn to a diameter of 1.2 mm. The obtained composite wire is cut into a predetermined length, and each is cut into a pipe similar to that described above.
The core was assembled, and further drawn to an outer diameter of 1 mm, and further rolled to a thickness of 0.20 mm. Each of the obtained composite materials was cut into a length of about 30 mm, and was cut at 1 atm and 880 in the atmosphere.
After holding at 10 ° C. for 10 minutes, the mixture was gradually cooled to 830 ° C. at a cooling rate of 5 ° C./hour, further held for 1 hour and cooled in a furnace to obtain a 61-core composite sample.

【0019】両サンプルを液体ヘリウム中で、10Tの
外部磁場中で臨界電流を1μV/cmの定義で測定した。
その結果、前者は2000A/mm2 、後者は900A/
mm2のJcであった。
The critical current of each sample was measured in liquid helium in an external magnetic field of 10 T under the definition of 1 μV / cm.
As a result, the former was 2000 A / mm 2 and the latter was 900 A / mm 2 .
It was Jc of mm 2 .

【0020】実施例1と同様に、Jcの測定後、両サン
プルから、エッチングにより、一部の銀を除去し、酸化
物超電導体を露出させた。実施例1と同様に、銀材と接
触していた側の酸化物超電導体の(0010)面のロッ
キングカーブを評価した。その結果、その半値幅は、前
者が3.6度、後者が5.8度であった。すなわち、前
者の半値幅のほうが小さく、c軸に垂直なab面が銀に
対してより平行に並んでおり、Jcが高いことがわかっ
た。
As in Example 1, after the measurement of Jc, a part of silver was removed from both samples by etching to expose the oxide superconductor. As in Example 1, the rocking curve of the (00 10 ) plane of the oxide superconductor in contact with the silver material was evaluated. As a result, the half width was 3.6 degrees for the former and 5.8 degrees for the latter. That is, it was found that the former half width was smaller, the ab plane perpendicular to the c-axis was more parallel to silver, and Jc was higher.

【0021】実施例3 銀基板として、純度99.99%、幅10mm、厚さ0.
05mm、長さ1000mmのシート状で平均表面粗さ(R
a)がそれぞれ0.23μmのものと1.35μmのも
のを用意した。一方、Bi−2212相主相のBi1.84
Pb0.34Sr1.9 Ca2.2 Cu3.1 x 組成の前駆体粉
末を用意した。その粉末を上記銀シートに挟み込みさら
に圧延で厚さ0.25mmまで加工した。得られたテープ
状材を空気中で845℃−50時間焼成した後、幅4m
m、厚さ0.20mmまで圧延し、さらに空気中で845
℃−50時間焼成し、Bi−2223線材を作製した。
この線材を絶縁材であるマイラテープを挿入しながら内
径30mmのボビンに巻き回してシングルパンケーキコイ
ルとした。本コイルを液体ヘリウム中、外部磁場ゼロで
臨界電流Jcを1μV/cmの定義で測定した。その結
果、前者は570A/mm2 、後者は300A/mm2 のJ
cであった。
Example 3 A silver substrate was 99.99% pure, 10 mm wide and 0.1 mm thick.
05mm, 1000mm long sheet with average surface roughness (R
a) of 0.23 μm and 1.35 μm, respectively. On the other hand, Bi-2212 phase main phase Bi 1.84
A precursor powder having a composition of Pb 0.34 Sr 1.9 Ca 2.2 Cu 3.1 O x was prepared. The powder was sandwiched between the silver sheets and further processed by rolling to a thickness of 0.25 mm. After baking the obtained tape-shaped material in air at 845 ° C. for 50 hours, the width is 4 m.
m, rolled to a thickness of 0.20 mm, and then 845 in air.
The resultant was fired at 50 ° C. for 50 hours to produce a Bi-2223 wire.
The wire was wound around a bobbin having an inner diameter of 30 mm while inserting a mylar tape as an insulating material to obtain a single pancake coil. The critical current Jc of this coil was measured in liquid helium with no external magnetic field and a definition of 1 μV / cm. As a result, the former 570A / mm 2, the latter of 300A / mm 2 J
c.

【0022】Jcの測定後、実施例1と同様に両サンプ
ルの銀を除去した。その銀材と接触していた側の酸化物
超電導体をCuKα線によるθ−2θのX線回折を行っ
た。X線管電圧は35kV、管電流は300mAである。主
相はBi−2223であり、(00l)メインピークは
(0012)面であった。(0012)面のロッキング
カーブを評価した結果、その半値幅は、前者が3.3
度、後者が6.1度であった。すなわち、前者の半値幅
のほうが小さく、c軸に垂直なab面が銀に対してより
平行に並んでおり、Jcが高かったことがわかった。
After the measurement of Jc, silver was removed from both samples in the same manner as in Example 1. The oxide superconductor on the side in contact with the silver material was subjected to X-ray diffraction of θ-2θ by CuKα radiation. The X-ray tube voltage is 35 kV and the tube current is 300 mA. The main phase was Bi-2223, and the (00l) main peak was on the (00 12 ) plane. As a result of evaluating the rocking curve of the (00 12 ) plane, the half width of the former was 3.3.
Degree, and the latter was 6.1 degrees. That is, it was found that the former half width was smaller, the ab plane perpendicular to the c-axis was more parallel to silver, and Jc was higher.

【0023】実施例4 外径8mm、内径6mm、長さ500mmの純銀製パイプを2
本用意し、それぞれ研磨あるいは研削を行い、パイプ内
面の平均表面粗さを0.3μmのものと1.5μmとを
用意した。
Example 4 A pure silver pipe having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 500 mm was used.
This preparation was polished or ground to prepare pipes having an average surface roughness of 0.3 μm and 1.5 μm, respectively.

【0024】またTlO1.5 ,PbO,SrO,Ba
O,CaO,CuOを0.5:0.5:1.6:0.
4:2:3の割合で混合した粉末を、空気中で820℃
−10hの熱処理を2回繰り返した後、粉砕して前駆体
粉末を用意した。この粉末を先ほどのパイプ中にタッピ
ング充填してそれぞれ複合ビレットを形成した。この複
合ビレットを直径1mmになるまで引き抜き加工した。そ
の後圧延加工と、1atm 、大気中で845℃−50時間
の熱処理を2回繰り返して行い、幅4mm、厚さ0.12
mmのTl−1223線材を作製した。両サンプルを液体
窒素中で、外部磁場ゼロで臨界電流を1μV/cmの定義
で測定した。その結果、前者は180A/mm2 、後者は
80A/mm2 のJcであった。得られた複合線材の酸化
物超電導材と接触していた銀部の平均表面粗さを測定し
たところそれぞれ0.48μmと1.6μmであった。
Also, TlO 1.5 , PbO, SrO, Ba
O, CaO, and CuO are 0.5: 0.5: 1.6: 0.
A powder mixed at a ratio of 4: 2: 3 is heated at 820 ° C. in air.
After repeating the heat treatment for −10 h twice, it was pulverized to prepare a precursor powder. This powder was tap-filled into the above pipe to form a composite billet. This composite billet was drawn until the diameter became 1 mm. Thereafter, the rolling process and the heat treatment at 845 ° C. for 50 hours in the atmosphere at 1 atm were repeated twice to obtain a width of 4 mm and a thickness of 0.12.
mm Tl-1223 wire was produced. Both samples were measured in liquid nitrogen with no external magnetic field and a critical current of 1 μV / cm. As a result, the former was 180 A / mm 2 and the latter was 80 A / mm 2 Jc. The average surface roughness of the silver portion of the obtained composite wire which was in contact with the oxide superconductor was 0.48 μm and 1.6 μm, respectively.

【0025】Jcの測定後、実施例1と同様に両サンプ
ルの銀を除去した。その銀材と接触していた側の酸化物
超電導体をCuKα線によるθ−2θのX線回折を行っ
た。X線管電圧は35kV、管電流は300mAである。主
相はTl−1223であり、(00l)メインピークは
(005)面であった。この(005)面のロッキング
カーブを評価した結果、その半値幅は、前者が3.8
度、後者が6.1度であった。すなわち、前者の半値幅
のほうが小さく、c軸に垂直なab面が銀に対してより
平行に並んでおり、Jcが高かったことがわかった。
After the measurement of Jc, silver was removed from both samples in the same manner as in Example 1. The oxide superconductor on the side in contact with the silver material was subjected to X-ray diffraction of θ-2θ by CuKα radiation. The X-ray tube voltage is 35 kV and the tube current is 300 mA. The main phase was Tl-1223, and the (00l) main peak was on the (005) plane. As a result of evaluating the rocking curve of the (005) plane, the half value width of the former was 3.8.
Degree, and the latter was 6.1 degrees. That is, it was found that the former half width was smaller, the ab plane perpendicular to the c-axis was more parallel to silver, and Jc was higher.

【0026】本発明は、以上の実施例に限定されるもの
ではなく、金属材と酸化物超電導体との複合材の作製方
法としては、ディップコート法、ドクターブレード法、
塗布法、有機酸塩法、パウダーインチューブ法、ジェリ
ーロール法、溶射法、プラズマ溶射法、スクリーン印刷
法、蒸着法、CVD法、スパッタリング法、レーザーア
ブレーション法等のいずれでも差し支えなく、その構造
としては1つの酸化物超電導体と1つの金属との組み合
わせに限定されず、複数材およびその他の材料との組み
合わせであってもよい。
The present invention is not limited to the above embodiments, and the method for producing a composite material of a metal material and an oxide superconductor includes a dip coating method, a doctor blade method,
The coating method, organic acid salt method, powder-in-tube method, jelly roll method, thermal spraying method, plasma spraying method, screen printing method, vapor deposition method, CVD method, sputtering method, laser ablation method, etc. Is not limited to a combination of one oxide superconductor and one metal, and may be a combination of a plurality of materials and other materials.

【0027】また、酸化物超電導体の種類としては、少
なくもBiを含む2212、2223相、少なくもTl
を含む2212、2223、1201、1212、12
23、1234の各相、ReBa2 Cu3 y 相(Re
=Y,La,Nd,Eu,Dy,Gd,Ho,Er,T
m,Yb,Lu)、または、少なくもHgを含む221
2、2223、1201、1212、1223、123
4相などであってもよい。これらの中でも、特に超電導
化熱処理の際、超電導体の一部分あるいは全部が溶融状
態にある作製プロセスに適した材料が望ましい。その理
由は、酸化物超電導体およびその前駆体が、液相を生じ
る場合、核生成、成長は銀基板との接触部から生じ基板
から沿面成長し、配向度の良い組織が得られるためであ
る。
As the type of the oxide superconductor, at least 2212 and 2223 phases containing Bi, at least Tl
2212, 2223, 1201, 1212, 12 including
23, 1234, ReBa 2 Cu 3 O y phase (Re
= Y, La, Nd, Eu, Dy, Gd, Ho, Er, T
m, Yb, Lu) or 221 containing at least Hg
2,2223,1201,1212,1223,123
It may be four-phase or the like. Among these, a material suitable for a manufacturing process in which a part or the whole of the superconductor is in a molten state, particularly during the superconducting heat treatment, is desirable. The reason is that, when the oxide superconductor and its precursor generate a liquid phase, nucleation and growth occur from a contact portion with the silver substrate, and the surface of the oxide superconductor grows from the substrate, and a structure with a high degree of orientation is obtained. .

【0028】なお、本発明における複合材とは、線材、
導体あるいはそれらを集合化、複合化した部材等を含
む。その応用例としては、マグネット、コイル、ケーブ
ル、ブスバ、電流リード、磁気シールド、限流器、永久
電流スイッチ等があげられる。これらの応用例に使用す
る場合、その作製法はReact&Wind法あるいはWind&React
法のいずれであってもよい。
In the present invention, the composite material is a wire,
Includes conductors or members obtained by assembling or combining them. Examples of its application include magnets, coils, cables, bus bars, current leads, magnetic shields, current limiters, and permanent current switches. When used in these applications, the fabrication method is the React & Wind method or Wind & React method.
Any of the methods may be used.

【0029】また、線材として用いる場合、その形状と
しては、丸線、平角線、テープ線、単芯線、多芯線、直
状線、スパイラル状線、撚り線等いずれであってもよ
い。
When used as a wire, the shape thereof may be any of a round wire, a flat wire, a tape wire, a single core wire, a multiple core wire, a straight wire, a spiral wire, a stranded wire, and the like.

【0030】本発明の副次的効果として、金属材と超電
導体界面部の表面粗さが小さいことで、例えば多芯超電
導線材に適用すると、隣接する酸化物超電導体間の相対
距離がより大きくなり、交流損失が低減する利点があ
る。さらに、一般的に金属被覆超電導線材に適用した場
合、表面部と酸化物との相対距離がより大きくなり、表
面欠陥が低減する利点がある。
As a secondary effect of the present invention, since the surface roughness of the interface between the metal material and the superconductor is small, for example, when applied to a multifilamentary superconducting wire, the relative distance between adjacent oxide superconductors becomes larger. Therefore, there is an advantage that AC loss is reduced. Further, in general, when applied to a metal-coated superconducting wire, there is an advantage that the relative distance between the surface portion and the oxide becomes larger and the surface defects are reduced.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
金属材と酸化物超電導体とからなる酸化物超電導複合材
であって、酸化物超電導体と接触する金属材の平均表面
粗さが0.5μm以下であり、かつ、金属材と接触する
酸化物超電導体のX線回折時の(00l)メインピーク
のロッキングカーブを評価した際、その半値幅が4度以
下であることを特徴とする酸化物超電導複合材であるか
ら、酸化物超電導材の配向度が向上し、その結果Jcが
向上する。
As described above, according to the present invention,
An oxide superconducting composite material comprising a metal material and an oxide superconductor, wherein the metal material in contact with the oxide superconductor has an average surface roughness of 0.5 μm or less, and an oxide in contact with the metal material. When the rocking curve of the (00l) main peak at the time of X-ray diffraction of the superconductor was evaluated, the half width of the superconductor was 4 degrees or less. The degree is improved, and as a result, Jc is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における酸化物超電導体のCuKα線に
よるθ−2θのX線回折結果を示すグラブである。
FIG. 1 is a grab showing the result of X-ray diffraction of θ-2θ by CuKα ray of the oxide superconductor in the present invention.

【図2】(00l)メインピークが(0010)面であ
る場合のロッキングカーブの一例を示すグラフである。
FIG. 2 is a graph showing an example of a rocking curve when a (001) main peak is a (00 10 ) plane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北口 仁 茨城県つくば市千現一丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 佐藤 淳一 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 室賀 岳海 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jin Kitaguchi 1-2-1 Sengen, Tsukuba-city, Ibaraki Pref., National Institute of Metals Science and Technology (72) Inventor Junichi Sato 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Hitachi Electric Wire Co., Ltd. Advanced Research Center Co., Ltd. (72) Inventor Takemi Muroka 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Advanced Research Center Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】金属材と酸化物超電導体とからなる酸化物
超電導複合材であって、前記酸化物超電導体と接触する
前記金属材の平均表面粗さが0.5μm以下であり、か
つ、前記金属材と接触する酸化物超電導体のX線回折時
の(00l)メインピークのロッキングカーブを評価し
た際、その半値幅が4度以下であることを特徴とする酸
化物超電導複合材。
An oxide superconducting composite material comprising a metal material and an oxide superconductor, wherein the metal material in contact with the oxide superconductor has an average surface roughness of 0.5 μm or less, and When the rocking curve of the (00l) main peak at the time of X-ray diffraction of the oxide superconductor in contact with the metal material is evaluated, the half value width thereof is 4 degrees or less.
【請求項2】前記金属材が銀あるいは銀基合金であるこ
とを特徴とする請求項1に記載の酸化物超電導複合材。
2. The oxide superconducting composite according to claim 1, wherein said metal material is silver or a silver-based alloy.
【請求項3】前記金属材が、銀を主成分とし、Cd,H
f,Mg,Mn,Ni,Sn,Ti,Zrのうちの少な
くとも1種を総量で0.01〜5原子%含有し、残部を
不可避の不純物とする銀基合金であることを特徴とする
請求項2に記載の酸化物超電導複合材。
3. The method according to claim 1, wherein the metal material is mainly composed of silver, and Cd, H
A silver-based alloy containing at least one of f, Mg, Mn, Ni, Sn, Ti, and Zr in a total amount of 0.01 to 5 atomic%, with the balance being inevitable impurities. Item 3. The oxide superconducting composite according to Item 2.
【請求項4】前記酸化物超電導体が、少なくともBi,
Sr,CaおよびCuを含むBi−2212相酸化物超
電導体あるいはBi−2223相酸化物超電導体である
ことを特徴とする請求項2に記載の酸化物超電導複合
材。
4. The method according to claim 1, wherein the oxide superconductor comprises at least Bi,
The oxide superconducting composite according to claim 2, which is a Bi-2212 phase oxide superconductor or Bi-2223 phase oxide superconductor containing Sr, Ca and Cu.
【請求項5】前記酸化物超電導体が、少なくともBi,
Sr,Ca,CuおよびPbを含むBi−2212相酸
化物超電導体であることを特徴とする請求項2に記載の
酸化物超電導複合材。
5. An oxide superconductor comprising at least Bi,
The oxide superconducting composite according to claim 2, which is a Bi-2212 phase oxide superconductor containing Sr, Ca, Cu and Pb.
【請求項6】前記酸化物超電導体が、酸化物超電導前駆
体の少なくとも一部分に液相を生じさせる超電導化熱処
理を施されたものであることを特徴とする請求項1ない
し5のいずれかに記載の酸化物超電導複合材。
6. The oxide superconductor according to claim 1, wherein at least a portion of the oxide superconductor precursor has been subjected to a superconducting heat treatment for generating a liquid phase. An oxide superconducting composite according to the above.
【請求項7】金属材と酸化物超電導体とからなる酸化物
超電導複合材の製造方法において、平均表面粗さが0.
5μm以下の前記金属材に接触して酸化物超電導前駆体
を設ける工程と、前記酸化物超電導前駆体の少なくとも
一部分に液相を生じさせる超電導化熱処理工程を含み、
当該熱処理工程後の前記金属材と接触する酸化物超電導
体の(00l)メインピークのロッキングカーブを評価
した際、その半値幅が4度以下であることを特徴とする
酸化物超電導複合材の製造方法。
7. A method for producing an oxide superconducting composite material comprising a metal material and an oxide superconductor, wherein the average surface roughness is not more than 0.
A step of providing an oxide superconducting precursor in contact with the metal material of 5 μm or less, and a superconducting heat treatment step of generating a liquid phase in at least a part of the oxide superconducting precursor,
(E) When the rocking curve of the (00l) main peak of the oxide superconductor in contact with the metal material after the heat treatment step is evaluated, the half value width thereof is 4 degrees or less. Method.
【請求項8】前記超電導化熱処理工程が、温度700〜
950℃、酸素分圧0.01〜10atm の雰囲気で行わ
れることを特徴とする請求項7に記載の酸化物超電導複
合材の製造方法。
8. The superconducting heat treatment step is carried out at a temperature of 700-700.
The method for producing an oxide superconducting composite according to claim 7, wherein the method is performed in an atmosphere at 950 ° C and an oxygen partial pressure of 0.01 to 10 atm.
JP10136441A 1998-05-19 1998-05-19 Oxide superconducting composite material and its manufacture Pending JPH11329118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136441A JPH11329118A (en) 1998-05-19 1998-05-19 Oxide superconducting composite material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136441A JPH11329118A (en) 1998-05-19 1998-05-19 Oxide superconducting composite material and its manufacture

Publications (1)

Publication Number Publication Date
JPH11329118A true JPH11329118A (en) 1999-11-30

Family

ID=15175201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136441A Pending JPH11329118A (en) 1998-05-19 1998-05-19 Oxide superconducting composite material and its manufacture

Country Status (1)

Country Link
JP (1) JPH11329118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073118A (en) * 2001-08-31 2003-03-12 Dowa Mining Co Ltd Method for burning calcinated powder and/or synthetic powder to produce oxide superconductor and oxide superconductor
JP2007242526A (en) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd Superconductive wire rod
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073118A (en) * 2001-08-31 2003-03-12 Dowa Mining Co Ltd Method for burning calcinated powder and/or synthetic powder to produce oxide superconductor and oxide superconductor
JP2007242526A (en) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd Superconductive wire rod
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7781376B2 (en) High temperature superconducting wires and coils
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
US8142881B2 (en) Mesh-type stabilizer for filamentary coated superconductors
WO2001008169A9 (en) Superconductor coated conductors with reduced a.c. loss
US20070238619A1 (en) Superconductor components
US20100065417A1 (en) Methods for forming superconducting conductors
EP0772208A2 (en) Oxide-superconducting coil and a method for manufacturing the same
JP3521182B2 (en) Oxide superconducting wire and superconducting device
JP2002150855A (en) Oxide superconductor wire material, and manufacturing method of the same
US7445808B2 (en) Method of forming a superconducting article
EP1966837B1 (en) Anti-epitaxial film in a superconducting article and related articles, devices and systems
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JP2651018B2 (en) High magnetic field magnet
JP3240133B2 (en) Oxide superconductor and superconducting wire using the same
JPH04324209A (en) Oxide superconductive wire and its manufacture
JP2011249162A (en) Method for manufacturing superconducting wire rod
JPH01203298A (en) Method and apparatus for producing elongated conductor equipped with ceramix oxide superconductive material
EP0734081A1 (en) Oxide superconducting wire and manufacturing method
JPH03102717A (en) Manufacture of conductor for current lead
JPH01167218A (en) Production of superconducting thin film
JPH06251649A (en) Manufacture of ceramic superconducting member
JP2000086239A (en) Oxide-based superconductive material, its production and device using that
JP2002289424A (en) One-dimensional superconducting wire for and coil using it
JPH01167223A (en) Production of superconducting thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206