JPH01111718A - Process for forming superconductive thin film - Google Patents

Process for forming superconductive thin film

Info

Publication number
JPH01111718A
JPH01111718A JP62268601A JP26860187A JPH01111718A JP H01111718 A JPH01111718 A JP H01111718A JP 62268601 A JP62268601 A JP 62268601A JP 26860187 A JP26860187 A JP 26860187A JP H01111718 A JPH01111718 A JP H01111718A
Authority
JP
Japan
Prior art keywords
thin film
forming
film
rare earth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268601A
Other languages
Japanese (ja)
Inventor
Yutaka Taguchi
豊 田口
Kazuo Eda
江田 和生
Tetsuji Miwa
哲司 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62268601A priority Critical patent/JPH01111718A/en
Publication of JPH01111718A publication Critical patent/JPH01111718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a superconductive thin film causing no reaction with a substrate material by forming a ZrO2 film on a semiconductor substrate by sputtering, forming a thin film of a rare earth metal-alkali earth metal-Cu oxides thereon, and heat-treating in an atmosphere contg. O2. CONSTITUTION:A substrate comprising a IV group element semiconductor such as Si substrate is used for a substrate and ZrO2 is sputtered as buffer film. Then, a thin film of the oxides described in PURPOSE is formed by sputtering on said ZrO2 buffer film using powder of Y-Ba-Cu oxides as target. Both sputtering processes are performed by magnetron sputtering process, and the atmosphere gas is a reactive atmosphere comprising Ar+O2(10%). Obtd. thin film is heat-treated in O2 atmosphere at, for example, 920 deg.C for 1hr to obtain thus a target superconductive thin film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集積回路等の配線に用いる超電導薄膜の形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a superconducting thin film used for wiring of integrated circuits and the like.

従来の技術 従来集積回路等の配線にはAu、Al、Cu等がもちい
られ、超電導薄膜は殆ど用いられることはなかった。こ
れは従来の超電導薄膜(例えばNb、Nb、Ge等)が
液体ヘリウムで冷却しなければ超電導状態とならず冷却
コストが非常に高かったためである。ところが液体窒素
温度で超電導状態となる希土類酸化物超電導体の発見に
より配線材料として超電導薄膜を利用できるようになっ
た。
2. Description of the Related Art Conventionally, materials such as Au, Al, and Cu have been used for wiring in integrated circuits, and superconducting thin films have rarely been used. This is because conventional superconducting thin films (for example, Nb, Nb, Ge, etc.) cannot become superconducting unless cooled with liquid helium, and the cooling cost is extremely high. However, the discovery of rare earth oxide superconductors that become superconducting at liquid nitrogen temperatures has made it possible to use superconducting thin films as wiring materials.

発明が解決しようとする問題点 しかしながらこの希土類酸化物超電導体は薄膜形成時も
しくは薄膜形成後に酸素を有する雰囲気中にて600〜
950℃で熱処理しなければ超電mTR膜とはならずこ
のような高温にすることは超電導薄膜と基板とが反応し
良好な超電導薄膜が形成できない。また半導体基板表面
が酸化し半導体基板表面上の能動素子が損傷を受けるな
どの問題があった。このことがとくに集積回路の配線に
この希土類酸化物超電導体を用いることができない大き
な理由となっていた。
Problems to be Solved by the Invention However, this rare earth oxide superconductor can be used in an atmosphere containing oxygen during or after the formation of a thin film.
A superconducting mTR film cannot be obtained unless it is heat-treated at 950° C. At such a high temperature, the superconducting thin film and the substrate react, and a good superconducting thin film cannot be formed. Further, there is a problem that the surface of the semiconductor substrate is oxidized and active elements on the surface of the semiconductor substrate are damaged. This has been a major reason why this rare earth oxide superconductor cannot be used particularly for wiring in integrated circuits.

本発明はこのような欠点を解消するためのもので希土類
酸化物超電導体と酸素を有する雰囲気中での熱処理によ
り反応する半導体基板上に希土類酸化物超電導体を形成
することを目的とする。
The present invention is intended to eliminate such drawbacks, and aims to form a rare earth oxide superconductor on a semiconductor substrate that reacts with the rare earth oxide superconductor by heat treatment in an atmosphere containing oxygen.

問題点を解決するための手段 上記問題点を解決するために本発明の希土類酸化物超電
導体形成方法は半導体基板上に酸化ジルコニウム膜をス
パッタリング法で形成しそののちに希土類酸化物超電導
体を形成するものである。
Means for Solving the Problems In order to solve the above problems, the method for forming a rare earth oxide superconductor of the present invention involves forming a zirconium oxide film on a semiconductor substrate by a sputtering method, and then forming a rare earth oxide superconductor. It is something to do.

この緩衝膜である酸化ジルコニウム膜が基板と希土類酸
化物超電導体が酸素を有する雰囲気中での熱処理による
反応、及び半導体基板表面の酸化を阻止する。
This zirconium oxide film, which is a buffer film, prevents the reaction between the substrate and the rare earth oxide superconductor due to heat treatment in an oxygen-containing atmosphere, and prevents oxidation of the surface of the semiconductor substrate.

作用 本発明は上記した構成により希土類酸化物超電4体薄膜
に600℃〜950℃の長時間の酸素を有する雰囲気中
での熱処理を施しても希土類酸化物超電導体薄膜と半導
体基板とが反応し希土類酸化物超電導体薄膜の組成が変
化し超電導性を示さなくなることや半導体基板表面が酸
化し半導体基板表面の能動素子が損傷を受けるようなこ
とがなくなる。
Effect The present invention has the above-described structure, so that even if the rare earth oxide superconductor thin film is subjected to heat treatment in an oxygen-containing atmosphere at 600°C to 950°C for a long time, the rare earth oxide superconductor thin film and the semiconductor substrate react. This prevents the rare earth oxide superconductor thin film from changing its composition and no longer exhibiting superconductivity, and from oxidizing the surface of the semiconductor substrate and damaging active elements on the surface of the semiconductor substrate.

実施例 以下本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

実施例1 基板としてIV族半導体基板であるSi基板を用い、緩
衝膜として酸化ジルコニウムを高周波マグネトロンスパ
ッタリングにより形成した。雰囲気ガスはアルゴン+酸
素(10%)として反応性の雰囲気でおこなった。膜厚
は約3000人である。その後、LnとしてYを、Ae
としてBaを用いてY−Ba−Cu酸化物の粉体をター
ゲットとして酸化ジルコニウムのときと同様に高周波マ
グネトロンスパッタリングにより形成した。雰囲気ガス
も同様にアルゴン+酸素(10%)として反応性雰囲気
でおこなった。製膜後の組成は(Y:Ba:Cu)=(
1:2:3)となっていた。比較のために酸化ジルコニ
ウムを形成していないSi基板上にもこの希土類酸化物
超電導体薄膜を形成した。
Example 1 A Si substrate, which is a group IV semiconductor substrate, was used as a substrate, and zirconium oxide was formed as a buffer film by high-frequency magnetron sputtering. The atmosphere gas was argon + oxygen (10%) and a reactive atmosphere was used. The film thickness is approximately 3,000 people. After that, Y as Ln, Ae
It was formed by high frequency magnetron sputtering using Ba as a target and Y--Ba--Cu oxide powder as in the case of zirconium oxide. Similarly, the atmosphere gas was argon + oxygen (10%) and a reactive atmosphere was used. The composition after film formation is (Y:Ba:Cu)=(
1:2:3). For comparison, this rare earth oxide superconductor thin film was also formed on a Si substrate on which zirconium oxide was not formed.

酸化ジルコニウムを形成していないものの形成直後の各
元素の深さ方向のオージェ電子分光スペクトルの相対強
度を第1図に、及び酸化ジルコニウムを形成したものの
各元素の深さ方向のオージェ電子分光スペクトルを第2
図に示す。これらの試料を超電導薄膜とするために酸素
雰囲気中で920℃で1時間熱処理を行いその後炉内で
100℃/hrの冷却速度で酸素雰囲気のまま冷却した
。この薄膜の電気特性を測定したところ、酸化ジルコニ
ウム膜を緩衝膜として形成した希土類酸化物超電導体薄
膜は液体ヘリウム中(4,2K)ではもちろん、液体窒
素中(77K )でも電気抵抗が0Ωとなり超電導性膜
となった。しかし酸化ジルコニウム膜を形成しなかった
ほうの希土類酸化物超電導体薄膜は温度を液体ヘリウム
温度まで下げても電気抵抗は0Ωとならず超電導体膜と
はならなかった。この2種類の希土類酸化物超電導体薄
膜の各元素の深さ方向のオージェ電子分光スペクトルの
相対強度を第3図、第4図に示す。第3図が酸化ジルコ
ニウム膜を緩衝膜として形成していない希土類酸化物超
電導体薄膜であり、第4図が酸化ジルコニラム膜を緩衝
膜として形成した希土類酸化物超電導体薄膜である。比
較してみるとわかるように酸化ジルコニウム膜が希土類
酸化物超電導体薄膜と半導体基板との反応をおさえ超電
導性を示さなくなることや、また半導体基板表面が熱処
理により酸化されることを防止している様子がはっきり
とわかる。
Figure 1 shows the relative intensities of the Auger electron spectroscopy spectra in the depth direction of each element immediately after formation, even though zirconium oxide has not been formed, and the Auger electron spectroscopy spectra in the depth direction of each element, which has formed zirconium oxide. Second
As shown in the figure. In order to make these samples into superconducting thin films, they were heat-treated at 920° C. for 1 hour in an oxygen atmosphere, and then cooled in a furnace at a cooling rate of 100° C./hr in the oxygen atmosphere. When we measured the electrical properties of this thin film, we found that the rare earth oxide superconductor thin film formed with a zirconium oxide film as a buffer film had an electrical resistance of 0Ω not only in liquid helium (4.2K) but also in liquid nitrogen (77K), making it superconducting. It became a sexual membrane. However, the rare earth oxide superconductor thin film on which the zirconium oxide film was not formed had an electrical resistance of 0Ω and did not become a superconductor film even when the temperature was lowered to the liquid helium temperature. The relative intensities of the Auger electron spectra in the depth direction of each element in these two types of rare earth oxide superconductor thin films are shown in FIGS. 3 and 4. FIG. 3 shows a rare earth oxide superconductor thin film in which a zirconium oxide film is not formed as a buffer film, and FIG. 4 shows a rare earth oxide superconductor thin film in which a zirconium oxide film is formed as a buffer film. As you can see from the comparison, the zirconium oxide film suppresses the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, preventing it from exhibiting superconductivity and preventing the semiconductor substrate surface from being oxidized by heat treatment. I can see the situation clearly.

実施例2 つぎに同様の条件でYを特許請求範囲第(2)項記載の
希土類に変更した。l、a、Nd、Sm、Eu。
Example 2 Next, under the same conditions, Y was changed to the rare earth metal described in claim (2). l, a, Nd, Sm, Eu.

Gd、Tb、D”J、Ho、Br、Tm、Yb、LUの
いずれも少なくとも液体ヘリウム中で超電導性を示した
。組成はいずれも(Ln : Ba : Cu)=(1
:2:3)であった。Yを他の特許請求範囲第(2)項
記載の希土類に変更しても酸化ジルコニウム膜が希土類
酸化物超電導体薄膜と半導体基板との反応をおさえ超電
導性を示さなくなることや、また半導体基板表面が熱処
理により酸化されることを防止していた。
Gd, Tb, D''J, Ho, Br, Tm, Yb, and LU all showed superconductivity at least in liquid helium.The composition of all of them was (Ln:Ba:Cu)=(1
:2:3). Even if Y is changed to a rare earth element described in claim 2, the zirconium oxide film suppresses the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, and does not exhibit superconductivity. was prevented from being oxidized by heat treatment.

実施例3 次に実施例1のYをLaに、BaをSr及びCaに変え
た。基板は実施例1と同様にSi基板を用い、其の他の
条件も実施例1と同様にしておこなった。BaをBr、
Caにかえた場合でも実施例1と同様に少なくとも液体
ヘリウム温度で超電導性をしめした。組成は(Lat、
s srO,! ) CU及び(Lat、s Cao、
z )Cuであった。上記のようにLn、Aeを変更し
ても酸化ジルコニウム膜が希土類酸化物超電導体薄膜と
半導体基板との反応をおさえ超電導性を示さなくなるこ
とや、また半導体基板表面が熱処理により酸化されるこ
とを防止していた。
Example 3 Next, Y in Example 1 was changed to La, and Ba was changed to Sr and Ca. As in Example 1, a Si substrate was used as the substrate, and the other conditions were the same as in Example 1. Ba to Br,
Even when Ca was used instead, superconductivity was exhibited at least at the liquid helium temperature as in Example 1. The composition is (Lat,
s srO,! ) CU and (Lat, s Cao,
z) It was Cu. As mentioned above, even if Ln and Ae are changed, the zirconium oxide film suppresses the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, and superconductivity is no longer exhibited.Also, the surface of the semiconductor substrate may be oxidized by heat treatment. It was being prevented.

実施例4 つぎに希土類としてYを用い、基板に特許請求範囲第(
4)項記載の半導体基板を使用した。其の他の条件は実
施例1と同じである。酸化ジルコニウム薄膜が緩衝膜と
して存在するためにSi、Ge。
Example 4 Next, Y was used as the rare earth element, and the substrate contained in the claims No.
The semiconductor substrate described in section 4) was used. The other conditions are the same as in Example 1. Si, Ge because the zirconium oxide thin film exists as a buffer film.

(:、aAs、InPのいずれの半導体基板においても
希土類酸化物超電導体薄膜が少なくとも液体ヘリウム温
度で超電導性を示した。またオージェ電子分光スペクト
ルを調べた結果、半導体基板表面はいずれも酸化されて
いなかった。
(:, Rare earth oxide superconductor thin films on both aAs and InP semiconductor substrates exhibited superconductivity at least at liquid helium temperatures. Furthermore, as a result of examining Auger electron spectroscopy spectra, the surfaces of the semiconductor substrates were not oxidized. There wasn't.

実施例5 実施例1の条件において熱処理温度を600℃〜950
°Cの範囲に変更してみた。その結果、いずれの温度に
おいても少なくとも液体ヘリウム温度で超電導性を示し
た。いずれの温度においても酸化ジルコニウム膜が希土
類酸化物超電導体薄膜と半導体基板との反応をおさえ超
電導性を示さなくなることや、また半導体基板表面が熱
処理により酸化されることを防止していた。
Example 5 Heat treatment temperature was changed from 600°C to 950°C under the conditions of Example 1.
I tried changing the range to °C. As a result, it showed superconductivity at least at liquid helium temperatures at all temperatures. At all temperatures, the zirconium oxide film suppressed the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, preventing superconductivity from being exhibited and preventing the semiconductor substrate surface from being oxidized by heat treatment.

実施例6 実施例1の条件においてY、Ba、Cuの組成比を変更
してみた。その結果、(Yl−xBaX)CuでXが0
.4〜0.8の範囲でこれらの膜は少なくとも液体ヘリ
ウム温度で超電導性を示した。上記のように組成を変更
しても酸化ジルコニウム膜が希土類酸化物超電導体薄膜
と半導体基板との反応をおさえ超電導性を示さなくなる
ことや、また半導体基板表面が熱処理により酸化される
ことを防止していた。
Example 6 The composition ratios of Y, Ba, and Cu were changed under the conditions of Example 1. As a result, in (Yl-xBaX)Cu, X is 0
.. 4 to 0.8, these films exhibited superconductivity at least at liquid helium temperatures. Even if the composition is changed as described above, the zirconium oxide film suppresses the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, preventing it from exhibiting superconductivity and preventing the semiconductor substrate surface from being oxidized by heat treatment. was.

実施例7 実施例Iの条件において酸化ジルコニウム膜の膜厚を1
000Å〜5μmに変えてみた。酸化ジルコニウム膜の
膜厚が1000人より薄いと緩衝膜としての役割をなさ
ず、5μmより厚いと酸化ジルコニウム膜にクラックが
はいり好ましくない状態であった。酸化ジルコニウム薄
膜の膜厚が1000Å〜5μmでは実施例1と同じよう
に酸化ジルコニウム膜が希土類酸化物超電導体薄膜と半
導体基板との反応をおさえ超電導性を示さなくなること
や、また半導体基板表面が熱処理により酸化されること
を防止していた。
Example 7 Under the conditions of Example I, the thickness of the zirconium oxide film was 1
I tried changing the thickness from 000 Å to 5 μm. When the thickness of the zirconium oxide film was less than 1,000 μm, it did not function as a buffer film, and when it was thicker than 5 μm, cracks appeared in the zirconium oxide film, which was an undesirable condition. When the thickness of the zirconium oxide thin film is 1000 Å to 5 μm, as in Example 1, the zirconium oxide film suppresses the reaction between the rare earth oxide superconductor thin film and the semiconductor substrate, and superconductivity is no longer exhibited, and the semiconductor substrate surface is heat-treated. was prevented from being oxidized.

実施例8 実施例1の条件においてLn−Ae−Cu酸化物を真空
蒸着法により形成した。組成は同じく(Y:Ba :C
u)= (1: 2 : 3)となるようにした。その
結果、実施例1と同じように液体ヘリウム温度(4,2
K)ではもちろん、液体窒素温度(77K ”)でも超
電導性を示した。Ln−Ae−Cu酸化物を真空蒸着法
により形成しても酸化ジルコニウム膜が希土類酸化物超
電導体薄膜と半導体基板との反応をおさえ超電導性を示
さなくなることや、また半導体基板表面が熱処理により
酸化されることを防止していた。
Example 8 Ln-Ae-Cu oxide was formed under the conditions of Example 1 by vacuum evaporation. The composition is the same (Y:Ba:C
u) = (1: 2: 3). As a result, the liquid helium temperature (4, 2
It showed superconductivity not only at liquid nitrogen temperature (77 K'') but also at liquid nitrogen temperature (77 K''). Even when Ln-Ae-Cu oxide is formed by vacuum evaporation, the zirconium oxide film does not bond between the rare earth oxide superconductor thin film and the semiconductor substrate. The reaction was suppressed to prevent superconductivity from being exhibited and to prevent the surface of the semiconductor substrate from being oxidized by heat treatment.

発明の効果 以上のように本発明は希土類酸化物超電導体薄膜を形成
する前に緩衝膜として酸化ジルコニウム膜を設けること
により長時間の酸素を有する雰囲気中で熱処理を施して
も基板材料と希土類酸化物超電4体薄膜が反応をおこす
ことなく超電導性を失うことがないようにすることがで
きる。また酸素を有する雰囲気中で熱処理を施しても半
導体基板表面が酸化され半導体基板表面の能動素子が損
傷を受けないようにすることができる。
Effects of the Invention As described above, the present invention provides a zirconium oxide film as a buffer film before forming a rare earth oxide superconductor thin film, so that even if heat treatment is performed in an atmosphere containing oxygen for a long time, the substrate material and rare earth oxide It is possible to prevent the superconductor 4-body thin film from losing its superconductivity without causing a reaction. Furthermore, even if heat treatment is performed in an atmosphere containing oxygen, the surface of the semiconductor substrate will not be oxidized and active elements on the surface of the semiconductor substrate will not be damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明と比較するためSi基板上に酸化ジルコ
ニウム膜を形成せず希土類酸化物超電導体であるY−B
a−Cu酸化物を高周波マグネトロンスパッタリングに
より形成した直後の各元素のオージェ電子分光スペクト
ルの相対強度の深さ方向のグラフ、第2図は本発明によ
りSi基板上に酸化ジルコニウム膜を緩衝膜として形成
しその後同様に高周波マグネトロンスパッタリングによ
り希土類酸化物超電導体であるY−Ba−Cu酸化物を
形成した直後の各元素のオージェ電子分光スペクトルの
相対強度の深さ方向のグラフ、第3図は本発明と比較の
ためSi基板上に酸化ジルコニウム膜を形成せず希土類
酸化物超電導体であるY−Ba−Cu酸化物を高周波マ
グネトロンスパッタリングにより形成し酸素雰囲気中で
920℃、1時間の熱処理を施した後の各元素のオージ
ェ電子分光スペクトルの相対強度の深さ方向のグラフ、
第4図は本発明によりSi基板上に酸化ジルコニウム膜
を緩衝膜として形成しその後同様に高周波マグネトロン
スパッタリングにより希土類酸化物超電導体であるY−
Ba−Cu酸化物を形成し酸素雰囲気中で920℃、1
時間の熱処理を施した後の各元素のオージェ電子分光ス
ペクトルの相対強度の深さ方向のグラフである。 1・・・・・・0.2・・・・・・Ba、  3・・・
・・・Y、4・・・・・・Cu %5・・・・・・Si
、6・・・・・・Zr0代理人の氏名 弁理士 中尾敏
男 はか1名才−ンエ電芒スペグトルオ目文オ光し艷 
   図$ (/I  へ ω N −5、 (/l(”)  べ ) ) ト、F:      む C> θ も Cu  N−。 四 3 Ω べ一 も く  ←・ ト     8 己 c/、へ ω 〜 − だPペタ8
Figure 1 shows Y-B which is a rare earth oxide superconductor without forming a zirconium oxide film on a Si substrate for comparison with the present invention.
Figure 2 is a graph of the relative intensity in the depth direction of the Auger electron spectra of each element immediately after a-Cu oxide is formed by high-frequency magnetron sputtering. 3 is a graph of the relative intensity in the depth direction of the Auger electron spectra of each element immediately after forming Y-Ba-Cu oxide, which is a rare earth oxide superconductor, by high-frequency magnetron sputtering. For comparison, Y-Ba-Cu oxide, which is a rare earth oxide superconductor, was formed on a Si substrate by high-frequency magnetron sputtering without forming a zirconium oxide film, and heat treated at 920°C for 1 hour in an oxygen atmosphere. Graph of relative intensity of Auger electron spectroscopy of each element in depth direction,
FIG. 4 shows that a zirconium oxide film is formed as a buffer film on a Si substrate according to the present invention, and then a rare earth oxide superconductor Y
Ba-Cu oxide was formed and heated at 920°C in an oxygen atmosphere for 1
It is a graph of the relative intensity of the Auger electron spectra of each element in the depth direction after heat treatment for several hours. 1...0.2...Ba, 3...
...Y, 4...Cu %5...Si
, 6...Zr0 Agent's name Patent attorney Toshio Nakao
Figure $ (/I to ω N −5, (/l(”) Be) ) To, F: MuC> θ also Cu N−. ~ - DaPpeta8

Claims (8)

【特許請求の範囲】[Claims] (1)半導体基板上にスパッタリング法によって酸化ジ
ルコニウム膜を緩衝膜として形成し、その上にLn−A
e−Cu酸化物(但しLnはY)希土類、Aeはアルカ
リ土類)の薄膜を形成した後、酸素を有する雰囲気中で
熱処理を行うことによって前記酸化物薄膜を超電導化す
る超電導薄膜の形成方法。
(1) A zirconium oxide film is formed as a buffer film on a semiconductor substrate by sputtering, and Ln-A
A method for forming a superconducting thin film, in which a thin film of e-Cu oxide (wherein Ln is Y) is a rare earth element, and Ae is an alkaline earth element) is formed, and then the oxide thin film is made superconductive by performing heat treatment in an atmosphere containing oxygen. .
(2)希土類として、La、Nd、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Luの少なくと
も1つを用いたことを特徴とする特許請求範囲第(1)
項記載の超電導薄膜の形成方法。
(2) Rare earths include La, Nd, Sm, Eu, Gd,
Claim (1) characterized in that at least one of Tb, Dy, Ho, Er, Tm, Yb, and Lu is used.
A method for forming a superconducting thin film as described in .
(3)アルカリ土類としてBr、Ba、Caの少なくと
もひとつを含むことを特徴とする特許請求範囲第(1)
項記載の超電導薄膜の形成方法。
(3) Claim No. (1) characterized in that the alkaline earth element contains at least one of Br, Ba, and Ca.
A method for forming a superconducting thin film as described in .
(4)基板としてIV族半導体基板であるSi及びGe、
III−V族半導体基板であるGaAs及びInPを用い
ることを特徴とする特許請求範囲第(1)項記載の超電
導薄膜の形成方法。
(4) Si and Ge, which are group IV semiconductor substrates, as a substrate;
A method for forming a superconducting thin film according to claim 1, characterized in that GaAs and InP, which are III-V group semiconductor substrates, are used.
(5)熱処理温度として600℃〜950℃としたこと
を特徴とする特許請求範囲第(1)項記載の超電導薄膜
の形成方法。
(5) A method for forming a superconducting thin film according to claim (1), wherein the heat treatment temperature is 600°C to 950°C.
(6)Ln−Ae−Cu酸化物薄膜の形成方法としてス
パッタリング法により形成することを特徴とする特許請
求範囲第(1)項記載の起電導薄膜の形成方法。
(6) A method for forming an electromotive conductive thin film according to claim (1), wherein the Ln-Ae-Cu oxide thin film is formed by a sputtering method.
(7)Ln−Ae−Cu酸化物薄膜の形成方法として真
空蒸着法により形成することを特徴とする特許請求範囲
第(1)項記載の超電導薄膜の形成方法。
(7) A method for forming a superconducting thin film according to claim (1), wherein the Ln-Ae-Cu oxide thin film is formed by a vacuum evaporation method.
(8)酸化ジルコニウム薄膜の膜厚として1000Å〜
5μmとしたことを特徴とする特許請求範囲第(1)項
記載の超電導薄膜の形成方法。
(8) Thickness of zirconium oxide thin film: 1000 Å~
A method for forming a superconducting thin film according to claim (1), wherein the thickness is 5 μm.
JP62268601A 1987-10-23 1987-10-23 Process for forming superconductive thin film Pending JPH01111718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268601A JPH01111718A (en) 1987-10-23 1987-10-23 Process for forming superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268601A JPH01111718A (en) 1987-10-23 1987-10-23 Process for forming superconductive thin film

Publications (1)

Publication Number Publication Date
JPH01111718A true JPH01111718A (en) 1989-04-28

Family

ID=17460802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268601A Pending JPH01111718A (en) 1987-10-23 1987-10-23 Process for forming superconductive thin film

Country Status (1)

Country Link
JP (1) JPH01111718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240992A (en) * 1988-08-01 1990-02-09 Mitsubishi Metal Corp Structure of superconductor wiring
JPH0282585A (en) * 1988-09-19 1990-03-23 Res Dev Corp Of Japan Superconducting wiring
US5084437A (en) * 1990-02-28 1992-01-28 Westinghouse Electric Corp. Method for making high-current, ohmic contacts between semiconductors and oxide superconductors
US20200354827A1 (en) * 2017-09-14 2020-11-12 Komico Ltd. Plasma etching apparatus member having improved plasma-resistant properties and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240992A (en) * 1988-08-01 1990-02-09 Mitsubishi Metal Corp Structure of superconductor wiring
JPH0282585A (en) * 1988-09-19 1990-03-23 Res Dev Corp Of Japan Superconducting wiring
US5084437A (en) * 1990-02-28 1992-01-28 Westinghouse Electric Corp. Method for making high-current, ohmic contacts between semiconductors and oxide superconductors
US20200354827A1 (en) * 2017-09-14 2020-11-12 Komico Ltd. Plasma etching apparatus member having improved plasma-resistant properties and manufacturing method therefor
US11827975B2 (en) * 2017-09-14 2023-11-28 Komico Ltd. Photoplasma etching apparatus having improved plasma-resistant and manufacturing method therefor using a thermal diffusion phenomenon of a rare-earth metal thin film

Similar Documents

Publication Publication Date Title
JP2711253B2 (en) Superconducting film and method for forming the same
US4929595A (en) Superconducting thin film fabrication
JPH01111718A (en) Process for forming superconductive thin film
EP0309273B1 (en) Method of producing a superconductive oxide layer on a substrate
EP0587772A1 (en) PROCESS FOR MAKING SUPERCONDUCTING Tl-Pb-Sr-Ca-Cu OXIDE FILMS AND DEVICES.
EP0866508B1 (en) Method of preparing rare earth-barium-cuprates superconductors
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH01276779A (en) Formation of superconducting thin film
JPH0272685A (en) Method for forming weakly coupled superconductor part
Chin et al. Characterization of YBaCuO and ErBaCuO thin films deposited on silicon and gallium arsenide substrates
JPH0577313B2 (en)
US5126320A (en) Method for manufacturing an oxide superconducting thin-film
JP2844207B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2913653B2 (en) Oxide superconducting thin film structure
JPH04342497A (en) Method for forming complex oxide superconducting thin film
JPH02311396A (en) Thin-film superconductor and its production
JPH01111719A (en) Process for forming superconductive thin film
JPH01220872A (en) Oxide base superconductive material
Sugawara Research activities on high-T c superconductors in Japan
Provenzano et al. Preliminary studies for the development of superconducting composite wires
Hermann et al. Preparation of superconducting Tl-Ba-Ca-Cu-O thin films by Tl 2 O 3
JPH05163100A (en) Substrate for superconducting device and its production
JPS63261771A (en) Manufacture of josephson device
Klein et al. Plasma Oxidation of Y-Ba-Cu-O Precursor Filaments
JPH01170078A (en) Semiconductor substrate provided with superconductor layer