JPH0562534A - Superconductive member - Google Patents

Superconductive member

Info

Publication number
JPH0562534A
JPH0562534A JP3223902A JP22390291A JPH0562534A JP H0562534 A JPH0562534 A JP H0562534A JP 3223902 A JP3223902 A JP 3223902A JP 22390291 A JP22390291 A JP 22390291A JP H0562534 A JPH0562534 A JP H0562534A
Authority
JP
Japan
Prior art keywords
oxide superconductor
silver
metal base
current density
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3223902A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
久士 芳野
Mutsuki Yamazaki
六月 山崎
Hiroyuki Fukuya
浩之 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP3223902A priority Critical patent/JPH0562534A/en
Publication of JPH0562534A publication Critical patent/JPH0562534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide a superconductive member which can give a critical current density satisfactory when applied in practical field and which can allow the metal base to function as a stabilizer material. CONSTITUTION:A superconductive member concerned uses a metal base chiefly containing Ag plus alloy additives consisting either of 0.1-10wt.% element or elements soluble solidly with Ag such as Mg, Al, Mn, Cu, Zn, Ga, Ge, Pd, Cd, In, Sn, Sb, Pt, Au or of 0.05-5wt.% element or elements unsoluble solidly with Ag such as Ti, Zr, Hf, V, Nb, Ta, Cr, Fe, Co, Ni, Y, La, Mo, Si, Ca, Ba, Sr. An oxide type superconductive substance layer is formed directly on this metal base by the cluster ion beam method, etc., and thus a superconductive member as object of present invention is achieved. Addition of the mentioned element or elements raises the recrystallizing temp. of Ag, and generation of surface roughness of an Ag base board due to recrystallization at the time of film formation is suppressed. Thereby a flat and smooth film of oxide type superconductive substance is obtained equipped with an enhanced critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体を使用
した超電導部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting member using an oxide superconductor.

【0002】[0002]

【従来の技術】1986年にBa-La-Cu-O系の層状ペレブスカ
イト型の酸化物が 40K以上の高い臨界温度を示すことが
発表されて以来、酸化物系の超電導体が注目を厚め、新
材料探索の研究が活発に行われている。その中でも、液
体窒素温度以上の高い臨界温度を有する Y-Ba-Cu-O系で
代表される欠陥ペロブスカイト型の酸化物超電導体や、
Bi-Sr-Ca-Cu-O系、 Tl-Ba-Ca-Cu-O系等の酸化物超電導
体は、冷媒として高価な液体ヘリウムに代えて、安価な
液体窒素を利用できるため、工業的にも重要な価値を有
している。
2. Description of the Related Art Since it was announced in 1986 that Ba-La-Cu-O-based layered perovskite type oxides had a high critical temperature of 40 K or higher, oxide-based superconductors gained attention, Active research is being carried out in search of new materials. Among them, defect perovskite type oxide superconductors represented by the Y-Ba-Cu-O system, which have a high critical temperature above the liquid nitrogen temperature, and
Bi-Sr-Ca-Cu-O-based, Tl-Ba-Ca-Cu-O-based oxide superconductors can be replaced with expensive liquid helium as a refrigerant, and cheap liquid nitrogen can be used. It also has significant value.

【0003】このような酸化物超電導体のエネルギー分
野への応用を考えた場合、まず線材化することが必要と
なる。そこで、各種方法を用いて酸化物超電導体を線材
化する試みがなされている。例えば、 (a) 金属管内に酸化物超電導体を封入し、これを線引
き加工することによって線材化する。
Considering the application of such an oxide superconductor to the energy field, it is first necessary to form a wire rod. Therefore, various attempts have been made to convert the oxide superconductor into a wire rod. For example, (a) an oxide superconductor is enclosed in a metal tube and drawn to form a wire rod.

【0004】(b) 酸化物超電導体粉末と有機バインダ
とを混合し、ノズルから押し出して線材化する。
(B) An oxide superconductor powder and an organic binder are mixed and extruded from a nozzle to form a wire.

【0005】(c) 金属テープあるいは金属ワイヤ上に
スパッタ法や蒸着法によって酸化物超電導体層を形成
し、線材化する。
(C) An oxide superconductor layer is formed on a metal tape or a metal wire by a sputtering method or a vapor deposition method to form a wire.

【0006】等が知られている。Etc. are known.

【0007】これら酸化物超電導体を用いた超電導線材
の臨界電流密度は、徐々に向上する傾向にある。特に、
上記 (c)の方法が有望視されているが、スパッタ法や蒸
着法等によって直接金属基体上に酸化物超電導体層を形
成したのでは、配向した酸化物超電導体層は得られ難い
と共に、使用する金属基体によっては酸化物超電導体層
との界面に反応層が形成されるという難点があった。そ
こで、配向層を得るための現実的な手法として、酸化物
超電導体と格子定数が近似した MgO層等を金属基体上に
バッファ層として形成し、このバッファ層上に酸化物超
電導体層を形成する方法が試みられている。
The critical current density of a superconducting wire using these oxide superconductors tends to gradually increase. In particular,
Although the method of (c) is considered promising, if an oxide superconductor layer is formed directly on a metal substrate by a sputtering method, an evaporation method, or the like, an oriented oxide superconductor layer is difficult to obtain, and There is a problem that a reaction layer is formed at the interface with the oxide superconductor layer depending on the metal substrate used. Therefore, as a practical method for obtaining an alignment layer, a MgO layer or the like having a lattice constant similar to that of an oxide superconductor is formed as a buffer layer on a metal substrate, and the oxide superconductor layer is formed on this buffer layer. The method of doing is being tried.

【0008】このようなバッファ層を介した酸化物超電
導体層の形成方法によれば、界面での反応を防ぐことが
できると共に、配向した酸化物超電導体層が得られ、臨
界電流密度の向上を図ることができる反面、 MgOのよう
な絶縁層が介在するために、酸化物超電導体層と金属基
体との電気的な導通をとることができないという欠点が
あった。したがって、使用中に酸化物超電導体層の一部
が常電導状態に転移した場合に、金属基体へ電流をバイ
アスさせて超電導体を保護する、いわゆる安定化材して
金属基体を機能させることができない。
According to such a method for forming an oxide superconductor layer via a buffer layer, a reaction at the interface can be prevented and an oriented oxide superconductor layer can be obtained to improve the critical current density. On the other hand, there is a drawback in that the oxide superconductor layer and the metal substrate cannot be electrically connected to each other due to the interposition of the insulating layer such as MgO. Therefore, when a part of the oxide superconductor layer is changed to the normal conducting state during use, the current can be biased to the metal base to protect the superconductor, that is, the metal base can function as a so-called stabilizing material. Can not.

【0009】一方、酸素プラズマ供給法を組合せたクラ
スターイオンビーム法(ICB法)等によれば、クラス
ターの持つイオンエネルギーの作用により、配向した酸
化物超電導体膜を銀テープ等の金属基体上に直接形成す
ることが可能であり、超電導特性の向上が期待できると
共に、酸化物超電導体層と金属基体との界面にバッファ
層を設ける必要がないために、金属基体を安定化材とし
て機能させることができるという利点がある。
On the other hand, according to the cluster ion beam method (ICB method) combined with the oxygen plasma supply method, the oriented oxide superconductor film is formed on a metal substrate such as silver tape by the action of the ion energy of the cluster. Since it can be formed directly, improvement of superconducting properties can be expected, and since it is not necessary to provide a buffer layer at the interface between the oxide superconductor layer and the metal substrate, the metal substrate functions as a stabilizer. The advantage is that

【0010】[0010]

【発明が解決しようとする課題】ところで、酸化物超電
導体を線材として実際に応用する際には、105 A/cm2
上の臨界電流密度が要求されている。しかしながら、上
述したような銀基体上に酸化物超電導体層を直接形成し
た線材で得られている臨界電流密度は、104 A/cm2 程度
と必ずしも十分ではなく、酸化物超電導体を用いた超電
導線材の実用化を目指すためには、さらに臨界電流密度
を向上させる必要がある。
By the way, when the oxide superconductor is actually applied as a wire, a critical current density of 10 5 A / cm 2 or more is required. However, the critical current density obtained with a wire in which an oxide superconductor layer is directly formed on a silver substrate as described above is not necessarily sufficient at about 10 4 A / cm 2, and an oxide superconductor is used. In order to put the superconducting wire into practical use, it is necessary to further improve the critical current density.

【0011】本発明は、このような従来技術の課題に対
処するためになされたもので、実用上十分な臨界電流密
度が得られると共に、金属基体を安定化材として機能さ
せることが可能な超電導部材を提供することを目的とし
ている。
The present invention has been made to address the above-mentioned problems of the prior art. Superconductivity capable of obtaining a practically sufficient critical current density and allowing a metal substrate to function as a stabilizer. It is intended to provide a member.

【0012】[0012]

【課題を解決するための手段と作用】すなわち、本発明
の超電導部材は、金属基体と、この金属基体上に直接形
成された酸化物超電導体層とを具備する超電導部材にお
いて、前記金属基体は、銀を主成分とし、これに銀に固
溶する元素を 0.1重量%〜10重量%の範囲で、あるいは
銀に固溶しない元素を0.05重量%〜 5重量%の範囲で添
加した合金からなることを特徴としている。
That is, the superconducting member of the present invention is a superconducting member comprising a metal base and an oxide superconductor layer formed directly on the metal base, wherein the metal base is , An alloy containing silver as a main component, to which an element that is solid-solved in silver is added in the range of 0.1% to 10% by weight, or an element that is not dissolved in silver is added in the range of 0.05% to 5% by weight It is characterized by

【0013】本発明に用いられる金属基体は、銀を主成
分とするものである。酸化物超電導体を金属基体上に成
膜する際、基体温度は 500℃以上の高温に保持され、し
かも酸素を例えばプラズマやオゾン等の活性な状態にし
て供給する。したがって、金属基体は酸化しにくく、あ
るいは酸化物超電導体と反応しにくい金属であることが
要求されるため、銀を主成分とする金属基体が好適とな
る。
The metal substrate used in the present invention contains silver as a main component. When depositing an oxide superconductor on a metal substrate, the substrate temperature is kept at a high temperature of 500 ° C. or higher, and oxygen is supplied in an activated state such as plasma or ozone. Therefore, the metal base is required to be a metal that is difficult to oxidize or react with the oxide superconductor, and therefore a metal base containing silver as a main component is suitable.

【0014】ここで、銀単体では再結晶温度が低く(約
200℃)、上述したような温度に金属基体を加熱した状
態で成膜すると、銀の再結晶化および粒成長が生じ、基
体表面に 1μm 〜数μm 程度の深さの溝が粒界に沿って
形成される。一旦、このような粒界溝が生じてしまう
と、この溝上に成膜された酸化物超電導体層は、c軸配
向における整合性が低下してしまう。この酸化物超電導
体結晶の整合性の低下が、臨界電流密度の向上を阻害す
る要因であることを見出だしたことによって、本発明は
成されたものである。
Here, the recrystallization temperature of silver alone is low (about
200 ° C), when a metal substrate is heated to the temperature as described above, silver recrystallization and grain growth occur, and grooves with a depth of 1 μm to several μm are formed along the grain boundaries on the substrate surface. Formed. Once such a grain boundary groove is formed, the oxide superconductor layer formed on this groove has a reduced conformity in the c-axis orientation. The present invention was accomplished by discovering that the decrease in the conformity of the oxide superconductor crystal is a factor that hinders the improvement of the critical current density.

【0015】そこで、本発明においては、銀基体の再結
晶温度を上昇させるために、銀に他の元素を添加して合
金化した基体を用いている。例えば、Mg、Al、Mn、Cu、
Zn、Ga、Ge、Pd、Cd、In、Sn、Sb、Pt、Au等の銀に固溶
する元素は、結晶格子内で銀の移動を防ぐことから、銀
の再結晶温度を上昇させることができる。また、Ti、Z
r、Hf、V 、Nb、Ta、Cr、Fe、Co、Ni、Y 、La、Mo、S
i、Ca、Ba、Sr等の銀に固溶しない元素であれば、合金
組織内に分散して存在し、銀の再結晶を阻止することに
よって、銀の再結晶温度を上昇させることができる。こ
れらの元素は、 1種または 2種以上を銀に添加し、合金
化して用いるものである。
Therefore, in the present invention, in order to raise the recrystallization temperature of the silver substrate, a substrate obtained by alloying by adding another element to silver is used. For example, Mg, Al, Mn, Cu,
Elements such as Zn, Ga, Ge, Pd, Cd, In, Sn, Sb, Pt, and Au that are solid-solved in silver prevent the migration of silver within the crystal lattice, and thus increase the recrystallization temperature of silver. You can Also, Ti, Z
r, Hf, V, Nb, Ta, Cr, Fe, Co, Ni, Y, La, Mo, S
Elements such as i, Ca, Ba, and Sr that do not form a solid solution in silver are present in the alloy structure in a dispersed state, and by preventing recrystallization of silver, the recrystallization temperature of silver can be increased. .. One or more of these elements are added to silver and alloyed to be used.

【0016】上記銀の再結晶温度を上昇させる元素は、
銀に固溶する元素であれば 0.1重量%以上、また銀に固
溶しない元素であれば0.05重量%以上添加することが効
果的であり、これにより成膜時において、臨界電流密度
の低下要因となる粒界溝の形成を防止し得る程度に銀の
再結晶温度を上昇させることができる。ただし、金属基
体は安定化材としての役割を果たす必要があるため、導
電性に優れていることが要求される。さらには、成膜時
に酸化物超電導体と反応して特性を低下させないことが
要求される。したがって、上記添加元素の量には上限が
あり、銀に固溶する元素であれば10重量%以下、銀に固
溶しない元素では 5重量%以下に添加量を規制する必要
がある。これら以上となると、積層形成された酸化物超
電導体と添加元素とが反応し、所望の特性の酸化物超電
導体層を得ることができない。
The element that raises the recrystallization temperature of silver is
It is effective to add 0.1% by weight or more for elements that form a solid solution in silver, and 0.05% by weight or more for elements that do not form a solid solution in silver. The recrystallization temperature of silver can be raised to such an extent that the formation of grain boundary grooves can be prevented. However, since the metal substrate needs to function as a stabilizer, it is required to have excellent conductivity. Furthermore, it is required that the characteristics are not deteriorated by reacting with the oxide superconductor during film formation. Therefore, there is an upper limit to the amount of the above-mentioned additional element, and it is necessary to regulate the addition amount to 10% by weight or less for an element that forms a solid solution in silver and 5% by weight or less for an element that does not form a solid solution in silver. When the amount is more than the above, the oxide superconductor formed by lamination reacts with the additional element, and the oxide superconductor layer having desired characteristics cannot be obtained.

【0017】本発明に用いられる酸化物超電導体として
は、超電導状態を実現し得るものであれば種々の酸化物
を適用することができ、例えば銅系酸化物超電導体が挙
げられる。この銅系酸化物超電導体としては、特に限定
されるものではないが、例えば下記の一般式で実質的に
表されるもの等が例示される。
As the oxide superconductor used in the present invention, various oxides can be applied as long as they can realize a superconducting state, and examples thereof include a copper-based oxide superconductor. The copper-based oxide superconductor is not particularly limited, but examples thereof include those substantially represented by the following general formula.

【0018】La2-x AEx Cu O4 (式中、AEはBa、SrおよびCaから選ばれた少なくとも 1
種の元素を、 xは0.02≦x≦0.08を満足する数を示す) RE Ba2 Cu3 O 7-δ (式中、REは Y、Sc、La、Nd、Sm、Eu、Gd、Dy、Ho、E
r、Tm、Yb、Lu等の希土類元素から選ばれた少なくとも
1種の元素を示し、δは酸素欠損を表し、通常 1以下の
数である) Bi2 Sr2 Ca1 Cu2 O 8+d Bi2 Sr2 Ca2 Cu3 O 10+d Bi2 Sr2 Ca3 Cu4 O 12+d Tl2 Ba2 Ca1 Cu2 O 8+d Tl1 Ba2 Ca1 Cu2 O 7+d Tl2 Ba2 Ca2 Cu3 O 10+d Tl1 Ba2 Ca2 Cu3 O 9+d (上記各式中、 dは酸素の微小な変動を表す。また、Bi
およびTlの一部はPbで、Sr、Ca、Ba等の一部はRE元素で
置換可能) また、本発明における酸化物超電導体層の形成方法とし
ては、例えば反応性蒸着法、スパッタ法、CVD法等の
各種薄膜形成法を適用することが可能である。中でも反
応性蒸着法の一種であるクラスターイオンビーム法によ
れば、イオンエネルギーのアシスト効果によって、低い
基板温度で所望の組織の酸化物超電導体膜を形成するこ
とが可能であることから、好ましい形成方法といえる。
La 2−x AE x Cu O 4 (wherein AE is at least 1 selected from Ba, Sr and Ca)
X is a number that satisfies 0.02 ≦ x ≦ 0.08) RE Ba 2 Cu 3 O 7-δ (where RE is Y, Sc, La, Nd, Sm, Eu, Gd, Dy, Ho, E
At least selected from rare earth elements such as r, Tm, Yb, and Lu
One element, δ represents oxygen deficiency and is usually a number of 1 or less.) Bi 2 Sr 2 Ca 1 Cu 2 O 8 + d Bi 2 Sr 2 Ca 2 Cu 3 O 10 + d Bi 2 Sr 2 Ca 3 Cu 4 O 12 + d Tl 2 Ba 2 Ca 1 Cu 2 O 8 + d Tl 1 Ba 2 Ca 1 Cu 2 O 7 + d Tl 2 Ba 2 Ca 2 Cu 3 O 10 + d Tl 1 Ba 2 Ca 2 Cu 3 O 9 + d (In the above equations, d represents a minute fluctuation of oxygen.
Part of Tl and Tl is Pb, and part of Sr, Ca, Ba, etc. can be replaced by RE element) Further, as a method for forming the oxide superconductor layer in the present invention, for example, reactive vapor deposition method, sputtering method, It is possible to apply various thin film forming methods such as the CVD method. Among them, according to the cluster ion beam method, which is one of the reactive vapor deposition methods, it is possible to form an oxide superconducting film having a desired texture at a low substrate temperature by the assist effect of ion energy, and therefore preferable formation It can be called a method.

【0019】[0019]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0020】実施例1 まず、Agに固溶する元素群のうち、Mg、Al、Cu、Pdおよ
びSnを代表例として選定し、これらを 0.1重量%、 1重
量%、 5重量%および10重量%含有する銀基合金をそれ
ぞれ作製した。
Example 1 First, Mg, Al, Cu, Pd and Sn were selected as typical examples from the group of elements which are solid-soluted in Ag, and 0.1% by weight, 1% by weight, 5% by weight and 10% by weight of these were selected. % Silver-based alloys were prepared.

【0021】次に、これらの合金をそれぞれ幅 1mm、厚
さ 0.3mmのテープ状に加工した後、酸素プラズマ供給法
を組合せたクラスターイオンビーム成膜法によって、各
銀基合金テープの表面に Y1 Ba2 Cu3 O y で表される酸
化物超電導体層を成膜した。この時の成膜温度は約 650
℃とした。また、膜厚は 0.2μm である。
Next, each of these alloys was processed into a tape having a width of 1 mm and a thickness of 0.3 mm, and then Y was formed on the surface of each silver-based alloy tape by a cluster ion beam film forming method combined with an oxygen plasma supply method. An oxide superconductor layer represented by 1 Ba 2 Cu 3 O y was formed. The film formation temperature at this time is about 650.
℃ was made. The film thickness is 0.2 μm.

【0022】得られた短尺の超電導部材の臨界温度を 4
端子法で測定した結果、いずれの超電導部材も 84K〜 8
8Kの範囲の臨界温度を示した。また、これらの超電導部
材を液体窒素中に浸漬し臨界電流密度を測定した。その
結果、臨界電流密度は 0.8〜1.2×105 A/cm2 と良好な
値を示した。
The critical temperature of the obtained short superconducting member is set to 4
As a result of measurement by the terminal method, all superconducting members are 84K ~ 8
It showed a critical temperature in the range of 8K. Further, these superconducting members were immersed in liquid nitrogen to measure the critical current density. As a result, the critical current density was 0.8 to 1.2 × 10 5 A / cm 2, which was a good value.

【0023】また、各超電導部材の表面を走査型電子顕
微鏡で観察した結果、表面凹凸が少なく、滑らかな形態
を示していた。また、X線回折パターンを調べたとこ
ろ、(00l)面からの強い回折が認められ、c軸配向して
いることが確認された。
As a result of observing the surface of each superconducting member with a scanning electron microscope, it was found that there were few surface irregularities and that the surface was smooth. In addition, when the X-ray diffraction pattern was examined, strong diffraction from the (00l) plane was observed, and it was confirmed that the c-axis orientation was observed.

【0024】実施例2 Agに固溶しない元素群のうち、Si、Ti、Cr、NiおよびZr
を代表例として選定し、これらを 0.1重量%、 1重量
%、 5重量%および10重量%含有する銀基合金をそれぞ
れ作製した。これらの合金を実施例1と同様な形状に加
工した後、実施例1と同一条件で酸化物超電導体の成膜
を行った。
Example 2 Of the elements that do not form a solid solution in Ag, Si, Ti, Cr, Ni and Zr
Was selected as a representative example, and silver-based alloys containing 0.1% by weight, 1% by weight, 5% by weight and 10% by weight were prepared. After processing these alloys into the same shape as in Example 1, the oxide superconductor was formed under the same conditions as in Example 1.

【0025】得られた短尺の超電導部材の臨界温度を 4
端子法で測定した結果、いずれにおいても 84K〜 86Kの
範囲の臨界温度を示した。また、これらの超電導部材の
臨界電流密度を液体窒素中で測定した結果、臨界電流密
度は 0.8〜 1.1×105 A/cm2 と良好な値を示した。ま
た、表面を走査型電子顕微鏡で観察した結果、表面凹凸
が少なく、滑らかな形態を示していた。また、X線回折
パターンを調べたところ、(00l)面からの強い回折が認
められ、c軸配向していることが確認された。
The critical temperature of the obtained short superconducting member is set to 4
As a result of measurement by the terminal method, all showed critical temperatures in the range of 84K to 86K. As a result of measuring the critical current density of these superconducting members in liquid nitrogen, the critical current density was 0.8 to 1.1 × 10 5 A / cm 2, which was a good value. Moreover, as a result of observing the surface with a scanning electron microscope, there were few surface irregularities and it showed a smooth morphology. In addition, when the X-ray diffraction pattern was examined, strong diffraction from the (00l) plane was observed, and it was confirmed that the c-axis orientation was observed.

【0026】比較例1 純度99.99%のAgを実施例1と同様な形状に加工した後、
実施例1と同一条件で酸化物超電導体の成膜を行った。
得られた 5個の試料の臨界温度を測定したところ、 84K
〜 86Kの範囲の臨界温度を示した。次に、液体窒素中で
臨界電流密度を測定した結果、 0.7〜 1.5×104 A/cm2
の範囲の値しか得られなかった。また、表面を走査型電
子顕微鏡で観察した結果、粒界溝が多数認められた。ま
た、X線回折パターンを調べたところ、(00l)面からの
強い回折が認められ、c軸配向していることが確認され
た。
Comparative Example 1 After processing Ag having a purity of 99.99% into the same shape as in Example 1,
The oxide superconductor was formed under the same conditions as in Example 1.
The critical temperature of the five obtained samples was measured and found to be 84K.
It showed a critical temperature in the range of ~ 86K. Next, as a result of measuring the critical current density in liquid nitrogen, 0.7 ~ 1.5 × 10 4 A / cm 2
Only values in the range of were obtained. As a result of observing the surface with a scanning electron microscope, many grain boundary grooves were recognized. In addition, when the X-ray diffraction pattern was examined, strong diffraction from the (00l) plane was observed, and it was confirmed that the c-axis orientation was observed.

【0027】なお、上記実施例においては、クラスター
イオンビーム法による成膜を例として挙げて説明した
が、銀基合金を基体として用い、高温で成膜する方法に
おいては同じく効果があることはいうまでもない。
In the above-mentioned embodiments, the film formation by the cluster ion beam method has been described as an example, but it is said that the same effect can be obtained in the method of forming a film at a high temperature using a silver base alloy as a substrate. There is no end.

【0028】[0028]

【発明の効果】以上の実施例から明らかなように、本発
明の超電導部材は、超電導電流が流れやすい酸化物超電
導体結晶のc面が金属基体面に配向し、しかも金属基体
の粒界溝による凹凸が少ないため、高い臨界電流密度が
得られる。また、酸化物超電導体が金属基体上に直接形
成されているため、金属基体を安定化材として機能させ
ることが可能である。
As is apparent from the above examples, in the superconducting member of the present invention, the c-plane of the oxide superconductor crystal in which the superconducting current easily flows is oriented to the metal substrate surface, and the grain boundary groove of the metal substrate is formed. Since there is little unevenness due to, high critical current density can be obtained. Further, since the oxide superconductor is directly formed on the metal base, the metal base can function as a stabilizer.

【0029】[0029]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属基体と、この金属基体上に直接形成
された酸化物超電導体層とを具備する超電導部材におい
て、 前記金属基体は、銀を主成分とし、これに銀に固溶する
元素を 0.1重量%〜10重量%の範囲で、あるいは銀に固
溶しない元素を0.05重量%〜 5重量%の範囲で添加した
合金からなることを特徴とする超電導部材。
1. A superconducting member comprising a metal base and an oxide superconductor layer directly formed on the metal base, wherein the metal base contains silver as a main component, and an element which forms a solid solution with silver. A superconducting member comprising an alloy containing 0.1% by weight to 10% by weight or an element that does not form a solid solution in silver in the range of 0.05% by weight to 5% by weight.
JP3223902A 1991-09-04 1991-09-04 Superconductive member Pending JPH0562534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223902A JPH0562534A (en) 1991-09-04 1991-09-04 Superconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223902A JPH0562534A (en) 1991-09-04 1991-09-04 Superconductive member

Publications (1)

Publication Number Publication Date
JPH0562534A true JPH0562534A (en) 1993-03-12

Family

ID=16805503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223902A Pending JPH0562534A (en) 1991-09-04 1991-09-04 Superconductive member

Country Status (1)

Country Link
JP (1) JPH0562534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271473B1 (en) * 1992-12-22 2001-08-07 Sumitomo Heavy Industries Ltd. Oxide superconductive wire and process for manufacturing the same
US6469253B1 (en) * 1995-10-17 2002-10-22 Sumitomo Electric Industries, Ltd Oxide superconducting wire with stabilizing metal have none noble component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290230A (en) * 1987-05-23 1988-11-28 Nippon Haiburitsudo Technol Kk Metal for calcined oxide superconductor, calcining method, and calcined superconductor thereof
JPH01221810A (en) * 1987-10-23 1989-09-05 Furukawa Electric Co Ltd:The Oxide superconductive mold and its manufacture
JPH02279518A (en) * 1989-03-15 1990-11-15 Asea Brown Boveri Ag Method for producing surface layer of oriented crystal from ceramic high- temperature superconducting material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290230A (en) * 1987-05-23 1988-11-28 Nippon Haiburitsudo Technol Kk Metal for calcined oxide superconductor, calcining method, and calcined superconductor thereof
JPH01221810A (en) * 1987-10-23 1989-09-05 Furukawa Electric Co Ltd:The Oxide superconductive mold and its manufacture
JPH02279518A (en) * 1989-03-15 1990-11-15 Asea Brown Boveri Ag Method for producing surface layer of oriented crystal from ceramic high- temperature superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271473B1 (en) * 1992-12-22 2001-08-07 Sumitomo Heavy Industries Ltd. Oxide superconductive wire and process for manufacturing the same
US6469253B1 (en) * 1995-10-17 2002-10-22 Sumitomo Electric Industries, Ltd Oxide superconducting wire with stabilizing metal have none noble component

Similar Documents

Publication Publication Date Title
Naito et al. Thin-film synthesis of the high-Tc oxide superconductor YBa2Cu3O7 by electron-beam codeposition
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
JP4713012B2 (en) Tape-shaped oxide superconductor
US6436317B1 (en) Oxide bronze compositions and textured articles manufactured in accordance therewith
JP4602911B2 (en) Rare earth tape oxide superconductor
US7431868B2 (en) Method of manufacturing a metal substrate for an oxide superconducting wire
JP3521182B2 (en) Oxide superconducting wire and superconducting device
US6596421B2 (en) Elongated superconductor structure with a high-Tc superconductor material and a metallic mount, and method for producing the structure
US7445808B2 (en) Method of forming a superconducting article
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JPH0562534A (en) Superconductive member
US5145832A (en) Superconducting film on a flexible two-layer zirconia substrate
RU2753187C1 (en) Superconducting oxide wire and method for its manufacturing
JP2919955B2 (en) Superconducting member manufacturing method
JP3240133B2 (en) Oxide superconductor and superconducting wire using the same
JPH06251649A (en) Manufacture of ceramic superconducting member
JPH0393110A (en) Superconducting wire-rod
JP2721322B2 (en) Oxide superconducting compact
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JPH0769626A (en) Metal oxide and production thereof
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH01125878A (en) Thin film multilayer superconductor
JPH07105750A (en) Superconducting wire
JPH06283056A (en) Oxide superconductive wire

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980421