JPH08337424A - Production of bismuth-containing oxide superconducting wire - Google Patents

Production of bismuth-containing oxide superconducting wire

Info

Publication number
JPH08337424A
JPH08337424A JP7166810A JP16681095A JPH08337424A JP H08337424 A JPH08337424 A JP H08337424A JP 7166810 A JP7166810 A JP 7166810A JP 16681095 A JP16681095 A JP 16681095A JP H08337424 A JPH08337424 A JP H08337424A
Authority
JP
Japan
Prior art keywords
heat treatment
oxide superconducting
based oxide
superconducting material
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166810A
Other languages
Japanese (ja)
Inventor
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7166810A priority Critical patent/JPH08337424A/en
Publication of JPH08337424A publication Critical patent/JPH08337424A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE: To increase Jc in a magnetic field or at the temp. (77K) of liq. nitrogen to a level fit for practical use without deteriorating a high Tc phase. CONSTITUTION: When a Bi-contg. oxide superconducting material having a compsn. represented by the general formula, (Bi, Pb)2 Sr2 Ca2 Cu3 O10 is produced, a wire of the material sheathed with a metal is heat-treated in the temp. range of 650-750 deg.C in an atmosphere contg. 0.5-5% gaseous oxygen in gaseous N2 and/or inert gas as an atmosphere of oxygen under reduced pressure after concluding sintering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はBi系酸化物超伝導材料
の製造方法に関し、より詳細には例えばマグネットコイ
ル等に使用されるBi系酸化物超伝導線材の製造、特に
高TC 相を多く含んだBi系酸化物超伝導線材の製造方
法に関する。
The present invention relates relates to a method of manufacturing a Bi-based oxide superconducting material, more particularly the production of Bi-based oxide superconducting wire which is used, for example, a magnet coil or the like, especially high-T C phase The present invention relates to a method for producing a Bi-based oxide superconducting wire containing a large amount.

【0002】[0002]

【従来の技術】Bi系酸化物超伝導材料には、一般式B
2 Sr2 CaCu28 (以下Bi−2212と記
す)で示される80K程度の臨界温度(以下TC と記
す)を持つ低TC 相と、一般式(Bi、Pb)2 Sr2
Ca2 Cu310(以下Bi−2223と記す)で示さ
れる110K程度のTcを持つ高Tc相が存在すること
が知られている。
2. Description of the Related Art Bi-based oxide superconducting materials have the general formula B
i 2 Sr 2 CaCu 2 O 8 (hereinafter referred to as Bi-2212) having a low T C phase having a critical temperature (hereinafter referred to as T C ) of about 80 K, and a general formula (Bi, Pb) 2 Sr 2
It is known that a high Tc phase having a Tc of about 110 K, which is represented by Ca 2 Cu 3 O 10 (hereinafter referred to as Bi-2223), exists.

【0003】超伝導材料のTcは高いほど実用性が高い
ので、液体窒素温度よりも高い110K程度のTcを持
つ高Tc相、すなわちBi−2223が実用材として注
目されている。
Since the higher the Tc of a superconducting material is, the more practical it is, a high Tc phase having a Tc of about 110 K, which is higher than the temperature of liquid nitrogen, that is, Bi-2223 has attracted attention as a practical material.

【0004】前記Bi−2223からなる線材の作製方
法としては、金属シース加工した超伝導材料に高温(8
00℃以上)での本焼処理を繰り返す方法(例えば特開
平5−203833号公報)が一般的である。
As a method for producing the wire made of Bi-2223, a metal sheath-processed superconducting material is used at a high temperature (8
Generally, a method of repeating the main baking treatment at 00 ° C. or higher (for example, Japanese Patent Laid-Open No. 5-203833).

【0005】[0005]

【発明が解決しようとする課題】また、超伝導材料の実
用化にあたっては、該超伝導材料が高い臨界電流密度
(以下Jcと記す)を有していることが必要であり、前
記液体窒素中で使用するためには液体窒素温度(77
K)のような高温においても高いJc特性が保たれてい
る必要がある。最近、高温においても高いJc特性を保
つためには超伝導材料に流れる超伝導電流により生じる
磁束線をトラップするピンニングセンターの導入が必要
不可欠であることがわかり、多くの研究者が高Tc相の
Bi系酸化物超伝導材料へのピンニングセンター導入の
研究開発をおこなっている。
In order to put the superconducting material into practical use, it is necessary that the superconducting material has a high critical current density (hereinafter referred to as Jc). Liquid nitrogen temperature (77
It is necessary to maintain high Jc characteristics even at high temperatures such as K). Recently, it has been found that the introduction of a pinning center that traps magnetic flux lines generated by a superconducting current flowing in a superconducting material is indispensable in order to maintain high Jc characteristics even at high temperatures. Research and development of introducing pinning centers into Bi-based oxide superconducting materials.

【0006】しかしながら、高Tc相のBi系酸化物超
伝導材料へのピンニングセンターの導入方法は確立して
おらず、そのJc特性はいまだ実用化レベルに達してい
ないという課題があった。
However, a method of introducing a pinning center into a Bi-based oxide superconducting material having a high Tc phase has not been established, and there is a problem that its Jc characteristic has not yet reached a practical level.

【0007】本発明は上記課題に鑑みなされたものであ
り、一般式(Bi、Pb)2 Sr2Ca2 Cu310
示される組成のBi系酸化物超伝導材料のJc特性を実
用化レベル(液体窒素温度(77K)で32000A/
cm2 以上)になるまで向上させることを目的としてい
る。
The present invention has been made in view of the above problems, and puts the Jc characteristics of a Bi-based oxide superconducting material having a composition represented by the general formula (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 into practical use. Level (32000A / at liquid nitrogen temperature (77K)
(cm 2 or more).

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るBi系酸化物超伝導材料の製造方法は、
一般式(Bi、Pb)2 Sr2 Ca2 Cu310で示さ
れる組成のBi系酸化物超伝導材料の製造方法であっ
て、金属シース加工線材の本焼結後、N2 ガスおよび/
または不活性ガスに0.5〜5%の酸素ガスを含有する
減圧酸素雰囲気中において650〜750℃の温度範囲
で熱処理することを特徴としている。
In order to achieve the above object, a method for producing a Bi-based oxide superconducting material according to the present invention comprises:
A method for producing a Bi-based oxide superconducting material having a composition represented by the general formula (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 , wherein N 2 gas and / or
Alternatively, the heat treatment is performed in a temperature range of 650 to 750 ° C. in a reduced pressure oxygen atmosphere containing 0.5 to 5% oxygen gas as an inert gas.

【0009】[0009]

【作用】本発明に係るBi系酸化物超伝導材料の製造方
法によれば、金属シース加工線材の本焼結後、N2 ガス
および/または不活性ガスに0.5〜5%の酸素ガスを
含有する減圧酸素雰囲気中において650〜750℃の
温度範囲で熱処理するので、本焼結後の減圧酸素雰囲気
中の熱処理によって高Tc相の粒界の超伝導特性が改良
されると共に高Tc相の一部が分解し、PbO、Ca2
PbO4 を主成分とする常伝導析出物が発生し、ピンニ
ングセンターの導入が可能となる。これにより従来の方
法で作製された超伝導材料に比べ、磁場中や液体窒素温
度(77K)でのJc特性を向上させることが可能とな
る。
According to the method for producing a Bi-based oxide superconducting material according to the present invention, 0.5 to 5% oxygen gas is added to N 2 gas and / or an inert gas after the main-sintering of the metal sheath processed wire. Since the heat treatment is performed in a temperature range of 650 to 750 ° C. in a reduced pressure oxygen atmosphere containing Al, the superconducting property of the grain boundary of the high Tc phase is improved and the high Tc phase is improved by the heat treatment in the reduced pressure oxygen atmosphere after the main sintering. Part is decomposed and PbO, Ca 2
A normal conductive precipitate containing PbO 4 as a main component is generated, and it becomes possible to introduce a pinning center. This makes it possible to improve the Jc characteristic in a magnetic field or at a liquid nitrogen temperature (77K), as compared with a superconducting material produced by a conventional method.

【0010】N2 ガスおよび/または不活性ガス中の酸
素ガスの含有量が0.5%未満である場合は、前記高T
c相の分解が必要以上に進行し、前記常伝導析出物の結
晶粒が大きくなりすぎるため好ましくない。また酸素ガ
スの含有量が5%を超える場合は、前記常伝導析出物の
析出がなく、ピンニングセンターの導入が不可能とな
る。したがって、N2 ガスおよび/または不活性ガス雰
囲気中の前記酸素ガスの含有量は0.5〜5%の範囲が
好ましい。
When the content of oxygen gas in the N 2 gas and / or the inert gas is less than 0.5%, the high T
The decomposition of the c phase proceeds more than necessary, and the crystal grains of the normal conductive precipitate become too large, which is not preferable. On the other hand, if the oxygen gas content exceeds 5%, there will be no precipitation of the normal conductive precipitates, making it impossible to introduce pinning centers. Therefore, the content of the oxygen gas in the N 2 gas and / or the inert gas atmosphere is preferably in the range of 0.5 to 5%.

【0011】また前記熱処理の温度が、650℃よりも
低いと前記常伝導析出物の析出がなく、ピンニングセン
ターの導入が不可能となり、750℃よりも高いと前記
高Tc相の分解が必要以上に進行し、常伝導析出物の結
晶粒が大きくなりすぎるため好ましくない。したがっ
て、前記熱処理の温度範囲は650〜750℃が好まし
い。
When the temperature of the heat treatment is lower than 650 ° C., there is no precipitation of the normal conductive precipitates and it becomes impossible to introduce a pinning center. When the temperature is higher than 750 ° C., the decomposition of the high Tc phase is more than necessary. And the crystal grains of the normal conductive precipitate become too large, which is not preferable. Therefore, the temperature range of the heat treatment is preferably 650 to 750 ° C.

【0012】さらに前記熱処理の時間は長いほどJc特
性が向上し、1時間よりも10時間、10時間よりも1
00時間のほうが超伝導材料のJcは大きくなる。ただ
し100時間を超えると時間的効果の差はほとんどなく
なり、例えば100時間と200時間とではJc特性は
ほとんどかわらない。
Further, the longer the heat treatment time is, the more the Jc characteristics are improved.
The Jc of the superconducting material becomes larger at 00 hours. However, when it exceeds 100 hours, there is almost no difference in time effect, and for example, the Jc characteristics are almost the same between 100 hours and 200 hours.

【0013】[0013]

【実施例】以下、本発明に係るBi系酸化物超伝導材料
の製造方法の実施例を説明する。
EXAMPLES Examples of the method for producing a Bi-based oxide superconducting material according to the present invention will be described below.

【0014】まず、原料粉末としてBi23 、Pb
O、SrCO3 、CaCO3 、CuOを用意し、Bi:
Pb:Sr:Ca:Cu=1.8:0.4:1.8:
2.2:3.0のモル比になるように配合、混合し、大
気雰囲気中において800℃で24時間の仮焼処理を二
度行い、解砕してよく混合した後、外径6mm、内径4
mmの銀パイプに充填する。次に、仮焼粉末を充填した
銀パイプを線引き、圧延によって例えば幅3mm、厚さ
0.1mmのテープ状に加工を行う。このようにして作
製した銀テープを20mmの長さに切り出し、大気雰囲
気中において840℃で96時間焼成した後、7ton
/cm2 の圧力でプレス処理を施す。この後さらに84
0℃で24時間焼成した後、7ton/cm2 の圧力で
プレス処理を施し、再度840℃で24時間焼成する。
以上の焼結工程を施した後、それぞれ下記の条件でさら
に熱処理を行った。
First, as raw material powders, Bi 2 O 3 and Pb are used.
O, SrCO 3 , CaCO 3 , and CuO are prepared, and Bi:
Pb: Sr: Ca: Cu = 1.8: 0.4: 1.8:
After mixing and mixing so as to have a molar ratio of 2.2: 3.0, calcining twice at 800 ° C. for 24 hours in the air atmosphere, crushing and mixing well, and then an outer diameter of 6 mm, Inner diameter 4
Fill a mm silver pipe. Next, the silver pipe filled with the calcined powder is drawn and rolled into a tape shape having a width of 3 mm and a thickness of 0.1 mm, for example. The silver tape thus produced was cut into a length of 20 mm, baked in an air atmosphere at 840 ° C. for 96 hours, and then cut to 7 tons.
Pressing is performed at a pressure of / cm 2 . 84 more after this
After firing at 0 ° C. for 24 hours, press treatment is performed at a pressure of 7 ton / cm 2 , and firing is performed again at 840 ° C. for 24 hours.
After performing the above-mentioned sintering process, further heat treatment was performed under the following conditions.

【0015】それぞれの熱処理条件、得られたBi系酸
化物超伝導材料のTcおよび液体窒素温度でのJcを下
記の表1に示す。前記熱処理条件としては、酸素分圧、
熱処理温度、熱処理時間を変化させた。表1中の試料N
oは実施例及び比較例を含んだ通し番号であり、比較例
には備考の欄に*を記載した。また、試料No13は、
前記熱処理を行わないで製造された従来例を示してい
る。
Table 1 below shows each heat treatment condition, Tc of the obtained Bi type oxide superconducting material and Jc at the liquid nitrogen temperature. The heat treatment conditions include oxygen partial pressure,
The heat treatment temperature and heat treatment time were changed. Sample N in Table 1
o is a serial number including the examples and comparative examples, and * is described in the remarks column in the comparative examples. Sample No. 13 is
A conventional example manufactured without the heat treatment is shown.

【0016】[0016]

【表1】 [Table 1]

【0017】図1は表1を基に作成した、前記酸素分圧
とJc値との関係を示したグラフであり、図1中の区間
Aは本発明の範囲を示すものである。また、図中の数字
は表1中の試料No.を示している。
FIG. 1 is a graph showing the relationship between the oxygen partial pressure and the Jc value prepared based on Table 1, and the section A in FIG. 1 shows the range of the present invention. In addition, the numbers in the figure indicate the sample No. in Table 1. Is shown.

【0018】図1及び表1から明らかなように、実施例
に係る方法により得られたBi系酸化物超伝導材料(試
料No.2、4、9、10)は、いずれも比較例に係る
方法により得られたBi系酸化物超伝導材料(試料N
o.1、11〜13)よりも高いJc値を有している。
このように、金属シース加工線材の本焼結後の熱処理時
における減圧酸素雰囲気中の酸素ガスの含有量を0.5
〜5%とすることにより、高いJc値を得ることができ
る。
As is clear from FIG. 1 and Table 1, the Bi-based oxide superconducting materials (Sample Nos. 2, 4, 9, 10) obtained by the method according to the example are all related to the comparative example. Bi-based oxide superconducting material obtained by the method (Sample N
o. Jc value higher than 1, 11-13).
As described above, the oxygen gas content in the reduced pressure oxygen atmosphere during the heat treatment after the main sintering of the metal sheath processed wire is 0.5.
By setting the content to ˜5%, a high Jc value can be obtained.

【0019】図2は表1を基に作成した、熱処理温度と
Jc値との関係を示したグラフであり、図2中の区間B
は本発明の範囲を示すものである。また、図中の数字は
表1中の試料No.を示している。
FIG. 2 is a graph showing the relationship between the heat treatment temperature and the Jc value, which was prepared based on Table 1. Section B in FIG.
Indicates the scope of the present invention. In addition, the numbers in the figure indicate the sample No. in Table 1. Is shown.

【0020】図2及び表1から明らかなように、実施例
に係る方法により得られたBi系酸化物超伝導材料(試
料No.4)は、比較例に係る方法により得られたBi
系酸化物超伝導材料(試料No.7、8、13)よりも
高いJc値を有している。このように、金属シース加工
線材の本焼結後の熱処理時における温度を650〜75
0℃とすることにより、高いJc値を得ることができ
る。
As is clear from FIG. 2 and Table 1, the Bi-based oxide superconducting material (Sample No. 4) obtained by the method according to the example was Bi-obtained by the method according to the comparative example.
It has a higher Jc value than the oxide superconducting materials (Samples Nos. 7, 8, and 13). As described above, the temperature during the heat treatment after the main sintering of the metal sheath processed wire is 650 to 75.
By setting the temperature to 0 ° C., a high Jc value can be obtained.

【0021】図3は表1を基に作成した、熱処理時間と
Jc値との関係を示したグラフであり、図中の数字は表
1中の試料No.を示している。
FIG. 3 is a graph showing the relationship between the heat treatment time and the Jc value prepared based on Table 1, and the numbers in the figure indicate the sample No. in Table 1. Is shown.

【0022】図3及び表1から明らかなように、熱処理
時間が1時間である試料No.3と熱処理時間が10時
間である試料No.4と熱処理時間が100時間である
試料No.5と熱処理時間が200時間である試料N
o.6とを比較すると、熱処理時間が長いほどそのJc
値は高くなる。ただし、試料No.5と試料No.6と
を比較して明らかなように、100時間以上では熱処理
時間延長による効果はあまりなく、100時間と200
時間とでは熱処理後のJc値はほとんどかわらない。
As is clear from FIG. 3 and Table 1, the sample No. 1 having a heat treatment time of 1 hour was used. 3 and sample No. 3 having a heat treatment time of 10 hours. 4 and sample No. 4 having a heat treatment time of 100 hours. 5 and sample N with heat treatment time of 200 hours
o. Comparing with No. 6, the longer the heat treatment time, the more
The value will be higher. However, the sample No. 5 and sample No. As is clear from the comparison with No. 6, the effect of extending the heat treatment time is not so great for 100 hours or longer, and
The Jc value after heat treatment hardly changes with time.

【0023】図4は、銀シース加工線材の断面をSEM
で観察した様子を示すものであり、(a)は本発明方法
の熱処理を施す前の断面を、(b)は本発明方法の熱処
理を施した後の断面を示すものである。
FIG. 4 is an SEM cross-section of a silver-sheathed wire.
3A and 3B show a state before the heat treatment of the method of the present invention, and FIG. 6B shows a cross section after the heat treatment of the method of the present invention.

【0024】本発明方法の熱処理を施すことによって、
線材中にピンニングセンター((b)図中に白く見える
斑点状のもの)が導入されることが分かる。
By applying the heat treatment of the method of the present invention,
It can be seen that pinning centers (spotted ones that appear white in the figure (b)) are introduced into the wire.

【0025】[0025]

【発明の効果】以上詳述したように本発明に係るBi系
酸化物超伝導材料の製造方法によれば、一般式(Bi、
Pb)2 Sr2 Ca2 Cu310で示される組成のBi
系酸化物超伝導材料の製造方法であって、金属シース加
工線材の本焼結後、N2 ガスおよび/または不活性ガス
に0.5〜5%の酸素ガスを含有する減圧酸素雰囲気中
において650〜750℃の温度範囲で熱処理するの
で、本焼結後の減圧酸素雰囲気中の熱処理によって高T
c相の粒界の超伝導特性が改良されると共に高Tc相の
一部が分解し、PbO、Ca2 PbO4 を主成分とする
常伝導析出物が発生し、ピンニングセンターの導入が可
能となる。これにより従来の方法で作製された超伝導材
料に比べ、磁場中や液体窒素温度(77K)でのJc特
性を向上させることができ、電力ケーブル、マグネット
等の形成材料としてより優れたものを提供することがで
きる。
As described in detail above, according to the method for producing a Bi-based oxide superconducting material according to the present invention, the general formula (Bi,
Pb) 2 Sr 2 Ca 2 Cu 3 O 10 Bi having a composition represented by
A method for producing a metal-based oxide superconducting material, comprising: performing a main-sintering of a metal-sheathed wire; and then applying a reduced pressure oxygen atmosphere containing 0.5 to 5% oxygen gas in N 2 gas and / or an inert gas. Since the heat treatment is performed in the temperature range of 650 to 750 ° C., a high T is obtained by the heat treatment in the reduced pressure oxygen atmosphere after the main sintering.
The superconducting property of the grain boundary of the c phase is improved, part of the high Tc phase is decomposed, and normal-conducting precipitates containing PbO and Ca 2 PbO 4 as the main components are generated, enabling the introduction of pinning centers. Become. This makes it possible to improve the Jc characteristics in a magnetic field and at liquid nitrogen temperature (77K), as compared to the superconducting material produced by the conventional method, and provides a superior material for forming power cables, magnets, etc. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】表1を基に作成した、酸素分圧とJc値との関
係を示したグラフである。
FIG. 1 is a graph showing the relationship between oxygen partial pressure and Jc value created based on Table 1.

【図2】表1を基に作成した、熱処理温度とJc値との
関係を示したグラフである。
FIG. 2 is a graph showing a relationship between a heat treatment temperature and a Jc value, which is created based on Table 1.

【図3】表1を基に作成した、熱処理時間とJc値との
関係を示したグラフである。
FIG. 3 is a graph showing the relationship between heat treatment time and Jc value, which was created based on Table 1.

【図4】超伝導線材の断面をSEMで観察した図であ
り、(a)は本発明の熱処理を施す前のもの、(b)は
熱処理を施した後のものである。
4A and 4B are views of a cross section of a superconducting wire observed with an SEM, in which FIG. 4A is before the heat treatment of the present invention, and FIG. 4B is after the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Bi、Pb)2 Sr2 Ca2
310で示される組成のBi系酸化物超伝導線材の製
造方法であって、金属シース加工線材の本焼結後、N2
ガスおよび/または不活性ガスに0.5〜5%の酸素ガ
スを含有する減圧酸素雰囲気中において650〜750
℃の温度範囲で熱処理することを特徴とするBi系酸化
物超伝導線材の製造方法。
1. A compound represented by the general formula (Bi, Pb) 2 Sr 2 Ca 2 C
A method of manufacturing a u 3 Bi-based oxide composition represented by O 10 superconducting wire, after the sintering of the metal sheath working wire, N 2
650 to 750 in a reduced pressure oxygen atmosphere containing 0.5 to 5% oxygen gas in the gas and / or the inert gas
A method for producing a Bi-based oxide superconducting wire, which comprises performing heat treatment in a temperature range of ° C.
JP7166810A 1995-06-07 1995-06-07 Production of bismuth-containing oxide superconducting wire Pending JPH08337424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166810A JPH08337424A (en) 1995-06-07 1995-06-07 Production of bismuth-containing oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166810A JPH08337424A (en) 1995-06-07 1995-06-07 Production of bismuth-containing oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH08337424A true JPH08337424A (en) 1996-12-24

Family

ID=15838096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166810A Pending JPH08337424A (en) 1995-06-07 1995-06-07 Production of bismuth-containing oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH08337424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
JP2007149416A (en) * 2005-11-25 2007-06-14 Sumitomo Electric Ind Ltd Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087813A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
JP4696811B2 (en) * 2005-09-22 2011-06-08 住友電気工業株式会社 Manufacturing method of Bi-based superconductor
JP2007149416A (en) * 2005-11-25 2007-06-14 Sumitomo Electric Ind Ltd Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus

Similar Documents

Publication Publication Date Title
US6295716B1 (en) Production and processing of (Bi,Pb) SCCO superconductors
WO1991000622A1 (en) Silver doped superconductor composite
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
EP1780734A1 (en) Method for producing superconducting wire
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPH0764560B2 (en) Layered copper oxide
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPS63233066A (en) Production of superconductive body
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
EP0286372A2 (en) Oxide superconductor and manufacturing method thereof
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP2964258B2 (en) Manufacturing method of oxide superconductor
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP2854338B2 (en) Copper oxide superconductor
JPH06251929A (en) Manufacture of oxide superconducting coil
JP2004241254A (en) Method of manufacturing superconducting oxide wire
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH0644841A (en) Manufacture of oxide superconducting wire rod
JPH0757569A (en) Manufacture of bi superconducting wire
JPH075314B2 (en) Bi-based oxide superconductor powder and method for producing the wire
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH05182541A (en) Manufacture of bismuth group oxide superconductor