JPH01278465A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH01278465A
JPH01278465A JP63106694A JP10669488A JPH01278465A JP H01278465 A JPH01278465 A JP H01278465A JP 63106694 A JP63106694 A JP 63106694A JP 10669488 A JP10669488 A JP 10669488A JP H01278465 A JPH01278465 A JP H01278465A
Authority
JP
Japan
Prior art keywords
powder
temperature
mixed powder
superconductor
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106694A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63106694A priority Critical patent/JPH01278465A/en
Publication of JPH01278465A publication Critical patent/JPH01278465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductor, capable of exhibiting superconductive at liquid nitrogen temperature or above and having stabilized characteristics from inexpensive materials by mixing powders of compounds respectively containing Sr, Ca, Bi and Cu at a specific ratio, calcining and sintering the resultant mixed powder by a specified method. CONSTITUTION:The objective superconductor is produced by the following steps (a)-(c); (a) mixing strontium compound powder with powders of a calcium compound and copper oxide to provide mixed powder, calcining the resultant mixed powder at a lower temperature than the sintering temperature and pulverizing the calcined mixture to afford processed powder; (b) mixing the processed powder with bismuth oxide powder to provide mixed powder, pressurizing the mixed powder to afford a compact and (c) sintering the compact at 830-880 deg.C temperature in an oxidizing atmosphere to provide a sintered compact. The sintered compact consists of Bi, Sr, Ca, Cu and O and the atomic ratios of the metallic components are Sr:Ca=1:0.3-3, Bi:Cu=1:1.8-4 and (Sr+ Ca):(Bi+Cu)=1:1-2.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以」二で超電導特性
を示す超電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to so-called superconductors whose electrical resistance becomes zero at a certain temperature, and in particular to the production of superconductors that exhibit superconducting properties at temperatures above liquid nitrogen temperature. Regarding the method.

Bi発明の概要 本発明は、ストロンチウム化合物の粉末、カルシウム化
合物の粉末、銅酸化物の粉末を混合して仮焼成すると共
にこれを粉砕して加工粉末を得、これにビスマス酸化物
の粉末を加えて混合し、これを加圧成形した後に酸化性
雰囲気中で本焼成して得た、 ビスマス(Bi)、ストロンチウム(Sr)、カルシウ
ム(Ca)、銅(Cu)、及び酸素(O)の成分からな
る焼結体で、液体窒素温度以上(絶対温度77℃)以上
で超電導を示す超電導体の製造方法にある。
Summary of Bi Invention The present invention involves mixing and calcining strontium compound powder, calcium compound powder, and copper oxide powder, and pulverizing the mixture to obtain processed powder, to which bismuth oxide powder is added. Components of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O) obtained by mixing the mixture under pressure, molding it under pressure, and then firing it in an oxidizing atmosphere. A method for producing a superconductor which exhibits superconductivity at a temperature higher than liquid nitrogen temperature (absolute temperature 77°C) and higher.

C1従来の技術 1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発が
進められている。実用化には、臨界温度(Tc)が高け
れば高い程、冷却コストが安くて済むため、より高温で
の超電導の可能性をめぐってその超電導材料の激しい開
発競争が展開されている。
C1 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been made toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、ストロンチウム・イッテルビウム
・銅酸化物・イツトリウム系銅酸化物といった超電導材
料が発見されたと発表されるに至っている。
Recently, it has been announced that superconducting materials such as strontium, ytterbium, copper oxide, and yttrium-based copper oxide have been discovered as materials that exhibit superconducting phenomena at temperatures above the temperature of liquid nitrogen of 77°C.

D1発明が解決しようとする課題 液体窒素の温度以上の温度で超電導現象を生じることか
ら、この超電導を利用した具体的な適用範囲が拡大して
きた。
D1 Problems to be Solved by the Invention Since superconductivity occurs at temperatures higher than the temperature of liquid nitrogen, the specific range of applications utilizing this superconductivity has expanded.

しかし、上述のようなイツトリウムは希少材料であるこ
とから、高価であり、超電導の適用範囲の拡大にはおの
ずと限界があり、安価な超電導材料の開発が望まれてい
るが、その開発は、まだ緒についたばかりであるのが現
状である。
However, since yttrium is a rare material as mentioned above, it is expensive, and there is a natural limit to the expansion of the application range of superconductivity.Therefore, there is a desire to develop inexpensive superconducting materials, but the development has not yet been completed. The current situation is that it has just started.

これらの点に鑑み、本発明は、安価な材料にて77にで
超電導状態となる超電導体の製造方法を提供しようとす
るものである。
In view of these points, the present invention aims to provide a method for manufacturing a superconductor that becomes superconducting at 77 using inexpensive materials.

81課題を解決するための手段と作用 発明者らは、種々の材料の配合、焼成温度等の実験を重
ねた結果、ビスマス(Bi)、ストロンチウム(Sr)
、カルシウム(CaL銅(Cu)、及び酸素(O)の成
分からなる焼結体で、ストロンチウム化合物のカルシウ
ム化合物、銅酸化物の粉末を混合し、この混合粉末を本
焼成の温度より低い温度にて仮焼成すると共にこれを粉
砕して加工粉末を得、これにビスマス酸化物の粉末を加
えて混合し、これを加圧成形した後に酸化性雰囲気中で
且つ830〜880℃の範囲の温度で本焼成して焼結体
とすることにより、Bi−5r−Ca−Cu−0の成分
からなり、旦つBi、Sr、Ca。
81 Means and Effects for Solving Problems As a result of repeated experiments with various material formulations, firing temperatures, etc., the inventors found that bismuth (Bi), strontium (Sr)
, calcium (CaL), and a sintered body consisting of copper (Cu) and oxygen (O), in which a strontium compound, a calcium compound, and a copper oxide powder are mixed, and this mixed powder is heated to a temperature lower than the main firing temperature. This is calcined and crushed to obtain a processed powder, which is mixed with bismuth oxide powder, which is then pressure-molded and then heated in an oxidizing atmosphere at a temperature in the range of 830 to 880°C. By performing main firing to form a sintered body, it consists of the components Bi-5r-Ca-Cu-0, each containing Bi, Sr, and Ca.

Cuの成分の原子比が、 Sr :Ca=1 : 0.3〜3 B i : Cu=I : 1.8〜4(Sr+Ca)
: (l]i+cu)=l : 1〜2の範囲であれば
、液体窒素温度の冷却で抵抗ゼロのち密でしかも特性の
安定した超電導体が得られることを見いだした。
The atomic ratio of the Cu components is Sr:Ca=1:0.3~3Bi:Cu=I:1.8~4(Sr+Ca)
: (l]i+cu)=l : It has been found that in the range of 1 to 2, a dense superconductor with zero resistance and stable characteristics can be obtained by cooling to liquid nitrogen temperature.

なお、ストロンチウム化合物としては、ストロンチウム
炭酸化物(SrCO3)、ストロンチウム酸化物(Sr
O)、 ストロンチウム水酸化物(S r (OH) z)、の
何れか一種以上を用いる。
In addition, as strontium compounds, strontium carbonate (SrCO3), strontium oxide (Sr
O) and strontium hydroxide (S r (OH) z).

また、カルシウム化合物としては、 カルシウム炭酸化物(CaCO3)、 カルシウム酸化物(Cab)、 カルシウム水酸化物(Ca (OH)−)、の何れが一
種以上を用いる。
Further, as the calcium compound, one or more of calcium carbonate (CaCO3), calcium oxide (Cab), and calcium hydroxide (Ca(OH)-) is used.

なお、各成分の原子比及び温度が、萌記の範囲外の場合
には、液体窒素で超電導が生じる焼結体を得ることがで
きなかった。
Note that when the atomic ratio and temperature of each component were outside the range specified by Moeki, it was not possible to obtain a sintered body in which superconductivity occurred in liquid nitrogen.

F、実施例 以下、本発明を実施例に基づいて説明する。F. Example Hereinafter, the present invention will be explained based on examples.

先ず、出発原料として粒径10μm以下のビスマス酸化
物(13itO3)の粉末、ストロンチウム炭酸化物(
SrCOa)の粉末、カルシウム炭酸化物(CaCC)
+)の粉末、銅酸化物(Cub)の粉末を各々11.1
mo1%、22.2mo1%。
First, as starting materials, bismuth oxide (13itO3) powder with a particle size of 10 μm or less, strontium carbonate (
SrCOa) powder, calcium carbonate (CaCC)
+) powder and copper oxide (Cub) powder at 11.1% each.
mo1%, 22.2mo1%.

22.2mo 1%、44.4mo1%となるように秤
量する。
Weigh out 22.2 mo 1% and 44.4 mo 1%.

次に、S r CO3、Ca CO3、CuOの粉末を
ボールミルで、アルコール(又は原料粉末と反応しない
溶媒)と玉石を入れ数時間充分に混合し、得られたスラ
リーを約100℃の温度で乾燥する。
Next, the S r CO3, Ca CO3, and CuO powders were thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry was dried at a temperature of about 100°C. do.

次に乾燥して得た混合粉末をアルミナ容器に入れ、酸化
性雰囲気中にて後工程の本焼成の温度より低い温度(約
840℃)で約4時間加熱処理(いわゆる仮焼成)する
Next, the mixed powder obtained by drying is placed in an alumina container and heat-treated (so-called preliminary firing) for about 4 hours in an oxidizing atmosphere at a temperature (about 840° C.) lower than the temperature of the main firing in the subsequent step.

次に得られた焼成粉を充分に粉砕し微細化した加工粉を
得る。
Next, the obtained fired powder is sufficiently ground to obtain a fine processed powder.

次に、この加工粉末と、Bi、03の粉末とをボールミ
ルで、アルコール(又は原料粉末と反応しない溶媒)と
玉石をいれ数時間充分に混合し、得られたスラリーを約
100℃の温度で乾燥する。
Next, this processed powder and the Bi, 03 powder were thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry was heated at a temperature of about 100°C. dry.

そして、バインダーとしてポリビニルアルコールを、原
料粉末に対して1重量%となるようにポリビニルアルコ
ール溶液の形で添加する。
Then, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution to 1% by weight based on the raw material powder.

そしてアルコールを更に加え充分に混練した後、乾燥し
、ふるいにて150メツシユ以下の顆粒状の造粒粉を得
る。
After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、1〜2T o 
n / c m 2程度の圧力で圧縮成形して、外径4
0mm、厚み約6mmの成形体を作る。
Next, after filling this granulated powder into a mold, 1~2T o
Compression molded at a pressure of about n/cm2 to an outer diameter of 4
A molded body with a diameter of 0 mm and a thickness of approximately 6 mm is made.

次に、この成形体を焼成容器内に設置し、酸化性雰囲気
で、前工程の熱処理温度の約840℃より高い温度で且
つ約880℃より低い温度(840〜880°C)で数
時間加熱して焼結体(セラミックス)を得る。
Next, this molded body is placed in a firing container and heated in an oxidizing atmosphere at a temperature higher than the heat treatment temperature of the previous step of about 840°C and lower than about 880°C (840 to 880°C) for several hours. to obtain a sintered body (ceramics).

」二足の製造方法により得られた焼結体を、幅4m m
 、厚さ4mm、長さ40mmの形状に切り出して第1
図に示すように電極を設けて4端子法により、焼結体の
抵抗を測定した。
” The sintered body obtained by the manufacturing method of 4 mm in width
, cut out a shape with a thickness of 4 mm and a length of 40 mm.
The resistance of the sintered body was measured by a four-probe method using electrodes as shown in the figure.

即ち第1図は抵抗値を測定するための説明図で、焼結体
Sの長方向の両端側に電流を流すための端子1.a′を
設け、その内側に抵抗値を測定するための電圧端子す、
b’ を設け、これを液体窒素の低温槽に入れ、端子a
、a′に!アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, in which terminals 1. a', and a voltage terminal for measuring the resistance value inside it.
b', put it in a liquid nitrogen cryostat, and connect it to terminal a.
, to a′! A stabilized current of ampere is passed through the terminal, b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度的11
0にで超電導現象が始まり約85Kに至って7α気抵抗
がゼロになることが確認された。
Figure 2 shows the measurement results.
It was confirmed that the superconducting phenomenon begins at 0, and the 7α resistance becomes zero at about 85K.

他の組成比についても同様な実験を行ったので、前述の
例も含めて記載する。
Similar experiments were conducted with other composition ratios, so the above examples will also be described.

(以下余白) 但し、表の実施例2が上述したものを示す。(Margin below) However, Example 2 in the table shows the above.

なお、上記の表の結果からl3i1Sr、Ca1Cuの
成分原子比の関係が、 同じアルカリ土類であるSr、Caの関係は、S r 
: Ca= I : 0.3〜3他のI3i、Cuの関
係は、 I3i :Cu=I : 1.8〜4 そしてこれら雨音の関係は、 (Sr十Ca): (Bi+Cu)=1 : 1〜2の
範囲の場合には、液体窒素で超電導現象(抵抗ゼロ又は
微小値)が生じる焼結体を得ることができた。
Furthermore, from the results in the table above, the relationship between the component atomic ratios of l3i1Sr and Ca1Cu is as follows: The relationship between Sr and Ca, which are the same alkaline earth metals, is S r
: Ca = I : 0.3~3 The relationship between other I3i and Cu is: I3i :Cu=I : 1.8~4 And the relationship between these rain sounds is (Sr + Ca): (Bi + Cu) = 1: In the case of the range of 1 to 2, it was possible to obtain a sintered body in which a superconducting phenomenon (resistance of zero or a minute value) occurs in liquid nitrogen.

しかし、温度が830℃未満、8808C超過では所望
の超電導現象が生しろ焼結体を得ることができなかった
However, at temperatures below 830°C and above 8808°C, it was not possible to obtain a sintered body with the desired superconducting phenomenon.

G1発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において完全に超電導状態となる。
G1 Effects of the Invention As described above, the superconductor according to the present invention has a temperature of liquid nitrogen (
It becomes completely superconducting at 77K).

しかし、従来のイツトリウムを用いたらのは、Tcが9
0に程度であったか、本発明のものにあっては、約10
5にであり、より高温度で超電導現象を生じることから
安定した超電導状態を維持できるものである。
However, when conventional yttrium was used, the Tc was 9.
In the case of the present invention, it was about 10.
5, and since the superconducting phenomenon occurs at higher temperatures, a stable superconducting state can be maintained.

その上、原料粉末を予め本焼成温度以下の温度で加熱ず
ろことにより本焼成時の反応がゆるやかになり、品質の
安定した超電導体を得ることができる。
Moreover, by heating the raw material powder in advance at a temperature below the main firing temperature, the reaction during the main firing becomes gradual, and a superconductor with stable quality can be obtained.

しかも安価な原(オ料にて超電導体を形成でき、その上
液体窒素温度での冷却でよいことから、−層実用化に近
すき、特に電力、運輸等に関連した電気抵抗、及び精密
計器素子、その他エネルギー交換などの分野に利用可能
となる等極めて優れた効果を発揮する。
In addition, since superconductors can be formed using inexpensive raw materials (or materials) and can be cooled at liquid nitrogen temperatures, they are close to practical application, especially for electrical resistance related to electric power, transportation, etc., and precision instruments. It exhibits extremely excellent effects, such as being able to be used in devices and other fields such as energy exchange.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(m Q c m )の特性曲線図を
示す。 a、 a′ ・・・電流供給用端子、b、b′・・・電
圧測定端子、S・・・焼結体。 第1図 抵抗値の測定方法 第2図 絶対基K(K)−
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) is a characteristic curve diagram of the resistance value (m Q cm ) with respect to the resistance value (m Q cm ). a, a'... Current supply terminal, b, b'... Voltage measurement terminal, S... Sintered body. Figure 1: Method of measuring resistance Figure 2: Absolute basis K(K)-

Claims (1)

【特許請求の範囲】[Claims] (1)ストロンチウム化合物の粉末と、カルシウム化合
物の粉末と、銅酸化物の粉末とを混合して混合粉末を得
、該混合粉末を本焼成の温度より低い温度にて仮焼成し
、該仮焼成物を粉砕して加工粉末を得る工程と、 該加工粉末と、ビスマス酸化物の粉末とを混合して混合
粉末を得、該混合粉を加圧して成形体を得る工程と、 該成形体を酸化性雰囲気中で且つ830〜880℃の範
囲の温度で本焼成して焼結体を得る工程とからなり、 焼結体がビスマス(Bi)、ストロンチウム(Sr)、
カルシウム(Ca)、銅(Cu)、及び酸素(O)の成
分からなり、且つBi−Sr−Ca−Cuにおける成分
の原子比が、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2であるこ
とを特徴とした超電導体の製造方法。
(1) A mixed powder is obtained by mixing a strontium compound powder, a calcium compound powder, and a copper oxide powder, and the mixed powder is pre-fired at a temperature lower than the main firing temperature, and the pre-calcination is performed. A step of pulverizing an object to obtain a processed powder; A step of mixing the processed powder and bismuth oxide powder to obtain a mixed powder; and a step of pressurizing the mixed powder to obtain a molded object; The process consists of a step of main firing in an oxidizing atmosphere at a temperature in the range of 830 to 880°C to obtain a sintered body, and the sintered body contains bismuth (Bi), strontium (Sr),
It consists of calcium (Ca), copper (Cu), and oxygen (O) components, and the atomic ratio of the components in Bi-Sr-Ca-Cu is Sr:Ca=1:0.3-3 Bi:Cu= 1:1.8-4 (Sr+Ca):(Bi+Cu)=1:1-2 A method for producing a superconductor.
JP63106694A 1988-04-28 1988-04-28 Production of superconductor Pending JPH01278465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106694A JPH01278465A (en) 1988-04-28 1988-04-28 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106694A JPH01278465A (en) 1988-04-28 1988-04-28 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH01278465A true JPH01278465A (en) 1989-11-08

Family

ID=14440141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106694A Pending JPH01278465A (en) 1988-04-28 1988-04-28 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH01278465A (en)

Similar Documents

Publication Publication Date Title
JPH01278465A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01278464A (en) Production of superconductor
JPH01278462A (en) Production of superconductor
JPH01278466A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278460A (en) Production of superconductor
JPH01278452A (en) Superconductor and production thereof
JPH01278459A (en) Production of superconductor
JPH01278420A (en) Superconductor and production thereof
JPH01278454A (en) Superconductor and production thereof
JPH02196059A (en) Production of superconductor
JPH01278456A (en) Superconductor and production thereof
JPH02196032A (en) Production of superconductor
JPH01278455A (en) Superconductor and production thereof
JPH01278451A (en) Superconductor and production thereof
JPS63291853A (en) Production of superconductor
JPH01278457A (en) Superconductor and production thereof
JPH01278453A (en) Superconductor and production thereof
JPH02196057A (en) Production of superconductor
JPS63288951A (en) Production of superconductor
JPH01278421A (en) Superconductor and production thereof