JP2654460B2 - Production method of superconducting material - Google Patents

Production method of superconducting material

Info

Publication number
JP2654460B2
JP2654460B2 JP62288778A JP28877887A JP2654460B2 JP 2654460 B2 JP2654460 B2 JP 2654460B2 JP 62288778 A JP62288778 A JP 62288778A JP 28877887 A JP28877887 A JP 28877887A JP 2654460 B2 JP2654460 B2 JP 2654460B2
Authority
JP
Japan
Prior art keywords
superconducting material
temperature
producing
raw material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62288778A
Other languages
Japanese (ja)
Other versions
JPH01131076A (en
Inventor
善典 高田
和彦 澤田
誠 平岡
允 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62288778A priority Critical patent/JP2654460B2/en
Publication of JPH01131076A publication Critical patent/JPH01131076A/en
Application granted granted Critical
Publication of JP2654460B2 publication Critical patent/JP2654460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導物質の製法に関し、更に詳しくは超電
導物質の従来の製法の改良に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a superconducting material, and more particularly to an improvement on a conventional method for producing a superconducting material.

〔従来の技術とその問題点〕[Conventional technology and its problems]

周知の通り超電導物質の新しい研究が現在盛んに行わ
れており、超電導物質としてもY−Ba−Cu−O系、La−
Sr−Cu−O系、La−Ba−Cu−O系等の物質がすでに知ら
れている。特にY−Ba−Cu−O系超電導物質は研究が進
んでおり、実用化に向けての研究が盛んに行われている
現状にある。
As is well known, new research on superconducting materials is currently being actively conducted, and Y-Ba-Cu-O-based and La-
Substances such as Sr—Cu—O and La—Ba—Cu—O are already known. In particular, research is progressing on Y-Ba-Cu-O-based superconducting materials, and research for practical use is being actively conducted.

これ等超電導物質の従来における製法をY−Ba−Cu−
O系を代表例として示せば、第2図に示す通である。即
ち先ず原料粉末、通常は酸化イットリウム、酸化銅、及
び炭酸バリウムの各粉末を所定量混合する。混合に際し
ては水分の共存を出来るだけ防ぐためにエタノールの如
きアルコールを添加して湿式混合する。乾燥後必要に応
じ再度混合し、乾燥した後、加圧成形して通常粒状また
はペレット状となす。次いでこれを900℃前後で仮焼
し、冷却後粉砕し、該粉砕物を湿式混合する。次いで乾
燥後加圧成形し、焼結を行う。
The conventional production method for these superconducting materials is Y-Ba-Cu-
FIG. 2 shows a typical example of the O system. That is, first, a predetermined amount of a raw material powder, usually each powder of yttrium oxide, copper oxide, and barium carbonate is mixed. In mixing, an alcohol such as ethanol is added and wet-mixed in order to prevent coexistence of water as much as possible. After drying, the mixture is mixed again if necessary, dried, and then subjected to pressure molding to form granules or pellets. Next, this is calcined at about 900 ° C., cooled and then pulverized, and the pulverized material is wet-mixed. Then, after drying, it is pressed and sintered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は、従来からこの種超電導物質の製法につ
いて鋭意研究を続けて来たが、この研究に於いてこの種
超電導物質を製造する際、特に仮焼体の粉砕物を焼結す
る際その焼結時の加熱条件により得られる超電導物質の
特性が大きく変化することを見出した。更に研究を進め
るうちに、上記仮焼体を粉砕物の焼結時に仮焼体中に含
まれている吸着水分を出来るだけ除去することにより、
得られる超電導物質の超電導点が低くなることを見出し
た。これについて更に詳しく説明すると、第3図に示す
通り、得られる実際の超電導物質抵抗値は実線で示す通
りに低下し、抵抗値が0になる温度は矢印Aで示す通り
なだらかな曲線となる。この曲線部分が長くなればなる
程、抵抗値が0になる温度は低下するので望ましくな
く、出来るだけこの曲線部分が短かいことが好ましい。
以下この曲線部分を“すそ引き”と定義する。即ち仮焼
体の粉砕物の吸着水分の除去の仕方によって“すそ引
き”現象が大きく変化することが判明した。
The present inventors have been enthusiastically studying the method for producing this kind of superconducting material, but in this research, when producing this kind of superconducting material, particularly when sintering a pulverized product of a calcined body. It has been found that the properties of the obtained superconducting material vary greatly depending on the heating conditions during the sintering. During further research, by removing the adsorbed water contained in the calcined body as much as possible during the sintering of the pulverized material,
It has been found that the superconducting point of the obtained superconducting material is low. More specifically, as shown in FIG. 3, the actual resistance value of the obtained superconducting material decreases as shown by the solid line, and the temperature at which the resistance value becomes 0 becomes a gentle curve as shown by the arrow A. The longer this curve portion is, the lower the temperature at which the resistance value becomes 0 is undesirable. Therefore, it is preferable that the curve portion is as short as possible.
Hereinafter, this curved portion is defined as “tail pull”. That is, it has been found that the "tail pulling" phenomenon greatly changes depending on the method of removing the adsorbed moisture from the pulverized material of the calcined body.

従って本発明が解決しようとする問題点は、この“す
そ引き”現象を生じないようにするか、または出来るだ
け短くすることである。
The problem to be solved by the present invention is therefore to avoid this "tailing" phenomenon or to make it as short as possible.

〔問題点を解決するための手段〕[Means for solving the problem]

この問題点は、仮焼体の粉砕物の吸着水分を焼結時に
出来るだけ多量除去すると共に、この水分除去を出来る
だけスムーズに(短時間に一度に多量除去するのではな
くなだらかに徐々に)除去することによって解決され
る。
This problem is caused by removing as much as possible of the adsorbed moisture of the pulverized material of the calcined body during sintering, and removing the moisture as smoothly as possible (slowly and gradually instead of removing a large amount at once in a short time). It is solved by removing.

即ち本発明は、所定原料粉末を混合し、仮焼し、次い
で該仮焼体を粉砕した後成形し、ここに得た成形体を焼
結して超電導物質を製造する方法に於いて上記焼結時の
加熱に際し、300℃までは緩やかに昇温し、その後は急
速に昇温することを特徴とする超電導の製法に係るもの
である。
That is, the present invention relates to a method for producing a superconducting material by mixing a predetermined raw material powder, calcining, then pulverizing and calcining the calcined body, and sintering the molded body. The present invention relates to a superconducting production method characterized in that upon heating during sintering, the temperature is gradually increased up to 300 ° C., and then rapidly increased.

〔発明の作用並びに構成〕[Function and Configuration of the Invention]

本発明に於いては、焼結時の加熱に際し、特に300℃
までを緩やかに昇温し、その後急速に昇温する。これに
より焼結時に仮焼体の粉砕物中に含まれている水分をス
ムースに多量に除去することが出来、惹いては超電導特
性就中“すそ引き”現象を極めて短かくするか、または
殆ど無くすることが出来る。この際の緩やかな昇温と
は、実質的に多量の水分が一度に揮散しないような昇を
いい、通常50〜200℃/hr、好ましくは50〜150℃/hr程度
の昇温速度が採用される。この緩やかな昇温は300℃ま
で行い、この温度域で殆ど大部分の水分が除去される。
従ってこの後の加熱に際しては、急速に昇温しても実質
的に水分の蒸発の影響はない。
In the present invention, when heating during sintering, especially 300 ° C.
Until the temperature rises slowly, and then rapidly. This makes it possible to smoothly remove a large amount of water contained in the pulverized material of the calcined body at the time of sintering, thereby reducing the superconducting characteristics, especially the "tailing" phenomenon, or shortening the phenomenon. Can be eliminated. The gradual temperature increase in this case refers to a temperature increase in which a substantial amount of water does not volatilize at once, and a temperature increase rate of usually 50 to 200 ° C / hr, preferably about 50 to 150 ° C / hr is employed. Is done. This gradual heating is performed up to 300 ° C., and most of the water is removed in this temperature range.
Therefore, in the subsequent heating, even if the temperature is rapidly increased, there is substantially no effect of evaporation of moisture.

このように本発明における緩やかな昇温の後に行う急
速な昇温とは、あくまで前半の緩やかな昇温に対して急
速に昇温することを意味し、この急速な昇温においては
従来の昇温速度を採用するのが通常である。
As described above, the rapid temperature increase performed after the gradual temperature increase in the present invention simply means that the temperature is rapidly increased with respect to the gradual temperature increase in the first half. It is usual to employ a heating rate.

なお300℃まで緩やかな昇温を行った後、300℃で一旦
昇温を中断して200〜300℃で一定時間、たとえば1〜10
時間程度維持することも好ましい。
After the temperature was gradually increased to 300 ° C., the temperature was temporarily interrupted at 300 ° C., and the temperature was temporarily stopped at 200 to 300 ° C., for example, 1 to 10 ° C.
It is also preferable to maintain for about an hour.

本発明に於いては、上記の加熱条件即ち前半緩やか
に、後半急速に昇温するという加熱条件を満足する限
り、その手段や装置は何等限定されないが、好ましい加
熱方法の一つとして下記の方法を例示出来る。即ち入口
側から出口側に徐々に高温となるように設定された連続
式加熱装置を使用することである。この加熱装置はエナ
メル電線等の焼付けに従来使用されて来たものである
が、この装置を本発明の焼結時に使用すると極めて有利
である。更に詳しく説明すれば、仮焼体の粉砕物をこの
装置を用いて焼結すれば線状焼結体が連続的に得られる
と共に、温度管理も極めて簡単に出来て、工業的実施に
極めて好都合となる。
In the present invention, as long as the above-mentioned heating conditions, that is, the first half gently, and the second half rapid heating condition are satisfied, the means and apparatus are not limited at all, but one of the preferred heating methods is as follows. Can be exemplified. That is, the use of a continuous heating device set so that the temperature gradually increases from the inlet side to the outlet side. Although this heating device has been conventionally used for baking of enameled electric wires and the like, it is extremely advantageous to use this device at the time of sintering of the present invention. More specifically, if a crushed product of the calcined body is sintered using this apparatus, a linear sintered body can be continuously obtained, and the temperature control can be extremely easily performed, which is extremely convenient for industrial implementation. Becomes

以下に本発明法を工程順に説明する。先ず原料粉末を
調製する。原料としては、所望する超電導物質の種類に
応じて適宜に原料を選択する。たとえばY−Ba−Cu−O
系の場合には酸化イットリウム、炭酸バリウム、酸化銅
を使用し、またLa−Sr−Cu−O系の場合には酸化ランタ
ン、炭酸ストロンチュウム、酸化銅を使用する。またLa
−Ba−Cu−O系の場合には酸化ランタン、炭酸バリウ
ム、酸化銅を使用する。これ等原料粉末は所望する組成
配合比で混合するが、たとえばY−Ba−Cu−O系の場合
には得られる目的物超電導物質の組成が第1図のように
なるように予めこれ等原料を配合する。
The method of the present invention will be described below in the order of steps. First, a raw material powder is prepared. As a raw material, a raw material is appropriately selected according to a kind of a desired superconducting substance. For example, Y-Ba-Cu-O
In the case of a system, yttrium oxide, barium carbonate and copper oxide are used, and in the case of a La-Sr-Cu-O system, lanthanum oxide, strontium carbonate and copper oxide are used. Also La
In the case of -Ba-Cu-O system, lanthanum oxide, barium carbonate, and copper oxide are used. These raw material powders are mixed in a desired composition ratio. For example, in the case of a Y-Ba-Cu-O system, these raw materials are preliminarily mixed so that the composition of the target superconducting substance obtained is as shown in FIG. Is blended.

この原料粉末は次いで混合されるが、この際の混合は
通常湿式で行われ、水以外の液体たとえばエタノール等
のアルコールを加えて行う。その理由は、水の共存は望
ましくないという理由に基づく。湿式混合物は自然乾燥
でも良く、また150℃前後以下の温度で加熱しても良
い。必要に応じてこの乾燥物に上記液体を加えて再度湿
式混合を繰返し行う。繰返し行うことにより、各成分を
より均一に混合でき原料粉末の粒度を調整し、成形時の
最適充填粒度が得やすくなる効果がある。
This raw material powder is then mixed, and the mixing at this time is usually performed by a wet method, and is performed by adding a liquid other than water, for example, an alcohol such as ethanol. The reason is based on the fact that coexistence of water is undesirable. The wet mixture may be naturally dried, or may be heated at a temperature of about 150 ° C. or lower. If necessary, the liquid is added to the dried product, and wet mixing is repeated again. By repeating the process, each component can be more uniformly mixed, the particle size of the raw material powder can be adjusted, and it is easy to obtain the optimum filling particle size at the time of molding.

次いで上記原料粉末を加圧成形し、必要に応じ乾燥後
成形体を仮焼する。なお加圧成形に際しては原料粉末中
のアルコール等を除去することが望ましくこのため通常
乾燥する。加圧成形は通常ペレット状に成形するのがそ
の形状は、ペレットに限定されるものではなく、仮焼し
易い形状であれば良い。ここに得た成形体を次いで仮焼
する。この仮焼は、高温下での反応拡散により各成分を
分子レベルで均一に混合する目的で行われ、使用する原
料粉末の種類並びに配合割合に応じて適宜に温度が決定
され、たとえばY−Ba−Cu−O系の場合は通常800℃以
上、好ましくは850〜950℃、特には900℃前後が好まし
い。仮焼の時間は温度にもよるが通常6〜48時間、好ま
しくは12〜24時間程度である。
Next, the above-mentioned raw material powder is subjected to pressure molding, and if necessary, after drying, the molded body is calcined. At the time of pressure molding, it is desirable to remove alcohol and the like in the raw material powder, and therefore, drying is usually performed. The pressure molding is usually performed in the form of pellets, but the shape is not limited to pellets, and may be any shape as long as it is easily calcined. The molded body obtained here is then calcined. This calcination is performed for the purpose of uniformly mixing each component at the molecular level by reaction diffusion at a high temperature, and the temperature is appropriately determined according to the type and the mixing ratio of the raw material powder to be used. In the case of a -Cu-O system, the temperature is usually 800C or higher, preferably 850 to 950C, and particularly preferably around 900C. The calcination time is usually 6 to 48 hours, preferably about 12 to 24 hours, depending on the temperature.

而して仮焼体は再度湿式粉砕される。この際使用され
る液剤は水以外の通常アルコール系のものたとえばエタ
ノールが使用され、粉砕中に出来るだけ水分が吸着しな
い状態で行われる。乾燥後焼結が行われる。焼結は適宜
な金型に粉砕物を充填し、必要に応じ加圧しながら粉砕
物を前記特定の条件下に焼結する。この際仮焼と異なり
焼結することが必要で粉砕物が充分に焼結される温度で
行われる。この際焼結温度は、使用する原料の種類や量
に適宜に決定される。
Thus, the calcined body is wet-pulverized again. As the liquid agent used at this time, a normal alcohol-based agent other than water, for example, ethanol is used, and the liquid is adsorbed as little as possible during the pulverization. After drying, sintering is performed. In the sintering, an appropriate mold is filled with the pulverized material, and the pulverized material is sintered under the above-mentioned specific conditions while applying pressure as necessary. At this time, unlike calcination, sintering is required, and the sintering is performed at a temperature at which the pulverized material is sufficiently sintered. At this time, the sintering temperature is appropriately determined depending on the type and amount of the raw material used.

〔実施例〕〔Example〕

以下に実施例にて本発明法を詳しく説明する。 Hereinafter, the method of the present invention will be described in detail with reference to examples.

実施例1〜3 Y1Ba2Cu3OX(但しは6〜7)の製造: 純度99.9重量%以上のY2O3、BaCo3、及びCuOを1.0:3.
5:2.1(重量比)でエタノールの供存下に乳鉢で湿式混
合し、自然乾燥後金型に粉末を充填し、圧力100kg/cm2
でハンドプレスを用いて10φ×5mm程度のペレットに成
形し、次いで900℃で24時間大気中で仮焼し、炉冷し
た。得られた仮焼体をエタノール中で粉砕し、その後直
ちに鉄製金型を用い、減圧下510kg/cm2の圧力でペレッ
ト(上記と同サイズ)状に成形し、950℃まで第1表に
示す昇温条件で焼結した。このものの超電導臨界温度を
測定した。この結果は第1表の通りであり、“すそ引
き”現象もまた殆どなかった。
Examples 1 to 3 Production of Y 1 Ba 2 Cu 3 O X (where X is 6 to 7): Y 2 O 3 , BaCo 3 , and CuO having a purity of 99.9% by weight or more were added in a ratio of 1.0: 3.
5: 2.1 (weight ratio), wet mixing with a mortar in the presence of ethanol, air drying, filling the mold with powder, pressure 100kg / cm 2
Was formed into pellets of about 10φ × 5 mm using a hand press, and then calcined in the atmosphere at 900 ° C. for 24 hours, followed by furnace cooling. The obtained calcined body was pulverized in ethanol, and immediately thereafter, formed into pellets (same size as above) under reduced pressure at a pressure of 510 kg / cm 2 using an iron mold, and shown in Table 1 up to 950 ° C. Sintering was performed under elevated temperature conditions. The superconducting critical temperature of this was measured. The results are as shown in Table 1, and there was almost no "tail pull" phenomenon.

実施例4〜6 Y0.3Ba0.7Cu1Oyは2〜3)の製造: 実施例1に於いて原料の配合比をY2O3:BaCO3:CuO=1.
0:4.1:2.3とし、且つ焼結時の温度を900℃とし、その他
は実施例1と同様に処理した。このものの測定結果は第
2表に示す通りであった。また“すそ引き”現象は殆ど
なかった。
Example 4~6 Y 0.3 Ba 0.7 Cu 1 O y (y is 2-3) Preparation of a blending ratio of the raw material In the embodiment 1 Y 2 O 3: BaCO 3 : CuO = 1.
0: 4.1: 2.3, the temperature during sintering was 900 ° C., and the others were treated in the same manner as in Example 1. The results of the measurement are as shown in Table 2. There was almost no "tail pull" phenomenon.

比較例1及び2 実施例1及び4に於いて焼結時の昇温条件を夫々第1
表並びに第2表に示す条件となし、その他は実施例1及
び4と同様に処理した。これ等の結果を夫々第1表並び
に第2表に示す。また“すそ引き”現象は顕著に現出し
た。
Comparative Examples 1 and 2 In Examples 1 and 4, the temperature raising conditions during sintering were the first, respectively.
The conditions were the same as those in Examples 1 and 4 except for the conditions shown in Table and Table 2. The results are shown in Tables 1 and 2, respectively. In addition, the "tail pulling" phenomenon became remarkable.

【図面の簡単な説明】[Brief description of the drawings]

第1図はY、Ba、Cuの三成分系組成図であり、第2図は
従来の超電導物質の製法の一例を示すフローシートであ
り、また第3図は超電導物質の抵抗と温度との関係を示
すグラフである。
FIG. 1 is a ternary composition diagram of Y, Ba, and Cu, FIG. 2 is a flow sheet showing an example of a conventional method for producing a superconducting material, and FIG. It is a graph which shows a relationship.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 允 兵庫県尼崎市東向島西之町8番地 三菱 電線工業株式会社内 (56)参考文献 特開 昭63−225524(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaru Yoshikawa 8 Nishinocho, Higashimukaijima, Amagasaki City, Hyogo Prefecture Inside Mitsubishi Cable Industries, Ltd. (56) References JP-A-63-225524 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定原料粉末を混合し、仮焼し、次いで該
仮焼体を粉砕した後成形し、ここに得た成形体を焼結し
て超電導物質を製造する方法に於いて上記焼結時の加熱
に際し、300℃までは緩やかに昇温し、その後は急速に
昇温することを特徴とする超電導物質の製法。
1. A method for producing a superconducting material, comprising mixing a predetermined raw material powder, calcining, pulverizing the calcined body, molding the molded body, and sintering the molded body. A superconducting material manufacturing method characterized by gradually increasing the temperature up to 300 ° C and then rapidly increasing the temperature when heating during sintering.
【請求項2】上記緩やかな昇温の度合が50〜200℃/hrで
ある特許請求の範囲第(1)項に記載の超電導物質の製
法。
2. The method for producing a superconducting material according to claim 1, wherein the rate of the gradual temperature rise is 50 to 200 ° C./hr.
【請求項3】300℃で一旦昇温を中断する特許請求の範
囲第(1)項または第(2)項に記載の超電導物質の製
法。
3. The method for producing a superconducting material according to claim 1, wherein the temperature rise is temporarily stopped at 300 ° C.
【請求項4】上記中断が1〜10時間程度である特許請求
の範囲(3)項に記載の超電導物質の製法。
4. The method for producing a superconducting material according to claim 3, wherein said interruption is for about 1 to 10 hours.
【請求項5】上記焼結時の加熱に際し、入口側から出口
側に徐々に高温となっている連続加熱装置を用いて粉砕
された仮焼体粉砕物から線状焼結体を得ることを特徴と
する特許請求の範囲第(1)項乃至第(4)項のいずれ
かに記載の超電導物質の製法。
5. A method for obtaining a linear sintered body from a pulverized calcined body using a continuous heating device which gradually increases in temperature from an inlet side to an outlet side during the sintering. The method for producing a superconducting material according to any one of claims (1) to (4), characterized in that:
【請求項6】仮焼体を粉砕するに際し、湿式混合しその
後乾燥することを特徴とする特許請求の範囲第(1)項
乃至第5項のいずれかに記載の製法。
6. The method according to claim 1, wherein the calcined body is wet-mixed and then dried when pulverizing the calcined body.
【請求項7】所定原料粉末が酸化イットリウム、酸化
銅、及び炭酸バリウムの混合粉末である特許請求の範囲
第(1)項乃至第(6)項のいずれかに記載の製法。
7. The method according to claim 1, wherein the predetermined raw material powder is a mixed powder of yttrium oxide, copper oxide, and barium carbonate.
【請求項8】所定原料粉末が酸化ランタン、酸化ストロ
ンチュウムまたは炭酸バリウム、及び酸化銅の混合粉末
である特許請求の範囲第(1)項乃至第(6)項のいず
れかに記載の製法
8. The method according to claim 1, wherein said predetermined raw material powder is a mixed powder of lanthanum oxide, strontium oxide or barium carbonate, and copper oxide.
【請求項9】得られる超電導物質のイットリウム、バリ
ウム、及び銅の組成が第1図に示す三成分組成図に於い
て斜線で示した範囲となるように原料粉末を配合するこ
とを特徴とする特許請求の範囲第(1)項乃至第(7)
項に記載の製法。
9. The raw material powder is blended so that the composition of yttrium, barium and copper of the obtained superconducting material falls within the range shown by hatching in the ternary composition diagram shown in FIG. Claims (1) to (7)
Production method described in the section.
JP62288778A 1987-11-16 1987-11-16 Production method of superconducting material Expired - Lifetime JP2654460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288778A JP2654460B2 (en) 1987-11-16 1987-11-16 Production method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288778A JP2654460B2 (en) 1987-11-16 1987-11-16 Production method of superconducting material

Publications (2)

Publication Number Publication Date
JPH01131076A JPH01131076A (en) 1989-05-23
JP2654460B2 true JP2654460B2 (en) 1997-09-17

Family

ID=17734593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288778A Expired - Lifetime JP2654460B2 (en) 1987-11-16 1987-11-16 Production method of superconducting material

Country Status (1)

Country Link
JP (1) JP2654460B2 (en)

Also Published As

Publication number Publication date
JPH01131076A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
JP2654460B2 (en) Production method of superconducting material
JP2587651B2 (en) Production method of superconducting material
JP2585020B2 (en) Production method of superconducting material
JPH04228467A (en) Method for manufacture of shaped article of superconducting oxide ceramic material
JP2587652B2 (en) Production method of superconducting material
EP0348104A2 (en) Production of superconducting article
JPH0193460A (en) Production of superconducting substance
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
EP0647207A1 (en) SUPERCONDUCTING OXIDES BY COPRECIPITATION AT CONSTANT pH
JP2767750B2 (en) Method for producing oriented oxide superconductor
JPH0193459A (en) Production of superconducting substance
JPH01261262A (en) Forming of oxide superconducting substance
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
JPS63307111A (en) Production of electric conductor
JPH01131075A (en) Production of superconducting substance
JPH01176205A (en) Production of superconducting substance
JPH01131087A (en) Production of superconducting substance
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPS63270341A (en) Production of superconducting oxide ceramics
JPH04317415A (en) Production of bi-based oxide superconductor
JPH01141870A (en) Superconductor
JPH01176270A (en) Production of oxide superconducting molding
JPH01270561A (en) Production of oxide superconductor
JPH01320258A (en) Production of oxide superconductor