JPH01220872A - Oxide base superconductive material - Google Patents

Oxide base superconductive material

Info

Publication number
JPH01220872A
JPH01220872A JP63047217A JP4721788A JPH01220872A JP H01220872 A JPH01220872 A JP H01220872A JP 63047217 A JP63047217 A JP 63047217A JP 4721788 A JP4721788 A JP 4721788A JP H01220872 A JPH01220872 A JP H01220872A
Authority
JP
Japan
Prior art keywords
layer
superconducting
oxide layer
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63047217A
Other languages
Japanese (ja)
Other versions
JP2643972B2 (en
Inventor
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63047217A priority Critical patent/JP2643972B2/en
Publication of JPH01220872A publication Critical patent/JPH01220872A/en
Application granted granted Critical
Publication of JP2643972B2 publication Critical patent/JP2643972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture the title oxide base superconductive material having excellent adhesion to a substrate and high mechanical strength by a method wherein an oxide layer is formed on the surface of the metal-coated substrate and then a non-oxide layer made of non-oxidative metal such as Au, Pt, Ag, Pd, etc., is formed on the oxide layer. CONSTITUTION:The title superconductive material 1 is composed of an oxide layer 3 comprising MgO formed on a sheet metal type substrate 2, a non-oxide layer 4 comprising Au formed on the film 3, a superconductive layer 5 comprising Y-Ba-Cu-O base supercoductor formed on the layer 4. As for the metallic material for the substrate 2, highly heat resistant and oxidation resistance metals such as Ag, Cu, Ti, Ta, Nb, Ni, Zr, etc., as well as heat resistant.oxidation resistant alloys such as stainless, Hastelloy, Inconel, Nichrome, Cu-Ni alloy are applicable. Through these procedures, the non-oxide layer 4 can prevent diffusing and mixing of impurity from the substrate 2 or the oxide layer 3 simultaneously strain due to thermal changes may be mitigated.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ジョセフソン素子、超電導記憶素子等の超電
導デバイス、超電導配線、超電導線材などとして使用可
能な酸化物系超電導材に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an oxide-based superconducting material that can be used as a superconducting device such as a Josephson element or a superconducting memory element, a superconducting wiring, a superconducting wire, or the like.

「従来の技術およびその課題」 ゛ 最近に至り、常電導状態から超電導状態へ遷移する
臨界温度(T c)が液体窒素温度を超える値を示す酸
化物系超電導体が種々発見されている。この種の酸化物
系超電導体は、一般式A −B −Cu−0(ただし、
AはY、Sc、La、Yb、Er、Eu、Ho、Dy等
の周期律表I[1a族元素の1種以上を示し、BはBe
、Mg、Ca、S r、Ba等の周期律表IIa族元素
の1種以上を示す)で示される酸化物であり、液体ヘリ
ウムで冷却することか必要であった従来の合金系あるい
は金属間化合物系の超電導体と比較して格段に有利な冷
却条件で使用できることから、実用上極めて有望な超電
導材料として研究がなされている。
"Prior Art and its Problems" Recently, various oxide-based superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conducting state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide-based superconductor has the general formula A-B-Cu-0 (however,
A represents one or more elements of group I [1a] of the periodic table, such as Y, Sc, La, Yb, Er, Eu, Ho, Dy, etc., and B represents Be
, Mg, Ca, Sr, Ba, etc.). Since it can be used under much more advantageous cooling conditions than compound-based superconductors, it is being researched as an extremely promising superconducting material for practical use.

そして現在のところ、このような超電導体を用い、銅や
ステンレス鋼などの金属製あるいはアルミナ、チタン酸
ストロンチウム、YSZなどのセラミックス製の基材の
表面に酸化物超電導薄膜を形成して酸化物系超電導材を
形成するには、例えば基材の表面に、真空蒸着法、スパ
ッタリング法、分子線エピタキシー法、化学気相成長法
、レーザPVD法などの成膜法を用いて酸化物超電導層
を形成する方法が試みられている。
Currently, such superconductors are used to form oxide superconducting thin films on the surfaces of metals such as copper and stainless steel, or ceramics such as alumina, strontium titanate, and YSZ. To form a superconducting material, for example, an oxide superconducting layer is formed on the surface of a base material using a film forming method such as a vacuum evaporation method, a sputtering method, a molecular beam epitaxy method, a chemical vapor deposition method, or a laser PVD method. A method is being tried.

しかし、セラミックス製の基材は、脆いために、衝撃を
受けて破損しやすく、機械強度の優れた酸化物系超電導
材の作成が困難な問題があった。また、これらのセラミ
ックス材料は、表面に酸化物超電導層を形成する際セラ
ミックス中の不純物が超電導層中に拡散混入して超電導
特性を低下さd−ることのないように、高純度のセラミ
ックス材料を使用する必要があり、このような高純度セ
ラミックス材料は価格が非常に高い上に、その製造工程
上、大面積の板体や長尺な線材等を得ることが困難なこ
とから、このようなセラミックスからなる基材を利用で
きる範囲が限られてしまう問題があった。
However, ceramic base materials are brittle and are easily damaged by impact, making it difficult to create oxide-based superconducting materials with excellent mechanical strength. In addition, these ceramic materials are made of high-purity ceramic materials to prevent impurities in the ceramic from diffusing into the superconducting layer and deteriorating the superconducting properties when forming an oxide superconducting layer on the surface. These high-purity ceramic materials are extremely expensive, and due to the manufacturing process, it is difficult to obtain large-area plates or long wire rods. There has been a problem in that the range in which base materials made of ceramics can be used is limited.

また、基材として金属を用い、その表面に超電導層を形
成する場合には、界面において基材の金属と酸化物超電
導体とが反応を起こして非超電導性の物質が生成され、
超電導特性が低下してしまう問題があった。また、金属
製の基材と超電導層の熱膨張率に格差があるために、そ
の製造時あるいは使用時の温度変化によって歪を生じ、
超電導特性の低下あるいは断線などを起こす問題があっ
た。
Furthermore, when a metal is used as a base material and a superconducting layer is formed on its surface, the metal of the base material and the oxide superconductor react at the interface, producing a non-superconducting substance.
There was a problem that the superconducting properties deteriorated. In addition, due to the difference in thermal expansion coefficient between the metal base material and the superconducting layer, distortion occurs due to temperature changes during manufacturing or use.
There were problems such as deterioration of superconducting properties or disconnection.

本発明は、上記課題に濫みてなされた乙ので、優れた超
電導特性を有し、かつ基材に対する超電導層の密着性が
良好で機械強度が高い酸化物系超電導材の製造方法の提
供を目的とずろ。
The present invention has been made in view of the above problems, and therefore aims to provide a method for manufacturing an oxide-based superconducting material that has excellent superconducting properties, good adhesion of a superconducting layer to a base material, and high mechanical strength. Tozuro.

[課題を解決するための手段」 上記課題解決の手段として、本□発明の酸化物系超電導
材は、少なくとも表面が金属からなる基材の表面に、酸
化物層が形成され、この酸化物層上にΔu、Pt、Ag
、Pd等の非酸化性金属からなる非酸化層が形成され、
この非酸化層上に酸化物超電導層が形成されてなるもの
である。
[Means for Solving the Problems] As a means for solving the above problems, the oxide-based superconducting material of the present invention has an oxide layer formed on the surface of a base material at least whose surface is made of metal, and the oxide layer Δu, Pt, Ag on top
, a non-oxidized layer made of a non-oxidized metal such as Pd is formed,
An oxide superconducting layer is formed on this non-oxidized layer.

「作用 」 上記基材の表面に、酸化物層と非酸化層と超電導層を積
層形成するので、非酸化層が基材あるいは酸化物層から
の不純物の拡散混入を防止する。
"Function" Since an oxide layer, a non-oxidized layer, and a superconducting layer are laminated on the surface of the base material, the non-oxidized layer prevents impurities from diffusing and mixing from the base material or the oxide layer.

また、超電導層と基材との間に酸化物層と非酸化層を形
成したので、熱変化によっておこる歪が緩和される。
Furthermore, since an oxide layer and a non-oxidized layer are formed between the superconducting layer and the base material, strain caused by thermal changes is alleviated.

「実施例」 第1図は本発明による酸化物系超電導材の一実施例を示
す図であって、符号1は超電導材である。
"Example" FIG. 1 is a diagram showing an example of an oxide-based superconducting material according to the present invention, and reference numeral 1 indicates a superconducting material.

この超電導材1は、金属製の板状の基材2上にMgOか
らなる酸化物層3が形成され、この酸化物層3上にAu
の非酸化層4が形成され、この非酸化層4上にY −B
 a−Cu−0系超電導体からなる超電導層5が形成さ
れてなるものである。
This superconducting material 1 has an oxide layer 3 made of MgO formed on a metal plate-shaped base material 2, and an Au
A non-oxidized layer 4 of Y-B is formed on this non-oxidized layer 4.
A superconducting layer 5 made of an a-Cu-0 based superconductor is formed.

上記基材2の金属材料としては、Ag%Cu。The metal material of the base material 2 is Ag%Cu.

Tis Tas Nbs NL Zrなどの耐熱性およ
び耐酸化性の良い金属や、ステンレス、ハステロイ、イ
ンコネル、ニクロム、Cu−N i合金などの耐熱・耐
酸化性合金が好適に使用される。
Metals with good heat resistance and oxidation resistance such as Tis Tas Nbs NL Zr, and heat and oxidation resistant alloys such as stainless steel, Hastelloy, Inconel, nichrome, and Cu-Ni alloy are preferably used.

また、上記酸化物層3および非酸化層4の厚さは、超電
導層5の膜厚等によって適宜設定されるが、例えば超電
導層5の膜厚を1μmとする場合には、酸化物層3およ
び非酸化層4を0.2〜2μm程度の膜厚とするのが好
ましい。
Further, the thicknesses of the oxide layer 3 and the non-oxidized layer 4 are appropriately set depending on the thickness of the superconducting layer 5, etc., but for example, when the thickness of the superconducting layer 5 is 1 μm, the thickness of the oxide layer 3 It is also preferable that the non-oxidized layer 4 has a thickness of about 0.2 to 2 μm.

この超電導材!を製造するには、まず、板状の基材2を
用意し、この基材2の表面に真空蒸着法、スパッタリン
グ法、分子線エピタキシー法、化学気相成長法、レーザ
PVD法などの成膜法を用い、MgOからなる酸化物層
3を形成する。次に、この酸化物層3上にAuからなる
非酸化層4を形成する。この非酸化層4を形成する方法
としては、真空蒸着法やスパッタリング法が好適に使用
される。次に、この非酸化層4上にY −B a−Cu
−0超電導体からなる超電導層5を形成する。非酸化層
4上に超電導層5を形成するには、真空蒸着法、スパッ
タリング法、分子線エピタキシー法、化学気相成長法、
レーザPVD法などの成膜法の他、Y −B a−Cu
−0超電導体粉末にエタノールなどの分散媒を加えてス
ラリー状の材料とし、この材料をスプレー塗装あるいは
基材1を材料中に浸漬して引き上げる操作によって基材
Iの非酸化層4上に材料を付着させた後、800〜10
00℃でI〜数十時間の熱処理を施して超電導層5を形
成する方法などが用いられる。上記Y −B a−Cu
−0超電導粉末あるいはスパッタリング法やレーザPV
D法などに使用されるY’ −B a−Cu−0超電導
体のターゲット材料を製造するには、例えばY、03粉
末とB a C03粉末とCuO粉末をY :Ba:C
u= 1 :2:3となるように均一に混合した混合粉
末を酸素含有雰囲気中、700〜1000℃で1〜数十
時間加熱した後、粉砕、圧粉成形、加熱の一連の処理を
1回以上繰り返し行って超電導体粉末とし、更にこの超
電導体粉末をバルク状に圧粉成形し、焼結することによ
ってターゲット材料を作成する方法が好適に用いられる
This superconducting material! To manufacture, first, a plate-shaped base material 2 is prepared, and a film is formed on the surface of this base material 2 by a method such as a vacuum evaporation method, a sputtering method, a molecular beam epitaxy method, a chemical vapor deposition method, or a laser PVD method. An oxide layer 3 made of MgO is formed using a method. Next, a non-oxidized layer 4 made of Au is formed on this oxide layer 3. As a method for forming this non-oxidized layer 4, a vacuum evaporation method or a sputtering method is suitably used. Next, on this non-oxidized layer 4, Y-Ba-Cu
A superconducting layer 5 made of -0 superconductor is formed. To form the superconducting layer 5 on the non-oxidized layer 4, a vacuum evaporation method, a sputtering method, a molecular beam epitaxy method, a chemical vapor deposition method,
In addition to film formation methods such as laser PVD, Y-B a-Cu
A dispersion medium such as ethanol is added to the -0 superconductor powder to form a slurry material, and this material is coated on the non-oxidized layer 4 of the base material I by spray painting or by immersing the base material 1 into the material and pulling it up. After attaching 800-10
A method of forming the superconducting layer 5 by performing heat treatment at 00° C. for I to several tens of hours is used. Above Y-B a-Cu
-0 superconducting powder or sputtering method or laser PV
To manufacture the target material of the Y'-B a-Cu-0 superconductor used in the D method, for example, Y,03 powder, B a C03 powder, and CuO powder are mixed into Y :Ba:C
A mixed powder uniformly mixed so that u=1:2:3 is heated at 700 to 1000°C for 1 to several tens of hours in an oxygen-containing atmosphere, and then subjected to a series of treatments of pulverization, compaction, and heating. Preferably used is a method in which the target material is created by repeating the process several times or more to obtain a superconductor powder, and then compacting the superconductor powder into a bulk shape and sintering it.

なお、スパッタリング法などの成膜法を用いて超電導層
5を形成した場合であっても、超電導層5形成後に必要
に応じて熱処理を施しても良い。
Note that even if the superconducting layer 5 is formed using a film forming method such as a sputtering method, heat treatment may be performed as necessary after the superconducting layer 5 is formed.

この熱処理は酸素含有雰囲気中、800〜1000℃で
1〜数十時間加熱した後、室温まで徐冷する加熱条件が
好ましい。
The preferred heating conditions for this heat treatment are heating at 800 to 1000° C. for 1 to several tens of hours in an oxygen-containing atmosphere, and then slowly cooling to room temperature.

以上の各操作によって、第1図に示す超電導材Iが製造
される。
Through each of the above operations, the superconducting material I shown in FIG. 1 is manufactured.

この超電導材lは、金属製の基It2上に、MgOから
なる酸化物層3が形成され、この酸化物層3上にAuか
らなる非酸化層4が形成され、この非酸化層4上にY 
−B a−Cu−0超電導体からなる超電導層5が形成
された構成なので、超電導層5中に基材2および酸化物
層3から不純物が拡散混入することがなく、高品質の超
電導層5を形成することができ、超電導材1の超電導特
性を向上させることができろ。
In this superconducting material 1, an oxide layer 3 made of MgO is formed on a metal base It2, a non-oxidized layer 4 made of Au is formed on this oxide layer 3, and a non-oxidized layer 4 made of Au is formed on this oxide layer 3. Y
Since the superconducting layer 5 made of -B a-Cu-0 superconductor is formed, impurities are not diffused and mixed into the superconducting layer 5 from the base material 2 and the oxide layer 3, and the superconducting layer 5 is of high quality. can be formed, and the superconducting properties of the superconducting material 1 can be improved.

また、基材2と超電導層5の間に、酸化物層3と、柔ら
かく酸化物との接着性の良いAuからなる非酸化層4を
介在させたことにより、基材2と超電導層5の熱膨張率
の格差による超電導層5への熱応力付加が緩和され、超
電導層5に生じるクラック等の不良を減少させることが
できる。
Furthermore, by interposing the oxide layer 3 and the non-oxidized layer 4 made of Au, which is soft and has good adhesion to oxides, between the base material 2 and the superconducting layer 5, Thermal stress applied to the superconducting layer 5 due to the difference in coefficient of thermal expansion is alleviated, and defects such as cracks occurring in the superconducting layer 5 can be reduced.

また、Auからなる非酸化層4と超電導層5の成分とが
反応して各々の層の界面に非超電導物質が生成されるこ
とがないので、非酸化層4を超電導層5の安定化材とし
て作用させることができる。
In addition, since the non-oxidized layer 4 made of Au and the components of the superconducting layer 5 do not react and a non-superconducting substance is not generated at the interface of each layer, the non-oxidized layer 4 is used as a stabilizing material for the superconducting layer 5. It can be made to act as

なお、先の実施例では、酸化物層3の材料としてMgO
を用いたが、酸化物層3の材料はこれに限定されること
なく、例えばYSZ1ヂタン酸ストロンチウム、チタン
酸バリウム、アルミナなどのセラミックス材料を用いて
も良く、また基け2に酸化処理を施し、その表面に酸化
皮膜を形成し、これを酸化物層3としても良い。
In addition, in the previous example, MgO was used as the material of the oxide layer 3.
However, the material of the oxide layer 3 is not limited to this, and for example, ceramic materials such as YSZ1 strontium ditanate, barium titanate, alumina, etc. may be used, or the base 2 may be subjected to an oxidation treatment. , an oxide film may be formed on the surface thereof, and this may be used as the oxide layer 3.

まfコ、先の実施例では、非酸化層4の材料としてAu
を用いたが、この非酸化層4の材料としてはAuに限定
されることなく、PL、Ag、Pdなどの貴金属の1種
あるいは2種以上を用いることができる。
In the previous embodiment, Au was used as the material for the non-oxidized layer 4.
However, the material of the non-oxidized layer 4 is not limited to Au, and one or more noble metals such as PL, Ag, and Pd can be used.

また、基材2の形状は板状に限定されることなく、線状
、管状、テープ状、柱状など種々の形状のものを用いる
ことができる。
Further, the shape of the base material 2 is not limited to a plate shape, and various shapes such as a linear shape, a tubular shape, a tape shape, and a columnar shape can be used.

また、先の実施例では超電導層5の材料としてY −B
 、a−Cu−0超電導体を用いたが、超電導層5の材
料はこれに限定されることなく、これ以外のA −B 
−Cu−0’(ただし、AはY、Sc、La、Yb、E
r。
In addition, in the previous embodiment, Y-B was used as the material for the superconducting layer 5.
, a-Cu-0 superconductor was used, but the material of the superconducting layer 5 is not limited to this, and other A-B
-Cu-0' (A is Y, Sc, La, Yb, E
r.

Eu、Ho、Dy等の周期律表IIIa族元素の!種以
上またはBiなどの周期律表vb族元素またはTIなど
の周期律表mb族元素の1種以上を示し、BはBe。
Group IIIa elements of the periodic table such as Eu, Ho, Dy, etc.! B represents one or more elements of group VB of the periodic table such as Bi or group MB of the periodic table such as TI, and B is Be.

Mg、Ca、Sr、Ba等の周期律表[1a族元素の1
種以上を示す)超電導体などの酸化物超電導体を用いて
も良い。なおY −B a−Cu−0以外の酸化物超電
導体としては、Bi+ Sr u Ca v Cu y
 OX(ただし、0.5≦u 、 0.2≦v、l≦y
である。)、T LB atc arc uzo xな
どである。
Periodic table of elements such as Mg, Ca, Sr, Ba [1 of group 1a elements]
An oxide superconductor such as a superconductor (indicating more than one species) may also be used. Note that as oxide superconductors other than Y-Ba-Cu-0, Bi+ Sru Cav Cu y
OX (however, 0.5≦u, 0.2≦v, l≦y
It is. ), T LB atc arc uzo x, etc.

(製造例) 厚さ1mmのハステロイ製の基板上に、マグネトロンス
パッタ法を用い、MgOからなる0、5μm厚の酸化物
層を形成した。次に、この酸化物層上に、マグネトロン
スパッタ法を用い、0.5μm厚のAu層を形成した。
(Manufacturing Example) An oxide layer made of MgO and having a thickness of 0.5 μm was formed on a Hastelloy substrate having a thickness of 1 mm using a magnetron sputtering method. Next, a 0.5 μm thick Au layer was formed on this oxide layer using magnetron sputtering.

一方、Y、03粉末と、BaCO3扮末と、CuO粉末
を、Y :Ba:Cu−1:2 :3となるように均一
に混合した混合粉末を大気中、900℃で12時間加熱
し、これを粉砕後、圧粉成形処理を行ってバルク状の成
形体とし、この成形体を酸素気流中、950℃で24時
間加熱してスパッタ用超電導ターゲツト材を作成した。
On the other hand, a mixed powder in which Y,03 powder, BaCO3 powder, and CuO powder were uniformly mixed at a ratio of Y:Ba:Cu-1:2:3 was heated at 900°C in the air for 12 hours. After pulverizing this, a powder molding process was performed to obtain a bulk shaped compact, and this compact was heated at 950° C. for 24 hours in an oxygen stream to prepare a superconducting target material for sputtering.

次に、上記ターゲツト材を用い、先の基板のAu層上に
、マグネトロンスパッタ法によって厚さ1μmの超電導
層を形成した。次いで、酸化物層とAu層と超電導層の
各層を積層形成した基板を酸素雰囲気中において、90
0℃で3時間加熱した後、室温まで徐冷する熱処理を施
した。以上の各操作により、第1図に示すものと同等構
成の超電導材(以下、実施例と言う)を得た。
Next, using the above target material, a 1 μm thick superconducting layer was formed on the Au layer of the substrate by magnetron sputtering. Next, the substrate on which the oxide layer, Au layer, and superconducting layer were laminated was heated for 90 minutes in an oxygen atmosphere.
After heating at 0° C. for 3 hours, a heat treatment of slowly cooling to room temperature was performed. Through the above operations, a superconducting material (hereinafter referred to as an example) having a structure equivalent to that shown in FIG. 1 was obtained.

なお、次に示す構成の比較例!および比較例2を作成し
、上記実施例との性能比較を行った。
In addition, the following is a comparative example of the configuration! Comparative Example 2 was also prepared, and the performance was compared with the above example.

上記実施例に用いたものと同様の基板上に、マグネトロ
ンスパッタ法を用いてMgOからなる厚さ0,5μmの
酸化物層を形成し、この酸化物層上に、マグネトロンス
パッタ法を用いてY −B a−Cu−0超電導体から
なる厚さ1μmの超電導層を形成し、比較例1とした。
An oxide layer of MgO with a thickness of 0.5 μm was formed on a substrate similar to that used in the above example using magnetron sputtering, and on this oxide layer, Y was formed using magnetron sputtering. A superconducting layer with a thickness of 1 μm made of -B a-Cu-0 superconductor was formed as Comparative Example 1.

また、上記実施例に用いたものと同様の基板上に、マグ
ネトロンスパッタ法を用い、厚さ0.5μmのAu層を
形成し、このAu層上に、マグネトロンスパッタ法を用
いてY −B a−Cu−0超電導体からなる厚さ1μ
mの超電導層を形成し、比較例2とした。
Further, on a substrate similar to that used in the above example, an Au layer with a thickness of 0.5 μm was formed using the magnetron sputtering method, and on this Au layer, Y-B a was formed using the magnetron sputtering method. -Thickness 1μ made of Cu-0 superconductor
Comparative Example 2 was prepared by forming a superconducting layer of m.

そして、実施例および比較例1.2の各々の臨界温度(
Tc)、臨界電流密度(Jc)を測定した。結果を表1
に示す。
Then, the critical temperature (
Tc) and critical current density (Jc) were measured. Table 1 shows the results.
Shown below.

表  1 (なお、Tcはゼロ抵抗時の温度) 表1に示すように、本発明による超電導材は、優れた超
電導特性が得られることが確認された。
Table 1 (Tc is the temperature at zero resistance) As shown in Table 1, it was confirmed that the superconducting material according to the present invention has excellent superconducting properties.

また、上記実施例および比較例1.2の各々の超電導層
をAES(オージェ電子分光)法により分析し、不純物
の拡散状態を調べた結果、比較例1の超電導層中には酸
化物層中のMgが拡散混合しており、また比較例2の超
電導層中には基板中のNiがAu層を通して拡散混合さ
れているのに対し、実施例の超電導材中にはMgやNi
の拡散混入は認められなかった。
In addition, as a result of analyzing each superconducting layer of the above Example and Comparative Example 1.2 by AES (Auger electron spectroscopy) and investigating the diffusion state of impurities, it was found that the superconducting layer of Comparative Example 1 contained an oxide layer. In addition, in the superconducting layer of Comparative Example 2, Ni in the substrate was diffused and mixed through the Au layer, whereas in the superconducting material of the example, Mg and Ni
No diffuse contamination was observed.

「発明の効果」 以上説明したように本発明による酸化物系超電導材は、
少なくとも表面が金属からなる基材の表面に、酸化物層
が形成され、この酸化物層上にAu、Pt、Ag、Pd
等の非酸化性金属からなる非酸化層が形成され、この非
酸化層上に酸化物超電導層が形成された構成なので、超
電導層中に基材および酸化物層から不純物が拡散混入す
ることがなく、高品質の超電導層を形成することができ
、超電導材の超電導特性を向上させることができる。
"Effects of the Invention" As explained above, the oxide-based superconducting material according to the present invention has
An oxide layer is formed on the surface of the base material, at least the surface of which is made of metal, and on this oxide layer Au, Pt, Ag, Pd
Since the structure is such that a non-oxidized layer made of a non-oxidized metal such as oxide is formed, and an oxide superconducting layer is formed on this non-oxidized layer, impurities cannot diffuse into the superconducting layer from the base material and the oxide layer. Therefore, a high-quality superconducting layer can be formed, and the superconducting properties of the superconducting material can be improved.

また、基材と超電導層の間に酸化物層および非酸化層を
介在させたことにより、基材と超電導層の熱膨張率の格
差による超電導層への熱応力付加が緩和され、超電導層
に生じるクラック等の不良を減少させることができる。
In addition, by interposing an oxide layer and a non-oxidized layer between the base material and the superconducting layer, the thermal stress applied to the superconducting layer due to the difference in thermal expansion coefficient between the base material and the superconducting layer is alleviated. Defects such as cracks that occur can be reduced.

また、Auなどの非酸化性金属からなる非酸化層は、超
電導層の成分との反応性がなく、超電導層との界面に非
超電導物質が生成することがないので、非酸化層を超電
導層の安定化材として作用させることができる。
In addition, a non-oxidized layer made of a non-oxidized metal such as Au has no reactivity with the components of the superconducting layer, and no non-superconducting substance is generated at the interface with the superconducting layer. It can act as a stabilizing agent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図であって、超電導材
の断面図である。 1・・・超電導材、2・・・基材、3・・・酸化物層、
4・・・非酸化層、5・・・超電導層。
FIG. 1 is a diagram showing one embodiment of the present invention, and is a sectional view of a superconducting material. DESCRIPTION OF SYMBOLS 1... Superconducting material, 2... Base material, 3... Oxide layer,
4... Non-oxidized layer, 5... Superconducting layer.

Claims (1)

【特許請求の範囲】[Claims]  少なくとも表面が金属からなる基材の表面に、酸化物
層が形成され、この酸化物層上にAu、Pt、Ag、P
d等の非酸化性金属からなる非酸化層が形成され、この
非酸化層上に酸化物超電導層が形成されてなることを特
徴とする酸化物系超電導材。
An oxide layer is formed on the surface of the base material, at least the surface of which is made of metal, and Au, Pt, Ag, P
An oxide-based superconducting material characterized in that a non-oxidized layer made of a non-oxidizing metal such as d is formed, and an oxide superconducting layer is formed on this non-oxidized layer.
JP63047217A 1988-02-29 1988-02-29 Oxide superconducting material Expired - Fee Related JP2643972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047217A JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047217A JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01220872A true JPH01220872A (en) 1989-09-04
JP2643972B2 JP2643972B2 (en) 1997-08-25

Family

ID=12769002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047217A Expired - Fee Related JP2643972B2 (en) 1988-02-29 1988-02-29 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2643972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202305A (en) * 1989-04-17 1993-04-13 Ngk Insulators, Ltd. Superconducting structure for magnetic shielding
EP1271666A2 (en) * 2001-06-22 2003-01-02 Fujikura Ltd. Oxide superconductor layer and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305574A (en) * 1987-06-06 1988-12-13 Chichibu Cement Co Ltd Substrate for superconductor
JPS6450580A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Superconductor substrate and manufacture thereof
JPH01206675A (en) * 1988-02-15 1989-08-18 Matsushita Electric Ind Co Ltd Superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305574A (en) * 1987-06-06 1988-12-13 Chichibu Cement Co Ltd Substrate for superconductor
JPS6450580A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Superconductor substrate and manufacture thereof
JPH01206675A (en) * 1988-02-15 1989-08-18 Matsushita Electric Ind Co Ltd Superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202305A (en) * 1989-04-17 1993-04-13 Ngk Insulators, Ltd. Superconducting structure for magnetic shielding
EP1271666A2 (en) * 2001-06-22 2003-01-02 Fujikura Ltd. Oxide superconductor layer and its production method
EP1271666A3 (en) * 2001-06-22 2006-01-25 Fujikura Ltd. Oxide superconductor layer and its production method

Also Published As

Publication number Publication date
JP2643972B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR970005157B1 (en) Oxide superconductor shaped body and method of manufacturing
EP0292959B1 (en) Superconducting member
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
US7432229B2 (en) Superconductors on iridium substrates and buffer layers
JPH01220872A (en) Oxide base superconductive material
EP0324220A1 (en) Superconducting thin films
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2590142B2 (en) Superconductor
US5104850A (en) Preparation of high temperature superconducting coated wires by dipping and post annealing
Goretta et al. Fabrication of high-Tc superconductors
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH02183915A (en) Oxide superconducting compact
JP2721322B2 (en) Oxide superconducting compact
JPH01111718A (en) Process for forming superconductive thin film
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2703227B2 (en) Superconductor device
Matthiesen et al. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH01125878A (en) Thin film multilayer superconductor
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JP2891365B2 (en) Manufacturing method of ceramic superconductor
Provenzano et al. Preliminary studies for the development of superconducting composite wires
JPH02217306A (en) Production of oxide superconductor
JP2840475B2 (en) Method for producing oxide superconducting thin film
JPH0227622A (en) Manufacture of superconductive filament

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees