JPH01206675A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH01206675A
JPH01206675A JP63032240A JP3224088A JPH01206675A JP H01206675 A JPH01206675 A JP H01206675A JP 63032240 A JP63032240 A JP 63032240A JP 3224088 A JP3224088 A JP 3224088A JP H01206675 A JPH01206675 A JP H01206675A
Authority
JP
Japan
Prior art keywords
film
superconductor
base body
compound film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63032240A
Other languages
Japanese (ja)
Other versions
JP2899285B2 (en
Inventor
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Hiroshi Ichikawa
洋 市川
Shinichiro Hatta
八田 真一郎
Kumiko Hirochi
広地 久美子
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63032240A priority Critical patent/JP2899285B2/en
Publication of JPH01206675A publication Critical patent/JPH01206675A/en
Application granted granted Critical
Publication of JP2899285B2 publication Critical patent/JP2899285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable the formation of a highly accurate superconductor at a low temperature by a method wherein a buffering film is formed on a substrate, and a quadruple compound film composed of Bi-Sr-Ca-Cu-O as a main component is made to adhere thereon to form the superconductor of a layered structure. CONSTITUTION:A quadruple compound film 12 of Bi-Sr-Ca-Cu-O is formed on a base body 11 through a method such as a sputtering method, and a buffer layer 15 is formed at a interface between the base body 11 and the compound film 12. If the quadruple compound film 12 is formed directly on the base body 11, a component element of the base body 11 of semiconductor is diffused into the quadruple compound film 12 to make the film 12 deteriorate in a superconductive property, therefore the buffer film 15 is provided to prevent the deterioration of the film 12. The quadruple compound film 12 is formed into a thin film by depositing a superconductive material on the base body after it is dissolved into supermicro particles such as to be in an atomic state, so that a formed superconductor is substantially uniform in composition and can be formed at a low temperature if it contains bismuth, and furthermore a very accurate superconductor can be obtained through the buffer layer 15. By these processes, an excellent superconductor can be formed into a thin film, so that the superconductor excellent in accuracy can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体に関するものである。特に化合物薄膜
超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to superconductors. In particular, it relates to compound thin film superconductors.

従来の技術 高温超電導体として、A1’5型2元系化合物として窒
化ニオブ(NbN)やゲルマニウムニオブ(Nb3.G
e)などが知られていたが、これらの材料の超電導転移
温度はたかだか24°にであった。
Conventional technology As high temperature superconductors, niobium nitride (NbN) and germanium niobium (Nb3.G) are used as A1'5 type binary compounds.
e), etc., but the superconducting transition temperature of these materials was at most 24°.

一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され、Ba−La−Cu−0系の転移温度9
0に級高温超電導体が提案された[J、  (+、  
Bendorz and K、A、Muller、  
ツアイト シュリフト フェア フィジーク(Zets
hrift f urphysikB)−Cc+nde
nsed Matter 64.189−193 (1
986) ]。
On the other hand, perovskite-based ternary compounds are expected to have an even higher transition temperature, with the Ba-La-Cu-0 system having a transition temperature of 9
0 class high temperature superconductors were proposed [J, (+,
Bendorz and K.A. Muller;
Zets Schrift Fair Physique
hrift f urphysikB)-Cc+nde
nsed Matter 64.189-193 (1
986) ].

さらに、B i −Sr−Ca−Cu−0系の材料が1
00に以上の転移温度を示すことも発見された。
Furthermore, B i -Sr-Ca-Cu-0 type material is 1
It has also been discovered that it exhibits a transition temperature above 0.00.

この種の材料の超電導機構の詳細は明らかではないが、
転移温度が室温以上に高くなる可能性があり、高温超電
導体として従来の2元系化合物より、より有望な特性が
期待される。
Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature can be higher than room temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds.

発明が解決しよとする課題 しかしながら、Bj−Sr−Cu−0系の材料は、現在
の技術では焼結という過程でしか形成てきないため、セ
ラミックの粉末あるいはブロックの形状でしか得られな
い。一方、この種の材料を実用化する場合、薄膜化ある
いは線状化が強く要望されていが、従来の技術では、い
ずれも非常に困難とされている。
Problems to be Solved by the Invention However, with the current technology, Bj-Sr-Cu-0 based materials can only be formed through the process of sintering, and therefore can only be obtained in the form of ceramic powder or blocks. On the other hand, when putting this type of material into practical use, there is a strong demand for thinning or linearization, but both are extremely difficult to achieve with conventional techniques.

本発明者らは、この種の材料を例えばスパッタリング法
等の薄膜化手法を用いると、薄膜状の高温超電導体が形
成されることを発見し、これにもとづいて新規な超電導
体構成を発明した。
The present inventors discovered that a thin film-like high-temperature superconductor can be formed by using a thin film technique such as sputtering for this kind of material, and based on this, invented a new superconductor structure. .

課題を解決するための手段 本発明の超電導体は、基体上に緩衝膜を形成し、この上
に主成分がB1−Sr−Ca−Cu −Oの4元化合物
被膜を付着させた層状構造を特徴としている。
Means for Solving the Problems The superconductor of the present invention has a layered structure in which a buffer film is formed on a substrate, and a quaternary compound film whose main component is B1-Sr-Ca-Cu-O is adhered thereon. It is a feature.

作用 本発明にかかる超電導体は、超電導体を上記化合物薄膜
として形成している所に大きな特色がある。薄膜化は超
電導体の素材を原子状態という極微粒子に分解してから
基体上に堆積さぜるから、形成された超電導体の組成は
本質的に、従来の焼結体に比べて均質であるとともに、
ヒスマスを含むと低温形成が可能となり、さらに緩衝膜
にて非常に高精度の超電導体が本発明で実現される。
Function The superconductor according to the present invention has a major feature in that the superconductor is formed as a thin film of the above compound. Thin film formation involves decomposing the superconductor material into ultrafine particles in the atomic state before depositing them on the substrate, so the composition of the formed superconductor is essentially homogeneous compared to conventional sintered bodies. With,
Including hismuth enables low-temperature formation, and furthermore, the present invention realizes a superconductor with very high precision using a buffer film.

実施例 本発明を図面とともに説明する。Example The present invention will be explained with reference to the drawings.

第1図において、B i −Sr−Ca−Cu−0の4
元化合物被膜12は基体11上に例えばスパッタリング
法で形成する。この場合、基体11は、超電導を示す3
元化合物被膜12の保持を目的としている。さらに、こ
の基体11と化合物被膜12との界面に緩衝層15が設
けられているのが本発明の大きな特徴である。したがっ
て、本発明の超電導体は本質的に層状構造からなってい
る。
In FIG. 1, 4 of B i -Sr-Ca-Cu-0
The original compound film 12 is formed on the substrate 11 by, for example, a sputtering method. In this case, the substrate 11 is 3
The purpose is to retain the original compound film 12. Furthermore, a major feature of the present invention is that a buffer layer 15 is provided at the interface between the substrate 11 and the compound coating 12. The superconductor of the invention therefore essentially consists of a layered structure.

第1図の基体11として、シリコン、ゲルマニウム、カ
リウム砒素、窒化カリウム、カリウムリン、インジウム
リン、インジウム砒素、硫化亜鉛、セレン化亜鉛、硫化
カドミウムなどの半導体を用いると超電導と半導体の機
能を集積化した、新機能性素子が形成される。本発明者
らは基体1O上に直接上記4元化合物被膜12を形成す
ると、これらの半導体の構成元素がしばしば4元化合物
被膜12に拡散し、4元化合物被膜の超電導特性を劣化
させることを発見した。したがって本発明は、これらの
特性の劣化を防止するため、緩衝膜を形成することを見
い出したものである。
When a semiconductor such as silicon, germanium, potassium arsenide, potassium nitride, potassium phosphide, indium phosphide, indium arsenide, zinc sulfide, zinc selenide, or cadmium sulfide is used as the substrate 11 in FIG. 1, superconducting and semiconductor functions can be integrated. A new functional element is formed. The present inventors discovered that when the quaternary compound film 12 is formed directly on the substrate 1O, these semiconductor constituent elements often diffuse into the quaternary compound film 12, degrading the superconducting properties of the quaternary compound film. did. Therefore, the present invention has discovered that a buffer film is formed in order to prevent deterioration of these characteristics.

さらに、結晶性ま高い4元化合物被膜12を基体11の
表面13に形成させめためには、最適の緩衝膜があるこ
とを見い出した。
Furthermore, it has been found that there is an optimal buffer film for forming a highly crystalline quaternary compound film 12 on the surface 13 of the substrate 11.

すなわち、緩衝膜15として、主成分が白金、金、銀、
ロジウム等の金属、あるいはこれらの合金からなる膜を
用いると良好な超電導特性が得られることを本発明者ら
は確認した。
That is, the main components of the buffer film 15 are platinum, gold, silver,
The present inventors have confirmed that good superconducting properties can be obtained by using a film made of a metal such as rhodium or an alloy thereof.

さらに、本発明者らは、緩衝膜として、酸化マグネシウ
ム、スピネル、チタン酸ストロンチウム、酸化ジルコニ
ウム、あるいはBaF2、CaF2、SrF2等のCa
F2型材料、あるいはZnS、ZnO,Zn5e、Cd
s等のZnO型材料、あるいはBaTio3.CaTi
Os、CaTiO2,PdZr○s、PbHfO3等の
ベロブスカイト構造をもつ材料の結晶性薄膜を用いても
良好な超電導特性が得られることを確認した。
Furthermore, the present inventors have used magnesium oxide, spinel, strontium titanate, zirconium oxide, or Ca such as BaF2, CaF2, SrF2, etc. as a buffer film.
F2 type material or ZnS, ZnO, Zn5e, Cd
ZnO type materials such as BaTio3. CaTi
It has been confirmed that good superconducting properties can be obtained even when using a crystalline thin film of a material having a berovskite structure such as Os, CaTiO2, PdZr○s, PbHfO3, etc.

さらに緩衝膜を、アルミナ、酸化マグネシウム、酸化ジ
ルコニウム、ステアタイト、ホルステライト、ベリリア
、スピネル等の磁器で構成した場合、あるいは石英、高
硅酸ガラス、硼硅酸ガラス、ソーダガラス、酸化アルミ
ニウムガラス、ジルコニアガラス、シリコンナイトライ
ドガラス、シリコンオキシナイトライドガラス膜に形成
しても、良好な超電導特性が得られることを本発明者ら
は確認した。
Furthermore, when the buffer film is composed of porcelain such as alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia, or spinel, or quartz, high silicate glass, borosilicate glass, soda glass, aluminum oxide glass, The present inventors have confirmed that good superconducting properties can be obtained even when the film is formed on zirconia glass, silicon nitride glass, or silicon oxynitride glass.

ここで、これら緩衝膜を形成する基体11としては、シ
リコン、ゲルマニウム、ガリウム砒素、窒化ガリウム、
ガリウムリン、インジウムリン、インジウム砒素、硫化
亜鉛、セレン化亜鉛あるいは硫化カドミウムの単結晶を
使用し、良好な結果を得たが、結晶性の薄膜を、これら
単結晶基体11上に形成すると結晶性の良い緩衝層15
が得られることを発明者らは確認した。
Here, as the substrate 11 forming these buffer films, silicon, germanium, gallium arsenide, gallium nitride,
Good results were obtained using single crystals of gallium phosphide, indium phosphide, indium arsenide, zinc sulfide, zinc selenide, or cadmium sulfide, but when a crystalline thin film is formed on these single crystal substrates 11, crystallinity Good buffer layer 15
The inventors confirmed that this can be obtained.

さらに、本発明者らは、第2図に示すような、少なぐと
もA層、B層を順次積層した緩衝層15を形成し、この
多層緩衝層で基板表面13を被覆した、シリコン、ゲル
マニウム、ガリウム砒素、窒化ガリウム、ガリウムリン
、インジウムリン、インジウム砒素、硫化亜鉛、セレン
化亜鉛、硫化カドミウム等の基体11を用いると、さら
に良好な超電導材料が得られることを確認した。ここに
、A層、B層は石英、酸化シリコン、高硅酸ガラス、硼
硅酸ガラスなどのガラス層、弗化カルシウム、弗化バリ
ウム、弗化ストロンチウムなどのCaFz型結晶層、白
金、金、銀、などの金属層、酸化ジルコニウム、酸化ア
ルミニウム、酸化マグネシウム、などの誘電体層のうち
の2種の組み合わせにより得られる。
Further, the present inventors formed a buffer layer 15 in which at least layers A and B were sequentially laminated as shown in FIG. 2, and covered the substrate surface 13 with this multilayer buffer layer. It has been confirmed that an even better superconducting material can be obtained by using a substrate 11 of , gallium arsenide, gallium nitride, gallium phosphide, indium phosphide, indium arsenide, zinc sulfide, zinc selenide, cadmium sulfide, or the like. Here, the A layer and B layer are glass layers such as quartz, silicon oxide, high silicate glass, and borosilicate glass, CaFz type crystal layers such as calcium fluoride, barium fluoride, and strontium fluoride, platinum, gold, It is obtained by a combination of two of a metal layer such as silver, and a dielectric layer such as zirconium oxide, aluminum oxide, magnesium oxide, etc.

以下本発明の内容をさらに深(理解させるために、さら
に具体的な具体実施例を委す。
In order to provide a deeper understanding of the content of the present invention, more specific examples will be presented below.

(具体実施例 1) ガリウム砒素単結晶面を基体11として用い、高周波プ
レナーマグネトロンスパッタにより、厚さ0.1μmの
白金薄膜からなる緩衝層15を設け、さらにBi−(S
r/Ca)2−Cu2−0被膜12を付着させ層状構造
10を形成した。この場合、Arガスの圧力は0.5P
a、スパッタリング電力IL’50W、スパッタリング
時間10時間、被膜の膜厚6μm、基体温度500 ’
Cてあった。形成された層状構造をさらに空気中で80
0℃、1時間熱処理した。
(Specific Example 1) Using a gallium arsenide single crystal plane as the substrate 11, a buffer layer 15 made of a platinum thin film with a thickness of 0.1 μm was provided by high-frequency planar magnetron sputtering, and a Bi-(S)
r/Ca)2-Cu2-0 coating 12 was deposited to form layered structure 10. In this case, the pressure of Ar gas is 0.5P
a, sputtering power IL'50 W, sputtering time 10 hours, film thickness 6 μm, substrate temperature 500'
There was C. The formed layered structure is further heated in air for 80 minutes.
Heat treatment was performed at 0°C for 1 hour.

被膜の室温抵抗率は100μΩcm、超電導転移温度8
0にであった。
The room temperature resistivity of the film is 100 μΩcm, and the superconducting transition temperature is 8.
It was 0.

(具体実施例 2) ガリウム砒素単結晶面を基体11として用い、高周波プ
レナーマグネトロンスパッタにより、厚さ1μmの石英
薄膜と厚さ0.1μmの白金薄膜を順次形成し緩衝層1
5のA層、B層を設け、さらにBi  (Sr/Ca)
2 Cu20被膜12を付着させ゛層状構造10を形成
した。この場合、Arガスの圧力はQ、5Pa、スパッ
タリング電力150W、スパッタリング時間10時間、
被膜の膜厚6μm、基体温度500℃であった。形成さ
れた層状構造をさらに空気中で800℃、1時間熱処理
した。
(Specific Example 2) Using a gallium arsenide single crystal plane as the substrate 11, a 1 μm thick quartz thin film and a 0.1 μm thick platinum thin film were sequentially formed by high frequency planar magnetron sputtering to form the buffer layer 1.
5 A layer and B layer are provided, and Bi (Sr/Ca)
2 A Cu20 coating 12 was deposited to form a layered structure 10. In this case, the Ar gas pressure is Q, 5 Pa, sputtering power 150 W, sputtering time 10 hours,
The film thickness of the film was 6 μm, and the substrate temperature was 500°C. The formed layered structure was further heat-treated in air at 800° C. for 1 hour.

被膜の室温抵抗率は100μΩam 、超電導転移a)
2 Cu20の構成元素の組成比の変化による超電導特
性の変化の詳細は明らかではない。
The room temperature resistivity of the film is 100 μΩam, superconducting transition a)
The details of changes in superconducting properties due to changes in the composition ratio of the constituent elements of 2 Cu20 are not clear.

ただB i、S r/Ca、02の比率をかえても、C
aを含むかぎり超電導転移温度が変化する程度で本質的
な発明の層状構造の特性を変えるものではない。
However, even if the ratios of B i, S r/Ca, and 02 are changed, C
As long as a is included, the essential characteristics of the layered structure of the invention will not change, even if the superconducting transition temperature changes.

とりわけ、本発明にかかる超電導体は、良質な超電導体
を低温で薄膜化できる所に大きな特色がある。すなわち
、薄膜化には、従来の高温超電導材料では、600℃〜
900℃の基板温度が必要であった。しかしBiを含む
材料は本質的に、従来の焼結体に比べて低温化し得る。
In particular, the superconductor according to the present invention has a great feature in that a high-quality superconductor can be formed into a thin film at low temperatures. In other words, conventional high-temperature superconducting materials require a temperature of 600°C to
A substrate temperature of 900°C was required. However, Bi-containing materials can inherently be cooled compared to conventional sintered bodies.

さらに、すでに説明したごと(、本発明の低温合成の特
長を用いてSiあるいはGaAsなとのデバイスとの集
積化が可能であるとともに、ジョセフソン素子など各種
の超電導デバイスの要素材料として実用される。特にこ
の種の化合物超電導体の転移温度が室温になる可能性も
あり、従来の実用の範囲は広(、本発明の工業的価値は
高い。
Furthermore, as already explained (using the features of low-temperature synthesis of the present invention, it is possible to integrate devices such as Si or GaAs), and it can also be used as an elemental material for various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide (and the industrial value of the present invention is high).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の超電導体の基体構
成図である。 11・・・基体、12・・・3元化合物被膜。 15・・・緩衝層。 代理人の氏名 弁理士 中尾敏男 ほか1名手続補正書 1事件の表示 昭和63年特許願第 32240  号2発明の名称 超電導体 3補正をする者 事件との関係      特  許   出   願 
 人住 所 大阪府門真市大字門真1006番地名 称
 (582)松下電器産業株式会社代表者    谷 
 井  昭  雄 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 5補正の対象 2、特許請求の範囲 (1)緩衝膜により少なくとも一表面を被覆した基体の
前記緩衝膜上に、主体分がB1−Sr−Ca−Cu−0
被膜を付着させた事を特徴とする超電導体。 (2)少なくとも第1と第2の緩衝膜を順次積層した多
層膜で表面を被覆した、シリコン、ゲルマニウム、ガリ
ウム砒素、窒化ガリウム、ガリウムリン、インジウムリ
ン、インジウム砒素、硫化亜鉛、硫化カドミウムのいず
れかよりなる基体を用いたことを特徴とする特許請求の
範囲第1項記載の超電導体。
FIGS. 1 and 2 are diagrams showing the structure of a superconductor substrate according to an embodiment of the present invention. 11...Substrate, 12...Ternary compound coating. 15...Buffer layer. Name of agent: Patent attorney Toshio Nakao and one other person Written amendment 1 Indication of the case 1988 Patent Application No. 32240 2 Name of the invention Superconductor 3 Person making the amendment Relationship with the case Patent application
Address 1006 Oaza Kadoma, Kadoma City, Osaka Name (582) Matsushita Electric Industrial Co., Ltd. Representative Tani
Akio I 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 5 Subject of Amendment 2, Claims (1) Said buffering of a substrate having at least one surface covered with a buffering film On the film, the main component is B1-Sr-Ca-Cu-0
A superconductor characterized by having a film attached to it. (2) Any of silicon, germanium, gallium arsenide, gallium nitride, gallium phosphide, indium phosphide, indium arsenide, zinc sulfide, and cadmium sulfide, the surface of which is coated with a multilayer film in which at least first and second buffer films are sequentially laminated. 2. The superconductor according to claim 1, characterized in that the superconductor uses a substrate made of .

Claims (2)

【特許請求の範囲】[Claims] (1)緩衝膜により少なくとも一表面を被覆した基体の
前記緩衝膜上に、主体分がBa−Sr−Ca−Cu−O
被膜を付着させた事を特徴とする超電導体。
(1) On the buffer film of the substrate whose at least one surface is covered with a buffer film, the main portion is Ba-Sr-Ca-Cu-O.
A superconductor characterized by having a film attached to it.
(2)少なくとも第1と第2の緩衝膜を順次積層した多
層膜で表面を被覆した、シリコン、ゲルマニウム、ガリ
ウム砒素、窒化ガリウム、ガリウムリン、インジウムリ
ン、インジウム砒素、硫化亜鉛、硫化カドミウムのいず
れかよりなる基体を用いたことを特徴とする特許請求の
範囲第1項記載の超電導体。
(2) Any of silicon, germanium, gallium arsenide, gallium nitride, gallium phosphide, indium phosphide, indium arsenide, zinc sulfide, and cadmium sulfide, the surface of which is coated with a multilayer film in which at least first and second buffer films are sequentially laminated. 2. The superconductor according to claim 1, characterized in that the superconductor uses a substrate made of .
JP63032240A 1988-02-15 1988-02-15 Superconductor Expired - Fee Related JP2899285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032240A JP2899285B2 (en) 1988-02-15 1988-02-15 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032240A JP2899285B2 (en) 1988-02-15 1988-02-15 Superconductor

Publications (2)

Publication Number Publication Date
JPH01206675A true JPH01206675A (en) 1989-08-18
JP2899285B2 JP2899285B2 (en) 1999-06-02

Family

ID=12353470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032240A Expired - Fee Related JP2899285B2 (en) 1988-02-15 1988-02-15 Superconductor

Country Status (1)

Country Link
JP (1) JP2899285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215722A (en) * 1988-02-25 1989-08-29 Sumitomo Electric Ind Ltd Superconducting material and compound thereof
JPH01220872A (en) * 1988-02-29 1989-09-04 Fujikura Ltd Oxide base superconductive material
US5629269A (en) * 1989-01-24 1997-05-13 Fujitsu Limited Process for forming oxide superconducting films with a plurality of metal buffer layers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT *
IEEE TRANS.ON MAGNETICS *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215722A (en) * 1988-02-25 1989-08-29 Sumitomo Electric Ind Ltd Superconducting material and compound thereof
JPH01220872A (en) * 1988-02-29 1989-09-04 Fujikura Ltd Oxide base superconductive material
US5629269A (en) * 1989-01-24 1997-05-13 Fujitsu Limited Process for forming oxide superconducting films with a plurality of metal buffer layers

Also Published As

Publication number Publication date
JP2899285B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0301525B2 (en) Superconductor structure
JPH02250218A (en) Conductive products and those processing method
JPH01206675A (en) Superconductor
JPH01286920A (en) Superconductor
JP4139855B2 (en) Oxide high-temperature superconductor and method for producing the same
JP2501620B2 (en) Preparation method of superconducting thin film
JPH0358488A (en) Planar josephson element and manufacturing method of the same
JP3096050B2 (en) Method for manufacturing semiconductor device
JP2506798B2 (en) Superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH07106896B2 (en) Superconductor
JP2821885B2 (en) Superconducting thin film forming method
JPH02137724A (en) Superconducting thin film
JPS63274018A (en) Structure of superconductor and its manufacture
JPH01107419A (en) Superconductor
JPH0375204A (en) Production of oxide superconductive film pattern
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2976427B2 (en) Method of manufacturing Josephson device
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPS63274190A (en) Superconducting thin film
JPH02114409A (en) Superconductor
JPH02311396A (en) Thin-film superconductor and its production
JPH0818837B2 (en) Sputtering target and method for manufacturing superconducting thin film
JPH01130420A (en) Ceramic supercondoctor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees