JPH01278420A - Superconductor and production thereof - Google Patents

Superconductor and production thereof

Info

Publication number
JPH01278420A
JPH01278420A JP63106671A JP10667188A JPH01278420A JP H01278420 A JPH01278420 A JP H01278420A JP 63106671 A JP63106671 A JP 63106671A JP 10667188 A JP10667188 A JP 10667188A JP H01278420 A JPH01278420 A JP H01278420A
Authority
JP
Japan
Prior art keywords
powder
superconductor
sintered body
component
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106671A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63106671A priority Critical patent/JPH01278420A/en
Publication of JPH01278420A publication Critical patent/JPH01278420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a sintered material composed of Bi, Sr, Ca, Cu and O and exhibiting superconducting state at 77K by using each component at specific atomic ratios and using specific compound as the starting substance for each component. CONSTITUTION:The objective superconductor is a sintered material composed of Bi, Sr, Ca, Cu and O, wherein the atomic ratio of Sr:Ca is 1:0.3-3, Bi:Cu is 1:1.8-4 and (Sr+Ca):(Bi+Cu) is 1:1-2. The superconductor can be produced by mixing Bi2O3 powder, SrCO3 powder, CaCO3 powder and CuO powder at prescribed atomic ratios, compression-molding the mixture and calcining the product in an oxidizing atmosphere at 830-880 deg.C.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以上で超電導特性を
示す超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and particularly to a superconductor which exhibits superconducting properties at temperatures above liquid nitrogen temperature.

B0発明の概要 本発明は、出発物質としてビスマス酸化物、ストロンチ
ウム炭酸化物、カルシウム炭酸化物、銅酸化物を用いた
、ビスマス(Bi)、ストロンチウム(Sr)、カルシ
ウム(Ca)、銅(Cu)、及び酸素(O)の成分から
なら焼結体で、液体窒素温度以上(絶対温度77℃)以
上で超電導を示す超電導体とその製造方法にある。
B0 Summary of the Invention The present invention uses bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), it is a sintered body and exhibits superconductivity at temperatures higher than liquid nitrogen temperature (absolute temperature 77° C.) and a method for manufacturing the same.

C5従来の技術 1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発が
進められている。実用化には、臨界温度(Tc)が高け
れば高い程、冷却コストが安くて済むため、より高温で
の超電導の可能性をめぐってその超電導材料の激しい開
発競争が展開されている。
C5 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been carried out toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、ストロンチウム・イッテルビウム
・銅酸化物、イツトリウム系銅酸化物といった超電導材
料が発見されたと発表されるに至っている。
Recently, it has been announced that superconducting materials such as strontium-ytterbium-copper oxides and yttrium-based copper oxides have been discovered as materials that exhibit superconducting phenomena at temperatures above the temperature of liquid nitrogen of 77°C.

D2発明が解決しようとする課題 液体窒素の温度以上の温度で超電導現象を生じることか
ら、この超電導を利用した具体的な適用範囲が拡大して
きた。
D2 Problems to be Solved by the Invention Since superconductivity occurs at temperatures higher than the temperature of liquid nitrogen, the range of specific applications utilizing this superconductivity has expanded.

しかし、上述のようなイツトリウムは希少材料であるこ
とから、高価であり、超電導の適用節回の拡大にはおの
ずと限界があり、安価な超電導材料の開発が望まれてい
るが、その開発は、まだ緒についたばかりであるのが現
状である。
However, since yttrium as mentioned above is a rare material, it is expensive, and there is a natural limit to the expansion of the application of superconductors. The current situation is that it is still in its infancy.

これらの点に鑑み、本発明は、安価な材料にて、77に
で超電導状態となる超電導体とその製造方法を提供しよ
うとするものである。
In view of these points, the present invention aims to provide a superconductor that becomes superconducting at 77 using inexpensive materials and a method for manufacturing the same.

99課題を解決するための手段と作用 発明者らは、種々の材料の配合、焼成温度等の実験を重
ねた結果、ビスマス(Bi)、ストロンチウム(Sr)
、カルシウム(Cλ)、銅(Cu)、及び酸素(O)の
成分からなる焼結体で、この焼結体を形成するB i−
S r−Ca−Cuにおける成分の原子比が、 Sr :Ca=1 : 0.3〜3 Bi : Cu=1 : 1.8〜4 (Sr+Ca): (Bi+Cu)=1 : 1〜2の
範囲であって、しかも 各成分の出発物質としてビスマス酸化物、ストロンチウ
ム炭酸化物、カルシウム炭酸化物、銅酸化物を用いるこ
とにより、液体窒素による冷却で抵抗ゼロのち密でしか
も特性の安定した超電導体が得られることを見いだした
99 Means and Effects for Solving Problems As a result of repeated experiments with various material formulations, firing temperatures, etc., the inventors found that bismuth (Bi), strontium (Sr)
, calcium (Cλ), copper (Cu), and oxygen (O).
The atomic ratio of the components in Sr-Ca-Cu is in the range of Sr:Ca=1:0.3-3 Bi:Cu=1:1.8-4 (Sr+Ca):(Bi+Cu)=1:1-2 Moreover, by using bismuth oxide, strontium carbonate, calcium carbonate, and copper oxide as starting materials for each component, a dense superconductor with zero resistance and stable characteristics can be obtained by cooling with liquid nitrogen. I found that it can be done.

しかも、これら各材料の粉末を混合して造粒粉を作り、
これを圧縮成形して酸化性雰囲気中で830〜880℃
の範囲の温度で焼結することにより、13i−9r−C
u−0の成分からなる超電導体を容易に得られることを
見いだした。
Moreover, by mixing the powders of these materials to make granulated powder,
This was compression molded at 830-880℃ in an oxidizing atmosphere.
13i-9r-C by sintering at a temperature in the range of
It has been found that a superconductor consisting of the component u-0 can be easily obtained.

なお、l3i−Sr−Ca−Cuにおいて、各成分の原
子比が、 S r : Ca= 1 : 0.3〜3I3 i :
 Cu= 1 : 1.8〜4(Sr+Ca): (B
i+Cu)=1 : 1〜2の頓囲外の場合には、液体
窒素で超電導が生じる焼結体を得ることができなかった
In addition, in l3i-Sr-Ca-Cu, the atomic ratio of each component is Sr:Ca=1:0.3~3I3i:
Cu=1: 1.8~4(Sr+Ca): (B
i+Cu)=1: In cases outside the range of 1 to 2, it was not possible to obtain a sintered body in which superconductivity occurred in liquid nitrogen.

F、実施例 以下、本発明を実施例に基づいて説明する。先ず、出発
原料として粒径10μm以下のビスマス酸化物(I3+
tOs)の粉末、ストロンチウム炭酸化物(S r G
o−)の粉末、カルシウム炭酸化物(CaCOa)の粉
末、銅酸化物(Cub)の粉末を各々11.1mo1%
、22.2mo1%。
F. Examples The present invention will be explained below based on examples. First, bismuth oxide (I3+) with a particle size of 10 μm or less is used as a starting material.
tOs) powder, strontium carbonate (S r G
o-) powder, calcium carbonate (CaCOa) powder, and copper oxide (Cub) powder at 11.1 mo1% each.
, 22.2mo1%.

22.2mo1%、44.4mo1%となるように秤量
する。
Weigh out 22.2 mo1% and 44.4 mo1%.

次に、これらの粉末をボールミルで、水(又はアルコー
ル、又は原料粉末と反応しない溶媒)と玉石を入れ数時
間充分に混合し、得られたスラリーを約100℃の温度
で乾燥する。
Next, these powders are thoroughly mixed in a ball mill with water (or alcohol, or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is dried at a temperature of about 100°C.

次に、バインダーとし°ζポリビニルアルコールを、原
料粉末に対して1重量%となるようにポリビニルアルコ
ール水溶液の形で添加する。
Next, polyvinyl alcohol as a binder is added in the form of an aqueous polyvinyl alcohol solution to 1% by weight based on the raw material powder.

そして水(又はアルコール)を更に加え充分に混綽した
後、乾燥し、ふるいにて150メツシユ以下の顆粒状の
造粒粉を得る。
After further adding water (or alcohol) and stirring thoroughly, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、1〜2T o 
n /cx”程度の圧力で圧縮成形して、外径40xx
、¥1.み約6xmの成形体を作る。
Next, after filling this granulated powder into a mold, 1~2T o
Compression molded at a pressure of about n/cx" to an outer diameter of 40xx
, ¥1. Make a molded body of approximately 6 x m.

次に、この成形体を焼成容器内に設置し、酸化性雰囲気
で、且つ約830〜880℃の温度で数時間加熱して焼
結体(セラミックス)を得る。
Next, this molded body is placed in a firing container and heated in an oxidizing atmosphere at a temperature of about 830 to 880° C. for several hours to obtain a sintered body (ceramics).

上記の製造方法により得られた焼結体を、約4xx、厚
さ4xm、長さ401111の形状に切り出して第1図
に示すように電極を設けて4端子法により、焼結体の抵
抗を測定した。
The sintered body obtained by the above manufacturing method was cut into a shape of approximately 4xx, 4xm thick, and 4011111 mm long. Electrodes were provided as shown in Figure 1, and the resistance of the sintered body was measured by the four-terminal method. It was measured.

即ち第1図は、抵抗値を測定するための説明図で、焼結
体Sの長方向の両端側に電流を流すための端子a、a′
を設け、その内側に抵抗値を測定するための電圧端子す
、b’を設け、これを液体窒素の低温槽に入れ、端子 
、alに1アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, and terminals a and a' are used to flow current to both ends of the sintered body S in the longitudinal direction.
A voltage terminal (S, b') for measuring the resistance value is installed inside it, and the terminal is placed in a cryostat containing liquid nitrogen.
, a regulated current of 1 ampere is applied to the terminals b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度的11
0にで超電導現象が始まり約85Kに至って電気抵抗が
ゼロになることが確認された。
Figure 2 shows the measurement results.
It was confirmed that the superconducting phenomenon begins at 0, and the electrical resistance becomes zero at about 85K.

他の組成比についても同様な実験を行ったので、前述の
例も含めて記載する。
Similar experiments were conducted with other composition ratios, so the above examples will also be described.

(混合時の量を原子比に換算したもの)但し、表の実施
例2が上述したものを示す。
(Amounts at the time of mixing are converted into atomic ratios) However, Example 2 in the table shows the above.

なお、上記の表の結果からBi、Sr、Ca。In addition, from the results in the above table, Bi, Sr, and Ca.

Cuの成分原子比の関係が、同じアルカリ土類であるS
r、Caの関係を、 S r : Ca= 1 : 0.3〜3他のr3i、
Cuの関係を、 13i :Cu=1 : 1.8〜4 そして、これら両者の関係を、 (Sr+Ca): (Bi+Cu)=l : I〜2の
範囲の場合には、液体窒素で超電導現象(抵抗ゼロ又は
微小値)が生じ、それ以外の場合には生じないものであ
った。
S with the same alkaline earth component atomic ratio relationship of Cu
The relationship between r and Ca is S r : Ca = 1 : 0.3 to 3 other r3i,
The relationship between Cu is 13i: Cu=1: 1.8~4, and the relationship between these two is: (Sr+Ca): (Bi+Cu)=l: In the range of I~2, superconducting phenomenon ( resistance (zero or very small value) occurred, which would not have occurred in other cases.

G0発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において°超電導状態となる。
Effects of the G0 Invention As described above, the superconductor according to the present invention has a liquid nitrogen temperature (
77K), it becomes superconducting.

しから、従来のイツトリウムを用いたものは、Tcが9
0に程度であったが、本発明のものにあっては、約10
5にであり、より高温度で超電導現象を生じることから
安定した超電導状態を維持できるものである。
However, conventional products using yttrium have a Tc of 9
However, in the case of the present invention, it was about 10
5, and since the superconducting phenomenon occurs at higher temperatures, a stable superconducting state can be maintained.

その上、使用する原材料はいずれも水と反応しにくいこ
とから、製造が簡便であり品質の安定した超電導体を得
ることができる。
Furthermore, since all of the raw materials used are less likely to react with water, it is possible to obtain a superconductor that is simple to manufacture and of stable quality.

しかも安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、−層実用化に近付
き、特に電力、運輸等に関連した電気抵抗、及び右1密
計器素子、その他エネルギー変換などの分野に利用可能
となる等極めて優れた効果を発揮する。
Moreover, since superconductors can be formed using inexpensive raw materials and can be cooled at liquid nitrogen temperatures, practical application of the superconductor has been brought closer, especially for electric resistance related to electric power, transportation, etc. It can be used in other fields such as energy conversion, and has extremely excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(屑ΩcjI)の特性曲線図を示す。 a、a’・・・電流供給用端子、b、b’・・・電圧測
定端子、S・・・焼結体。 第1図 抵抗値の測定方法 第2図 絶対層!(K)□
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) is a characteristic curve diagram of resistance value (waste ΩcjI). a, a'... Current supply terminal, b, b'... Voltage measurement terminal, S... Sintered body. Figure 1: How to measure resistance Figure 2: Absolute layer! (K)□

Claims (2)

【特許請求の範囲】[Claims] (1)ビスマス(Bi)、ストロンチウム(Sr)、カ
ルシウム(Ca)、銅(Cu)、及び酸素(O)の成分
からなる焼結体で、該焼結体の主要部を形成するBi−
Sr−Ca−Cuにおける成分の原子比を、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2とし、且
つ各成分の出発物質としてビスマス酸化物、ストロンチ
ウム炭酸化物、カルシウム炭酸化物、銅酸化物を用いた
ことを特徴とした超電導体。
(1) A sintered body consisting of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), with Bi-
The atomic ratio of the components in Sr-Ca-Cu is Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2, and A superconductor characterized in that bismuth oxide, strontium carbonate, calcium carbonate, and copper oxide are used as starting materials for each component.
(2)ビスマス酸化物、ストロンチウム炭酸化物、カル
シウム炭酸化物、銅酸化物の粉末を混合すると共に圧縮
成形した後、酸化性雰囲気中で830〜880℃の範囲
の温度で焼成して、Bi−Sr−Ca−Cu−Oからな
る焼結体を得、該焼結体の主要部を形成するBi−Sr
−Ca−Cuにおける成分の原子比が、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2であるこ
とを特徴とした超電導体の製造方法。
(2) After mixing and compression molding the powders of bismuth oxide, strontium carbonate, calcium carbonate, and copper oxide, the Bi-Sr A sintered body made of -Ca-Cu-O is obtained, and Bi-Sr forming the main part of the sintered body is obtained.
-The atomic ratio of the components in Ca-Cu is Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2 Characteristics of the manufacturing method of superconductors.
JP63106671A 1988-04-28 1988-04-28 Superconductor and production thereof Pending JPH01278420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106671A JPH01278420A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106671A JPH01278420A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01278420A true JPH01278420A (en) 1989-11-08

Family

ID=14439539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106671A Pending JPH01278420A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01278420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630874A1 (en) * 1993-06-23 1994-12-28 Hoechst Aktiengesellschaft Process for the production of tubular-shaped articles of high-Tc superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630874A1 (en) * 1993-06-23 1994-12-28 Hoechst Aktiengesellschaft Process for the production of tubular-shaped articles of high-Tc superconducting material
US5478801A (en) * 1993-06-23 1995-12-26 Hoechst Aktiengesellschaft Process for producing tubular parts of high-TC superconductor material

Similar Documents

Publication Publication Date Title
JPH01278420A (en) Superconductor and production thereof
JPH01278421A (en) Superconductor and production thereof
JPH01278451A (en) Superconductor and production thereof
JPH01278454A (en) Superconductor and production thereof
JPH01278452A (en) Superconductor and production thereof
JPH01278458A (en) Production of superconductor
JPH01278456A (en) Superconductor and production thereof
JPH01278453A (en) Superconductor and production thereof
JPH01278460A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278455A (en) Superconductor and production thereof
JPH01278464A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01278457A (en) Superconductor and production thereof
JPH01278466A (en) Production of superconductor
JPH01278462A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01278459A (en) Production of superconductor
JPS63288954A (en) Production of superconductor
JPH02196058A (en) Production of superconductor
JPH02196057A (en) Production of superconductor
JPH02196032A (en) Production of superconductor
JPH02196059A (en) Production of superconductor