JPH01167223A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH01167223A
JPH01167223A JP62324710A JP32471087A JPH01167223A JP H01167223 A JPH01167223 A JP H01167223A JP 62324710 A JP62324710 A JP 62324710A JP 32471087 A JP32471087 A JP 32471087A JP H01167223 A JPH01167223 A JP H01167223A
Authority
JP
Japan
Prior art keywords
composite oxide
thin film
sputtering
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324710A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Kenjiro Higaki
檜垣 賢次郎
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62324710A priority Critical patent/JPH01167223A/en
Priority to DE3854493T priority patent/DE3854493T2/en
Priority to EP19880403254 priority patent/EP0322306B1/en
Priority to US07/286,860 priority patent/US5028583A/en
Priority to KR1019880017018A priority patent/KR970005158B1/en
Priority to AU27099/88A priority patent/AU615014B2/en
Priority to CA 586516 priority patent/CA1339020C/en
Publication of JPH01167223A publication Critical patent/JPH01167223A/en
Priority to US07/648,964 priority patent/US5252543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title thin film giving high critical current density, by producing, under specified film-forming gas pressure through the physical deposition technique, composite oxide superconducting this film comprised mainly of specific composite oxide. CONSTITUTION:In the process for production, by means of physical deposition, of composite oxide superconducting thin film comprised mainly of a composite oxide of the formula (alpha is Ba or Sr; 0.01<=x<=0.2), the film-forming gas pressure in said physical deposition is brought to between 0.001 and 0.6Torr. If said gas pressure exceeds 0.6Torr, significant reduction in the critical current density of the superconducting thin film obtained will result, thus practicable thin film cannot be produced. On the other hands, if said pressure is lower than 0.001Torr, reduction in both the critical current density and critical temperature will result. In general, the film-forming gas to be used is a mixture of oxygen gas and an inert gas, said inert gas being argon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導薄膜の製造方法に関するものであり、よ
り詳細には、高い超電導臨界温度を有する複合酸化物超
電導薄膜の臨界電流を大幅に向上させる超電導薄膜の作
製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a superconducting thin film, and more particularly, to a method for producing a superconducting thin film that significantly improves the critical current of a composite oxide superconducting thin film having a high superconducting critical temperature. This invention relates to a method for producing a thin film.

本発明により得られる高い臨界電流を持つ超電導薄膜は
集積回路を始めとする各種電子部品の配線材料として特
に有用である。
The superconducting thin film having a high critical current obtained by the present invention is particularly useful as a wiring material for various electronic components including integrated circuits.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties.

超電導現象の代表的な応用分野であるエレクトロニクス
の分野では、各種の超電導素子が知られている。代表的
なものとしては、超電導材料どうしを弱く接合した場合
に、印加電流によって量子効果が巨視的に現れるジョセ
フソン効果を利用した素子が挙げられる。また、トンネ
ル接合型ジョセフソン素子は、超電導材料のエネルギー
ギャップが小さいことから、極めて高速な低電力消費の
スイッチング素子として期待されている。さらに、電磁
波や磁場に対するジョセフソン効果が正確な量子現象と
して現れることから、ジョセフソン素子を磁場、マイク
ロ波、放射線等の超高感度センサとして利用することも
期待されている。
In the field of electronics, which is a typical application field of superconductivity, various superconducting elements are known. A typical example is an element that utilizes the Josephson effect, in which a quantum effect appears macroscopically due to an applied current when superconducting materials are weakly bonded together. Further, tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of the superconducting material is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultrasensitive sensors for magnetic fields, microwaves, radiation, etc.

また、超高速電子計算機では、単位面積当たりの消費電
力が冷却能力の限界に達してきているために超電導素子
の開発が要望されおり、さらに、電子回路の集積度が高
くなるにつれて電流ロスの無い超電導材料を配線材料と
して用いることが要望されている。
In addition, in ultra-high-speed electronic computers, the power consumption per unit area is reaching the limit of cooling capacity, so there is a demand for the development of superconducting elements, and as the degree of integration of electronic circuits increases, There is a desire to use superconducting materials as wiring materials.

しかし、様々な努力にもかかわらず、超電導材料の超電
導臨界温度Tcは長期間に亘ってNb3Geの23Kを
越えることができなかったが、昨年来、[:La、 B
a〕2cuo4または[La、 Sr:] 2cu04
等の酸化物の焼結材が高いTcをもつ超電導材料として
発見され、非低温超電導を実現する可能性が大きく高ま
っている。これらの物質では、30乃至50にという従
来に比べて飛躍的に高いT、が観測され、70に以上の
Tcも観測されている。
However, despite various efforts, the superconducting critical temperature Tc of superconducting materials has not been able to exceed 23K of Nb3Ge for a long time, but since last year, [:La, B
a]2cuo4 or [La, Sr:]2cu04
Sintered materials of oxides such as oxides have been discovered as superconducting materials with high Tc, greatly increasing the possibility of realizing non-low temperature superconductivity. In these materials, a T value of 30 to 50, which is significantly higher than conventional materials, has been observed, and a Tc of 70 or more has also been observed.

発明が解決しようとする問題点 従来、上記複合酸化物超電導体薄膜を作製する際には、
焼結等で生成した酸化物等を蒸着源としてスパッタリン
グ等の物理蒸着を行っていた。
Problems to be Solved by the Invention Conventionally, when producing the above composite oxide superconductor thin film,
Physical vapor deposition such as sputtering was performed using oxides produced by sintering etc. as a vapor deposition source.

しかしながら、こうして製作された従来の超電導体薄膜
は、臨界電流密度Jcが小さいため、臨界温度Tcが高
くても実際の電子回路として実用化することができなか
った。
However, the conventional superconductor thin film manufactured in this way has a small critical current density Jc, and therefore cannot be put to practical use as an actual electronic circuit even if the critical temperature Tc is high.

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高い臨界電流密度Jcを有する複合酸化物超電導材
料の薄膜を作製する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a method for producing a thin film of a composite oxide superconducting material having a high critical current density Jc.

問題点を解決するための手段 本発明に従うと、式 :  (La+−x αM)2 
Cu04(但し、元素αは、BaまたはSrであり、X
は0.01≦x≦0.2を満たす数である)で表される
複合酸化物を主として含有する複合酸化物超電導体薄膜
を物理蒸着によって作製する方法において、 上記物理蒸着時の成膜ガス圧を0001〜0.6Tor
rの範囲内としたことを特徴とする超電導薄膜の作製方
法が提供される。
Means for Solving the Problems According to the invention, the formula: (La+-x αM)2
Cu04 (however, element α is Ba or Sr, and
is a number that satisfies 0.01≦x≦0.2) In a method for producing a composite oxide superconductor thin film mainly containing a composite oxide represented by 0.01≦x≦0.2 by physical vapor deposition, Pressure 0001~0.6 Torr
Provided is a method for producing a superconducting thin film characterized in that r is within a range.

上記物理蒸着としては、スパッタリング、イオンブレー
ティング、真空蒸着等を用いることかできるが、一般に
はスパッタリング、特にRFマグネトロンスパッタリン
グが好ましい。
As the physical vapor deposition, sputtering, ion blating, vacuum deposition, etc. can be used, but sputtering is generally preferred, and RF magnetron sputtering is particularly preferred.

本発明の方法で作製される複合酸化物超電導薄膜は、上
記一般式: (La+−Mα、、)2 ClO2で示さ
れる複合酸化物を主として含んでおり、これらの複合酸
化物はペロブスカイト型または擬似ペロブスカイト型酸
化物を主体としたものと考えられる。上記元素αはBa
またはSrから選択され、上記式を満たす組成比である
ことが好ましいが、必ずしも厳密にこの比に限定される
ものではなく、これらの比から±50%の範囲、さらに
好ましくは±20%の範囲でずれた原子比の組成のもの
も有効な超電導特性を示す場合がある。すなわち、特許
請求の範囲において「主として含有する」という表現は
上記のように上記の式で定義される原子比以外のものも
含むということを意味する。
The composite oxide superconducting thin film produced by the method of the present invention mainly contains a composite oxide represented by the above general formula: (La+-Mα, )2 ClO2, and these composite oxides are perovskite-type or pseudo-type. It is thought to be mainly composed of perovskite-type oxides. The above element α is Ba
or Sr, and preferably has a composition ratio that satisfies the above formula, but is not necessarily strictly limited to this ratio, and is within a range of ±50%, more preferably a range of ±20% from these ratios. A composition with a different atomic ratio may also exhibit effective superconducting properties. That is, in the claims, the expression "mainly contains" means that the atomic ratios other than those defined by the above formula are also included.

さらに、上記の定義は上記のα、La、 Cuおよび■
以外の元素、すなわち、ppmオーダーで混入する不可
避的不純物と、製品の他の特性を向上させる目的で添加
される第3成分を含有していてもよいということを意味
している。
Furthermore, the above definition applies to the above α, La, Cu and ■
This means that it may contain elements other than the above, that is, unavoidable impurities mixed in on the order of ppm, and a third component added for the purpose of improving other properties of the product.

第3成分として添加可能な元素としては、例えば周期律
表IIa族元素のSr、 Ca、 Mg、 Be、上記
以外の周期律表11Ia族元素、周期律表Ib、nb、
mb、rVaおよび■a族から選択される元素、例えば
、T1、■を挙げることが出来る。
Examples of elements that can be added as the third component include Sr, Ca, Mg, Be of group IIa elements of the periodic table, elements of group 11Ia of the periodic table other than the above, Ib, nb of the periodic table,
Mention may be made of elements selected from the mb, rVa, and a groups, such as T1 and .

本発明の特徴は、上記物理蒸着時の成膜ガス圧を0.0
01〜0.6Torrの範囲、さらに好ましくは0、0
05〜0.4Torrの範囲にした点にある。
The feature of the present invention is that the film forming gas pressure during the physical vapor deposition is set to 0.0.
01 to 0.6 Torr, more preferably 0,0
0.05 to 0.4 Torr.

本発明者達の実験結果によると、理蒸着時の成膜ガス圧
が0.6Torrを超えると、得られた超電導薄膜の臨
界電流密度が大幅に低下して実用的な薄膜が得られない
。また、成膜ガス圧が0.001Torr未満になると
臨界電流密度Jcおよび臨界温度Tcがともに低下する
According to the experimental results of the present inventors, when the film-forming gas pressure during physical vapor deposition exceeds 0.6 Torr, the critical current density of the obtained superconducting thin film decreases significantly, making it impossible to obtain a practical thin film. Further, when the film forming gas pressure becomes less than 0.001 Torr, both the critical current density Jc and the critical temperature Tc decrease.

この場合の成膜ガス圧とは、物理蒸着を行うチャンバー
内のガス圧を意味し、真空蒸着やイオンブレーティング
の場合にはチャンバー内の雰囲気ガス圧を、また、スパ
ッタリンクの場合にはスパッタリングガス圧を意味する
。いずれの場合にもこの成膜ガスとしては、一般に、酸
素ガスと不活性ガスとの混合ガスが用いられ、不活性ガ
スとしてはアルゴンが用いられる。酸素ガスと不活性ガ
スとの比率は02が5〜95分子%、さらに好ましくは
10〜80分子%含むようにするのが好ましい。
In this case, the film-forming gas pressure means the gas pressure in the chamber where physical vapor deposition is performed, and in the case of vacuum evaporation or ion blating, it refers to the atmospheric gas pressure in the chamber, and in the case of sputter link, it refers to the gas pressure in the chamber where physical vapor deposition is performed. means gas pressure. In either case, a mixed gas of oxygen gas and an inert gas is generally used as the film forming gas, and argon is used as the inert gas. The ratio of oxygen gas to inert gas is preferably 5 to 95 mol %, more preferably 10 to 80 mol % of 02.

上記の物理蒸着、好ましくはスパッタリング時には、成
膜速度を0.05〜1人/秒、さらに好ましくは01〜
08人/秒にして成膜するのが好ましい。また、本発明
で好ましく用いられるRFマグネトロンスパッタリング
の場合には、例えば10cmφのターゲットに対して、
スパッタリング時に高周波電力を従来の1.9 W/C
%程度から、5〜100Wすなわち単位断面積当たり0
.064〜1.27W/cffl。
At the time of the above-mentioned physical vapor deposition, preferably sputtering, the film formation rate is 0.05 to 1 person/second, more preferably 0.1 to 1 person/second.
It is preferable to form the film at a rate of 0.8 people/second. In addition, in the case of RF magnetron sputtering which is preferably used in the present invention, for example, for a target of 10 cmφ,
During sputtering, high frequency power is reduced to 1.9 W/C compared to conventional
% to 5 to 100 W, i.e. 0 per unit cross-sectional area.
.. 064-1.27W/cffl.

さらに好ましくは、10〜60Wすなわち単位断面積当
たり0127〜0.76W/cffl印加することが好
ましい。
More preferably, it is preferable to apply 10 to 60 W, that is, 0127 to 0.76 W/cffl per unit cross-sectional area.

また、基板を200〜950℃、さらに好ましくは50
0〜920℃に加熱しながら行うのが好ましい。
In addition, the substrate is heated at 200 to 950°C, more preferably at 50°C.
It is preferable to carry out heating at 0 to 920°C.

基板温度が200 ℃未満の場合には、複合酸化物の結
晶性が悪くアモルファス状になり、超電導薄膜は得られ
ない。また、基板温度が950℃を超えると、結晶構造
が変わってしまい、上記の複合酸化物は超電導体とはな
らない。
If the substrate temperature is less than 200° C., the composite oxide has poor crystallinity and becomes amorphous, making it impossible to obtain a superconducting thin film. Furthermore, if the substrate temperature exceeds 950° C., the crystal structure changes and the above-mentioned composite oxide does not become a superconductor.

本発明の態様に従うと、上記の複合酸化物超電導薄膜を
形成する基板としては、MgO単結晶、SrTiO3単
結晶またはZrO2単結晶基板が好ましく、特に、Mg
O単結晶基板またはSrT i○3単結晶基板の(00
1)面または(110)面を成膜面として用いることが
好ましい。さらには、上記の単結晶相を有する金属基板
あるいは半導体基板を用いることもできる。
According to an aspect of the present invention, the substrate on which the above-mentioned composite oxide superconducting thin film is formed is preferably an MgO single crystal, SrTiO3 single crystal, or ZrO2 single crystal substrate;
O single crystal substrate or SrT i○3 single crystal substrate (00
It is preferable to use the 1) plane or the (110) plane as the film-forming plane. Furthermore, a metal substrate or a semiconductor substrate having the above-mentioned single crystal phase can also be used.

さらに、本発明の態様に従うと、成膜後の薄膜を酸素分
圧01〜10気圧の酸素含有雰囲気で800〜960 
℃、さらに好ましくは850〜950 ℃に加熱し、l
O℃/分以下の冷却速度で冷却してアニールを行うこ止
が好ましい。この処理は、上記の複合酸化物中の酸素欠
陥を調整するもので、この処理を経ない薄膜の超電導特
性は悪く、超電導性を示さない場合もある。従って、上
記の熱処理を行うことが好ましい。
Further, according to an aspect of the present invention, the thin film after film formation is heated in an oxygen-containing atmosphere with an oxygen partial pressure of 01 to 10 atm.
℃, more preferably 850 to 950℃,
It is preferable to perform annealing by cooling at a cooling rate of 0° C./min or less. This treatment is to adjust oxygen defects in the above-mentioned composite oxide, and a thin film that does not undergo this treatment will have poor superconducting properties, and may not exhibit superconductivity. Therefore, it is preferable to perform the above heat treatment.

昨月 従来、複合酸化物超電導体の薄膜を作製する場合には、
複合酸化物焼結体をターゲ・ントとして物理蒸着、一般
にはスパッタリングを行っていたが、従来の方法で得ら
れた超電導薄膜は、臨界電流密度Jcが低く、実用には
ならなかった。
Last monthConventionally, when producing a thin film of a composite oxide superconductor,
Physical vapor deposition, generally sputtering, has been performed using a composite oxide sintered body as a target, but superconducting thin films obtained by conventional methods have low critical current densities Jc and are not practical.

これは、従来法で作った複合酸化物超電導体はその臨界
電流密度に結晶異方性を有するためである。すなわち、
結晶のa軸およびb軸で決定される面に平行な方向に電
流が流れ易いが、従来の方法では、結晶方向を十分に揃
えることができなかった。そこで、従来から、結晶方向
を揃えるために、基板として、複合酸化物超電導体結晶
の格子間隔に近い格子間隔を有するMgO1SrTiO
+およびYSZ等の単結晶の特定な面を成膜面として用
いていた。
This is because the composite oxide superconductor made by the conventional method has crystal anisotropy in its critical current density. That is,
Although current tends to flow in a direction parallel to the plane determined by the a-axis and b-axis of the crystal, conventional methods have not been able to align the crystal directions sufficiently. Therefore, conventionally, in order to align the crystal directions, MgO1SrTiO, which has a lattice spacing close to that of the composite oxide superconductor crystal, has been used as a substrate.
Specific surfaces of single crystals such as + and YSZ were used as film-forming surfaces.

本発明の方法では、従来の方法を改良して、上  ・記
物理蒸着時の成膜ガス圧を0. f)01〜0.6To
rrの範囲、さらに好ましくは、0.005〜0.4T
orrの範囲にしたことで、複合酸化物の結晶方向を揃
え、結果的に、従来法と比較して、大幅にJcが向上し
た超電導薄膜が得ている。
In the method of the present invention, the conventional method is improved and the film forming gas pressure during the above physical vapor deposition is set to 0. f) 01~0.6To
rr range, more preferably 0.005 to 0.4T
By setting it in the range of orr, the crystal directions of the composite oxide are aligned, and as a result, a superconducting thin film with significantly improved Jc compared to the conventional method is obtained.

本発明の複合酸化物超電導体は、その電気抵抗に結晶異
方性を有し、上記基板の成膜面上に形成された複合酸化
物超電導薄膜は、その結晶のC軸が基板成膜面に対し垂
直または垂直に近い角度となり、特に臨界電流密度Jc
が大きくなるものと考えられる。従って、MgO単結晶
基板または5rTi○3単結晶基板の([101)面を
成膜面として用いることが好ましい。また、(110)
面を用いてC軸を基板と平行にし、C軸と垂直な方向を
特定して用いることもできる。さらに、MgO1SrT
iChは熱膨張率が上記の複合酸化物超電導体と近いた
め加熱、冷却の過程で薄膜に不必要な応力を加えること
がなく、薄膜を破損する恐れもない。
The composite oxide superconductor of the present invention has crystal anisotropy in its electrical resistance, and the composite oxide superconducting thin film formed on the film-forming surface of the substrate has a C-axis of the crystal on the film-forming surface of the substrate. The angle is perpendicular or nearly perpendicular to the critical current density Jc.
is expected to increase. Therefore, it is preferable to use the ([101) plane of the MgO single crystal substrate or the 5rTi○3 single crystal substrate as the film forming surface. Also, (110)
It is also possible to use a surface to make the C-axis parallel to the substrate and specify a direction perpendicular to the C-axis. Furthermore, MgO1SrT
Since iCh has a coefficient of thermal expansion close to that of the composite oxide superconductor described above, unnecessary stress is not applied to the thin film during heating and cooling processes, and there is no risk of damaging the thin film.

実施例 以下に本発明を実施例により説明するが、本発明の技術
的範囲は、以下の開示に何隻制限されるものではないこ
とは勿論である。
EXAMPLES The present invention will be explained below using examples, but it goes without saying that the technical scope of the present invention is not limited to the following disclosure.

上記で説明した本発明の超電導薄膜の作製方法をRFマ
グネトロンスパンタリングによって実施した。使用した
ターゲットは、しaと、BaまたはSrである元素αと
、Cuとの原子比La:α:Cuの比を1.8 : 0
.2 + 1とした原料粉末を常法に従って焼結して作
った複合酸化物焼結体を用いた。ターゲットは、直径が
100 mmφの円板とし、各々の場合の成膜条件は同
一とし、その成膜条件は以下の通りであった。
The method for producing a superconducting thin film of the present invention described above was carried out by RF magnetron sputtering. The target used had an atomic ratio of La:α:Cu of Shia, element α which is Ba or Sr, and Cu of 1.8:0.
.. A composite oxide sintered body made by sintering 2 + 1 raw material powder according to a conventional method was used. The target was a disk with a diameter of 100 mm, and the film forming conditions were the same in each case, and the film forming conditions were as follows.

基板     MgO(001)面 部板温度   690℃ 高周波電力  150 W (1,9Wlonり時間 
    6時間 膜厚     0.88μm 成膜速度   0.35  人/秒 成膜ガス圧  0.15 Torr 成膜ガス組成 02/Ar(20:80)成膜後、大気
圧中で910 ℃の温度を3時間保った後、5℃/分の
冷却速度で冷却した。なお、比較のために、成膜ガス圧
を0.0008Torrおよび0.7Torrとしたこ
と以外は、上記と全く同じ条件で複合酸化物超電導薄膜
を作製した場合の結果を第1表にそれぞれ比較例1およ
び2として示しである。
Substrate MgO (001) surface plate temperature 690℃ High frequency power 150W (1.9Wlon time
6 hours Film thickness: 0.88 μm Film formation rate: 0.35 people/second Film formation gas pressure: 0.15 Torr Film formation gas composition: 02/Ar (20:80) After film formation, the temperature was increased to 910 °C under atmospheric pressure. After holding for a period of time, it was cooled at a cooling rate of 5° C./min. For comparison, Table 1 shows comparative examples of the results when composite oxide superconducting thin films were fabricated under the same conditions as above, except that the film-forming gas pressure was 0.0008 Torr and 0.7 Torr. Shown as 1 and 2.

第1表に示す臨界温度Tcは、常法に従って四端子法に
よって測定した。また、臨界電流密度Jcは、4.2に
で、試料の電気抵抗を測定しつつ電流量を増加し、試料
の電気抵抗が検出されたときの電流量を、電流路の単位
面積に換算したものを記している。
The critical temperature Tc shown in Table 1 was measured by a four-terminal method according to a conventional method. In addition, the critical current density Jc was determined by increasing the amount of current while measuring the electrical resistance of the sample in 4.2, and converting the amount of current when the electrical resistance of the sample was detected into the unit area of the current path. writing things down.

第1表 上記のように本発明の方法により作製された超電導薄膜
は、比較例より大幅に臨界電流が向上している。
Table 1 As shown above, the superconducting thin film produced by the method of the present invention has significantly improved critical current compared to the comparative example.

なお、本発明の方法で作製した複合酸化物超電導薄膜の
表面をSEMで1万倍に拡大して観察して見ても、その
表面の略98%以上の面積の所で凹凸が見られなかった
。一方、本発明の範囲外の方法により作製した比較例の
複合酸化物超電導薄膜の表面には、数ミクロンのグレイ
ンが多数存在していた。
In addition, even when observing the surface of the composite oxide superconducting thin film produced by the method of the present invention under SEM magnification of 10,000 times, no irregularities were observed over approximately 98% or more of the surface area. Ta. On the other hand, many grains of several microns were present on the surface of the composite oxide superconducting thin film of the comparative example produced by a method outside the scope of the present invention.

発明の効果 以上詳述のように、本発明の方法によって得られた超電
導薄膜は、従来の方法で作製されたものに較べ、高いJ
cを示す。
Effects of the Invention As detailed above, the superconducting thin film obtained by the method of the present invention has a higher J than that produced by the conventional method.
c.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (19)

【特許請求の範囲】[Claims] (1)式:(La_1_−_xα_x)_2CuO_4
(但し、元素αは、BaまたはSrであり、xは0.0
1≦x≦0.2を満たす数である) で表される複合酸化物を主として含有する複合酸化物超
電導体薄膜を物理蒸着によって作製する方法において、 上記物理蒸着時の成膜ガス圧を0.001〜0.6To
rrの範囲内としたことを特徴とする超電導薄膜の作製
方法。
(1) Formula: (La_1_−_xα_x)_2CuO_4
(However, element α is Ba or Sr, and x is 0.0
1≦x≦0.2) In a method for producing a composite oxide superconductor thin film mainly containing a composite oxide represented by .001~0.6To
A method for producing a superconducting thin film, characterized in that the temperature is within the range of rr.
(2)上記物理蒸着時の成膜ガス圧が0.005〜0.
4Torrの範囲であることを特徴とする特許請求の範
囲第1項に記載の方法。
(2) The film-forming gas pressure during the physical vapor deposition is 0.005 to 0.0.
A method according to claim 1, characterized in that the temperature is in the range of 4 Torr.
(3)上記複合酸化物超電導体が、(La_1_−_x
Ba_x)_2CuO_4(ただしxは0.01≦x≦
0.2を満たす数である)で表される複合酸化物を含む
ことを特徴とする特許請求の範囲第第1項または第2項
に記載の方法。
(3) The composite oxide superconductor is (La_1_-_x
Ba_x)_2CuO_4 (where x is 0.01≦x≦
The method according to claim 1 or 2, characterized in that the method comprises a composite oxide represented by a number satisfying 0.2.
(4)上記複合酸化物超電導体が、(La_1_−_x
Sr_x)_2CuO_4(ただしxは0.01≦x≦
0.2を満たす数である)で表される複合酸化物を含む
ことを特徴とする特許請求の範囲第第1項または第2項
に記載の方法。
(4) The composite oxide superconductor is (La_1_-_x
Sr_x)_2CuO_4 (where x is 0.01≦x≦
The method according to claim 1 or 2, characterized in that the method comprises a composite oxide represented by a number satisfying 0.2.
(5)上記物理蒸着時に、基板を加熱することを特徴と
する特許請求の範囲第1項から第4項のいずれか一項に
記載の方法。
(5) The method according to any one of claims 1 to 4, characterized in that the substrate is heated during the physical vapor deposition.
(6)上記物理蒸着時の基板温度が、200から950
℃であることを特徴とする特許請求の範囲第5項に記載
の方法。
(6) The substrate temperature during the physical vapor deposition is between 200 and 950.
The method according to claim 5, characterized in that the temperature is .degree.
(7)上記物理蒸着時の基板温度が、500から920
℃であることを特徴とする特許請求の範囲第6項に記載
の方法。
(7) The substrate temperature during the physical vapor deposition is between 500 and 920.
7. The method according to claim 6, characterized in that the temperature is .degree.
(8)上記基板として、上記複合酸化物結晶の格子間隔
に近い格子間隔を有する酸化物単結晶の基板を用いるこ
とを特徴とする特許請求の範囲第1項から第7項のいず
れか一項に記載の方法。
(8) Any one of claims 1 to 7, characterized in that the substrate is an oxide single crystal substrate having a lattice spacing close to the lattice spacing of the composite oxide crystal. The method described in.
(9)上記基板として、MgO単結晶、SrTiO_3
単結晶またはZrO_2単結晶を用いることを特徴とす
る特許請求の範囲第8項に記載の方法。
(9) As the substrate, MgO single crystal, SrTiO_3
9. The method according to claim 8, characterized in that a single crystal or a ZrO_2 single crystal is used.
(10)上記MgO単結晶またはSrTiO_3単結晶
基板の{001}面または{110}面を成膜面とする
ことを特徴とする特許請求の範囲第9項に記載の超電導
薄膜の作製方法。
(10) The method for producing a superconducting thin film according to claim 9, characterized in that the {001} plane or {110} plane of the MgO single crystal or SrTiO_3 single crystal substrate is used as the film-forming surface.
(11)上記物理蒸着がスパッタリングであることを特
徴とする特許請求の範囲第1項から第10項のいずれか
一項に記載の方法。
(11) The method according to any one of claims 1 to 10, wherein the physical vapor deposition is sputtering.
(12)上記スパッタリングがマグネトロンスパッタリ
ングであることを特徴とする特許請求の範囲第11項に
記載の方法。
(12) The method according to claim 11, wherein the sputtering is magnetron sputtering.
(13)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が5から95分子%であることを特徴
とする特許請求の範囲第11項または第12項のいずれ
か一項に記載の方法。
(13) The method according to any one of claims 11 and 12, wherein the ratio of O_2 in the sputtering gas during the sputtering is 5 to 95 mol%.
(14)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が10から80分子%であることを特
徴とする特許請求の範囲第13項に記載の方法。
(14) The method according to claim 13, wherein the ratio of O_2 in the sputtering gas during the sputtering is 10 to 80 mol%.
(15)上記スパッタリングをRFスパッタリングで行
い、高周波電力を0.064〜1.27W/cm^2の
範囲内としたことを特徴とする特許請求の範囲11項か
ら第14項のいずれか一項に記載の方法。
(15) Any one of claims 11 to 14, characterized in that the sputtering is performed by RF sputtering, and the high frequency power is within the range of 0.064 to 1.27 W/cm^2. The method described in.
(16)上記の成膜後に、薄膜を酸素含有雰囲気で加熱
−徐冷する熱処理を行うことを特徴とする特許請求の範
囲第1項から第15項のいずれか一項に記載の方法。
(16) The method according to any one of claims 1 to 15, characterized in that after the film formation, a heat treatment of heating and slowly cooling the thin film in an oxygen-containing atmosphere is performed.
(17)上記熱処理時の加熱温度が、800〜960℃
の範囲であることを特徴とする特許請求の範囲第16項
に記載の方法。
(17) The heating temperature during the above heat treatment is 800 to 960°C
17. The method according to claim 16, characterized in that the method is within the range of .
(18)上記熱処理時の冷却温度が、10℃/分以下で
あることを特徴とする特許請求の範囲第16項または1
7項に記載の方法。
(18) Claim 16 or 1, characterized in that the cooling temperature during the heat treatment is 10°C/min or less.
The method described in Section 7.
(19)上記熱処理時の酸素分圧が0.1〜10気圧で
あることを特徴とする特許請求の範囲第16項から第1
8項のいずれか一項に記載の方法。
(19) Claims 16 to 1, characterized in that the oxygen partial pressure during the heat treatment is 0.1 to 10 atm.
The method described in any one of Section 8.
JP62324710A 1987-02-17 1987-12-22 Production of superconducting thin film Pending JPH01167223A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62324710A JPH01167223A (en) 1987-12-22 1987-12-22 Production of superconducting thin film
DE3854493T DE3854493T2 (en) 1987-12-20 1988-12-20 Method of manufacturing a thin film superconductor.
EP19880403254 EP0322306B1 (en) 1987-12-20 1988-12-20 Process for producing a superconducting thin film
US07/286,860 US5028583A (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
KR1019880017018A KR970005158B1 (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and the process therefor
AU27099/88A AU615014B2 (en) 1987-02-17 1988-12-20 Superconducting thin film and wire and a process for producing the same
CA 586516 CA1339020C (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
US07/648,964 US5252543A (en) 1987-12-20 1991-01-31 Superconducting thin film and wire on a smooth substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324710A JPH01167223A (en) 1987-12-22 1987-12-22 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01167223A true JPH01167223A (en) 1989-06-30

Family

ID=18168844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324710A Pending JPH01167223A (en) 1987-02-17 1987-12-22 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01167223A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6435819A (en) * 1987-07-31 1989-02-06 Matsushita Electric Ind Co Ltd Manufacture of superconducting membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6435819A (en) * 1987-07-31 1989-02-06 Matsushita Electric Ind Co Ltd Manufacture of superconducting membrane

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JPH01163058A (en) Supercoductive thin film and its preparation
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH01167221A (en) Production of superconducting thin film
JPH01166419A (en) Manufacture of superconductive membrane
JP2544759B2 (en) How to make a superconducting thin film
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01167223A (en) Production of superconducting thin film
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01167218A (en) Production of superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JP2544760B2 (en) Preparation method of superconducting thin film
JPH01167222A (en) Production of superconducting thin film
JPH01188665A (en) Production of superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JP2567416B2 (en) Preparation method of superconducting thin film
JPH01188662A (en) Production of superconducting thin film
JPH01188663A (en) Production of superconducting thin film
JPH01188664A (en) Production of superconducting thin film
JPH01167220A (en) Production of superconducting thin film
JPH01176216A (en) Production of superconducting thin film of compound oxide
JPH01126206A (en) Superconducting thin film