JPH01278459A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH01278459A
JPH01278459A JP63106681A JP10668188A JPH01278459A JP H01278459 A JPH01278459 A JP H01278459A JP 63106681 A JP63106681 A JP 63106681A JP 10668188 A JP10668188 A JP 10668188A JP H01278459 A JPH01278459 A JP H01278459A
Authority
JP
Japan
Prior art keywords
powder
temperature
mixed
compound
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106681A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63106681A priority Critical patent/JPH01278459A/en
Publication of JPH01278459A publication Critical patent/JPH01278459A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductor capable of exhibiting superconductive characteristics at liquid nitrogen temperature or above by calcining mixed powder of Bi oxide and an Sr compound, pulverizing the calcined mixture, press forming the resultant processed powder and mixed powder of a Ca compound and Cu compound and sintering the compact in an oxidizing atmosphere. CONSTITUTION:Bi oxide powder is wet mixed with powder of an Sr compound (e.g. SrCO3) to provide mixed powder, which is then dried and calcined at a lower temperature than the sintering temperature in an oxidizing atmosphere and pulverized to provide processed powder, which is then wet mixed with powders of a Ca compound (e.g. CaCO3) and Cu oxide and dried to afford mixed powder. The resultant mixed powder is subsequently kneaded with a binder (e.g. PVA), granulated and press formed to provide a compact, which is then sintered at 830-880 deg.C in an oxidizing atmosphere to afford a Bi-Sr-Ca-Cu-O based superconductor at atomic ratios of Sr:Ca=1:0.3-3, Bi:Cu=1:1.8-4 and (Sr+Ca):(Bi+Cu)=1:1-2.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるBi発明
の概要 本発明は、ビスマス酸化物の粉末、ストロンチウム化合
物の粉末、を混合して仮焼成すると共にこれを粉砕して
加工粉末を得、これにカルシウム化合物の粉末、銅酸化
物の粉末を加えて混合し、これを加圧成形した後に酸化
性雰囲気中で本焼成して得た。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application The present invention is directed to a bismuth oxide powder whose electrical resistance becomes zero at a certain temperature. The processed powder is obtained by pre-calcining and pulverizing the processed powder, which is mixed with calcium compound powder and copper oxide powder, which is then pressure-molded and then main-calcined in an oxidizing atmosphere to obtain the processed powder. Ta.

ビスマス(Bi)、ストロンチウム(Sr)、カルシウ
ム(Ca)、銅(Cu)、及び酸素(O)の成分からな
る焼結体で、液体窒素温度以上(絶対温度77℃)以上
で超電導を示す超電導体の製造方法にある。
A sintered body consisting of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), which exhibits superconductivity at temperatures above liquid nitrogen temperature (absolute temperature 77°C). It's in the way the body is manufactured.

C6従来の技術 1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発が
進められている。実用化には、臨界温度(Tc)が高け
れば高い程、冷却コストが安くて済むため、より高温で
の超電導の可能性をめぐってその超電導材料の激しい開
発競争が展開されている。
C6 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been made toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、ストロンチウム・イッテルビウム
・銅酸化物・イツトリウム系銅酸化物といった超電導材
料が発見されたと発表されるに至っている。
Recently, it has been announced that superconducting materials such as strontium, ytterbium, copper oxide, and yttrium-based copper oxide have been discovered as materials that exhibit superconducting phenomena at temperatures above the temperature of liquid nitrogen of 77°C.

D9発明が解決しようとする課題 液体窒素の温度以上の温度で超電導現象を生じることか
ら、この超電導を利用した具体的な適用範囲が拡大して
きた。
D9 Problems to be Solved by the Invention Since superconductivity occurs at temperatures higher than the temperature of liquid nitrogen, the range of specific applications utilizing this superconductivity has expanded.

しかし、上述のようなイツトリウムは希少材料であるこ
とから、高価であり、超電導の適用範囲の拡大にはおの
ずと限界があり、安価な超電導材料の開発が望まれてい
るが、その開発は、まだ緒1こついたばかりであるのが
現状である。
However, since yttrium is a rare material as mentioned above, it is expensive, and there is a natural limit to the expansion of the application range of superconductivity.Therefore, there is a desire to develop inexpensive superconducting materials, but the development has not yet been completed. At present, we have only just gotten the hang of it.

これらの点に鑑み、本発明は、安価な材料にて77にで
超電導状態となる超電導体の製造方法を提供しようとす
るものである。
In view of these points, the present invention aims to provide a method for manufacturing a superconductor that becomes superconducting at 77 using inexpensive materials.

E1課題を解決するための手段と作用 発明者らは、種々の材料の配合、焼成温度等の実験を重
ねた結果、ビスマス(Bi)、ストロンチウム(Sr)
、カルシウム(Ca)、銅(Cu)、及び酸素(O)の
成分からなる焼結体で、ビスマス酸化物、ストロンチウ
ム化合物の粉末を混合し、この混合粉末を本焼成の温度
より低い温度にて仮焼成すると共にこれを粉砕して加工
粉末を得、これにカルシウム化合物の粉末、銅酸化物の
粉末を加えて混合し、これを加圧成形した後に酸化性雰
囲気中で且つ830〜880℃の範囲の温度で本焼成し
て焼結体することにより、Bi −S r−Ca−Cu
−0の成分からなり、且つI3i、Sr、Ca。
E1 Means and action for solving the problem As a result of repeated experiments on the composition of various materials, firing temperature, etc., the inventors found that bismuth (Bi), strontium (Sr)
, calcium (Ca), copper (Cu), and oxygen (O), mixed with bismuth oxide and strontium compound powder, and this mixed powder is heated at a temperature lower than the main firing temperature. Calcined and pulverized to obtain a processed powder, to which calcium compound powder and copper oxide powder are added and mixed, this is pressure molded and then heated at 830 to 880°C in an oxidizing atmosphere. Bi-S r-Ca-Cu is formed by main firing and sintering at a temperature within the range.
-0 components, and I3i, Sr, and Ca.

Cuの成分の原子比が、 S r : Ca= 1 : 0.3〜3B i : 
Cu= l : 1.8〜4(Sr+Ca): (Bi
+Cu)=1 : 1〜2の範囲であれば、液体窒素温
度の冷却で抵抗ゼロのち密でしかも特性の安定した超電
導体が得られることを見いだした。
The atomic ratio of the Cu components is Sr:Ca=1:0.3-3Bi:
Cu=l: 1.8~4(Sr+Ca): (Bi
+Cu)=1: It has been found that in the range of 1 to 2, a dense superconductor with zero resistance and stable characteristics can be obtained by cooling to liquid nitrogen temperature.

なお、ストロンチウム化合物としては、ストロンチウム
炭酸化物(SrCO3)、ストロンチウム酸化物(Sr
O)、 ストロンチウム水酸化物(S r (OH) *)、の
何れか一種以上を用いる。
In addition, as strontium compounds, strontium carbonate (SrCO3), strontium oxide (Sr
O) and strontium hydroxide (S r (OH) *).

また、カルシウム化合物としては、 カルシウム炭酸化物(G a COs )、カルシウム
酸化物(Cab)、 カルシウム水酸化物(Ca(OH)t)、の何れが一種
以上を用いる。
Further, as the calcium compound, one or more of calcium carbonate (G a COs ), calcium oxide (Cab), and calcium hydroxide (Ca(OH)t) is used.

なお、各成分の原子比及び温度が、前記の範囲外の場合
には、液体窒素で超電導が生じる焼結体を得ることがで
きなかった。
Note that when the atomic ratio and temperature of each component were outside the above ranges, it was not possible to obtain a sintered body in which superconductivity occurred in liquid nitrogen.

F、実施例 以下、本発明を実施例に基づいて説明する。F. Example Hereinafter, the present invention will be explained based on examples.

先ず、出発原料として粒径10μm以下のビスマス酸化
物(B i to s)の粉末、ストロンチウム炭酸化
物(SrCOs)の粉末、カルシウム炭酸化物(Ca 
COs )の粉末、銅酸化物(Cub)の粉末を各々1
1.1mo1%、22.2mo1%。
First, as starting materials, bismuth oxide (Bi to s) powder, strontium carbonate (SrCOs) powder, and calcium carbonate (Ca
1 each of COs) powder and copper oxide (Cub) powder.
1.1 mo1%, 22.2 mo1%.

22.2mo1%、44.4mo1%となるように秤量
する。
Weigh out 22.2 mo1% and 44.4 mo1%.

次に、n12o3.SrCOs、の粉末をボールミルで
、アルコール(又は原料粉末と反応しない溶媒)と玉石
を入れ数時間充分に混合し、得られたスラリーを約10
0℃の温度で乾燥する。
Next, n12o3. SrCOs powder is thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is
Dry at a temperature of 0°C.

次に乾燥して得た混合粉末をアルミナ容器に入れ、酸化
性雰囲気中にて後工程の本焼成の温度より低い温度(約
840℃)で約4時間加熱処理(いわゆる仮焼成)する
Next, the mixed powder obtained by drying is placed in an alumina container and heat-treated (so-called preliminary firing) for about 4 hours in an oxidizing atmosphere at a temperature (about 840° C.) lower than the temperature of the main firing in the subsequent step.

次に得られた焼成粉を充分に粉砕し微細化した加工粉を
得る。
Next, the obtained fired powder is sufficiently ground to obtain a fine processed powder.

次に、この加工粉末と、Ca COs、CuOの粉末と
をボールミルで、アルコール(又は原料粉末と反応しな
い溶媒)と玉石をいれ数時間充分に混合し、得られたス
ラリーを約100℃の温度で乾燥する。
Next, this processed powder and powders of Ca COs and CuO are thoroughly mixed in a ball mill with alcohol (or a solvent that does not react with the raw material powder) and cobblestones for several hours, and the resulting slurry is heated at a temperature of about 100°C. Dry with.

そして、バインダーとしてポリビニルアルコールを、原
料粉末に対して1重量%となるようにポリビニルアルコ
ール溶液の形で添加する。
Then, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution to 1% by weight based on the raw material powder.

そしてアルコールを更に加え充分に混練した後、乾燥し
、ふるいにて150メツシユ以下の顆粒状の造粒粉を得
る。
After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、l〜2T o 
n / c m″程度圧力で圧縮成形して、外径40m
m、厚み約6mmの成形体を作る。
Next, after filling this granulated powder into a mold, l~2T o
Compression molded at a pressure of about n/cm" to an outer diameter of 40 m.
m, and a molded body with a thickness of about 6 mm is made.

次に、この成形体を焼成容器内に設置し、酸化性雰囲気
で、前工程の熱処理温度の約840℃より高い温度で且
つ約880℃より低い温度(840〜880℃)で数時
間加熱して焼結体(セラミックス)を得る。
Next, this molded body is placed in a firing container and heated in an oxidizing atmosphere at a temperature higher than the heat treatment temperature of the previous step of about 840°C and lower than about 880°C (840 to 880°C) for several hours. to obtain a sintered body (ceramics).

上記の製造方法により得られた焼結体を、幅4m m 
、厚さ4mm、長さ40mmの形状に切り出して第1図
に示すように電極を設けて4端子法により、焼結体の抵
抗を測定した。
The sintered body obtained by the above manufacturing method was heated to a width of 4 mm.
The sintered body was cut into a shape with a thickness of 4 mm and a length of 40 mm, electrodes were provided as shown in FIG. 1, and the resistance of the sintered body was measured by a four-terminal method.

即ち第1図は抵抗値を測定するための説明図で、焼結体
Sの長方向の両端側に電流を流すための端子1.a′を
設け、その内側に抵抗値を測定するための電圧端子す、
b’を設け、これを液体窒素の低温槽に入れ、端子&、
a′に1アンペアの安定化電流を流して端子す、b’間
の電圧を電圧計(V)で測定して端子す、b’間の電圧
降下によって抵抗値を測定する。なお、Aは電流計を示
す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, in which terminals 1. a', and a voltage terminal for measuring the resistance value inside it.
b', put it in a liquid nitrogen cryostat, and connect the terminal &
A stabilized current of 1 ampere is passed through a', the voltage between terminals A and B' is measured with a voltmeter (V), and the resistance value is measured by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度的11
0にで超電導現象が始まり約85Kに至って電気抵抗が
ゼロになることが確認された。
Figure 2 shows the measurement results.
It was confirmed that the superconducting phenomenon begins at 0, and the electrical resistance becomes zero at about 85K.

他の組成比についても同様な実験を行ったので、前述の
例も含めて記載する。
Similar experiments were conducted with other composition ratios, so the above examples will also be described.

)・ん下宗伯 (7g、今時の量を原子田に寒竹1jニーj1の)但し
、表の実施例2が上述したものを示す。
)・Nge Sohaku (7g, the current amount is 1 j kani j 1) However, Example 2 in the table shows the above.

なお、上記の表の結果からBi、Sr、Ca。In addition, from the results in the above table, Bi, Sr, and Ca.

Cuの成分原子比の関係が、 同じアルカリ土類であるSr、Caの関係は、S r 
: Ca= 1 : 0.3〜3他のBi、Cuの関係
は、 B i : Cu= 1 : 1.8〜4そしてこれら
両者の関係は、 (Sr十Ca): (Bi+Cu)=1 : l〜2の
範囲の場合には、液体窒素で超電導現象(抵抗ゼロ又は
微小値)が生じる焼結体を得ることができた。
The relationship of the component atomic ratio of Cu is the same as that of Sr and Ca, which are alkaline earth elements, Sr
: Ca = 1 : 0.3~3 The relationship between other Bi and Cu is: B i : Cu = 1 : 1.8 ~ 4 and the relationship between these two is (Sr + Ca): (Bi + Cu) = 1: In the range of 1 to 2, it was possible to obtain a sintered body in which a superconducting phenomenon (resistance of zero or minute value) occurred in liquid nitrogen.

しかし、温度が830℃未満、880℃超過では所望の
超電導現象が生じる焼結体を得ることができなかった。
However, if the temperature is lower than 830°C or higher than 880°C, a sintered body in which the desired superconducting phenomenon occurs cannot be obtained.

G6発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において完全に超電導状態となる。
Effects of the G6 Invention As described above, the superconductor according to the present invention has a temperature of liquid nitrogen (
It becomes completely superconducting at 77K).

しかも、従来のイツトリウムを用いたものは、Te3>
’90に程度であったが、本発明のものにあっては、約
105にであり、より高温度で超電導現象を生じること
から安定した超電導状態を維持できるものである。
Moreover, the conventional one using yttrium is Te3>
However, in the case of the present invention, the temperature was about 105, which means that a stable superconducting state can be maintained because the superconducting phenomenon occurs at a higher temperature.

その上、原料粉末を予め本焼成温度以下の温度きる。Moreover, the raw material powder is heated in advance to a temperature below the main firing temperature.

しかも安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、−層実用化に近ず
き、特に電力、運輸等に関連した電気抵抗、及び精密計
器素子、その他エネルギー交換などの分野に利用可能と
なる等極めて優れた効果を発揮する。
Moreover, since superconductors can be formed using inexpensive raw materials and can be cooled at liquid nitrogen temperatures, they can be used for practical applications, especially in electrical resistance and precision instrument elements related to electric power, transportation, etc. It can be used in other fields such as energy exchange, etc., and exhibits extremely excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(m Q c m )の土、&′・・
・電流供給用端子、b、b’・・・電圧測定端子、S・
・・焼結体。 第1図 抵抗値の測定方法 壱対温度(K)□
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
), the resistance value (m Q cm ) of soil, &′...
・Current supply terminal, b, b'...voltage measurement terminal, S・
...Sintered body. Fig. 1 Method of measuring resistance value 1 vs. temperature (K) □

Claims (1)

【特許請求の範囲】[Claims] (1)ビスマス酸化物の粉末と、ストロンチウム化合物
の粉末と、とを混合して混合粉末を得、該混合粉末を本
焼成の温度より低い温度にて仮焼成し、該仮焼成物を粉
砕して加工粉末を得る工程と、該加工粉末と、カルシウ
ム化合物の粉末と、銅酸化物の粉末とを混合して混合粉
末を得、該混合粉を加圧して成形体を得る工程と、 該成形体を酸化性雰囲気中で且つ830〜880℃の範
囲の温度で本焼成して焼結体を得る工程とからなり、 焼結体がビスマス(Bi)、ストロンチウム(Sr)、
カルシウム(Ca)、銅(Cu)、及び酸素(O)の成
分からなり、且つBi−Sr−Ca−Cuにおける成分
の原子比が、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2であるこ
とを特徴とした超電導体の製造方法。
(1) Bismuth oxide powder and strontium compound powder are mixed to obtain a mixed powder, the mixed powder is pre-fired at a temperature lower than the main firing temperature, and the pre-fired product is pulverized. a step of mixing the processed powder, a calcium compound powder, and a copper oxide powder to obtain a mixed powder, and pressurizing the mixed powder to obtain a molded body; The sintered body contains bismuth (Bi), strontium (Sr),
It consists of calcium (Ca), copper (Cu), and oxygen (O), and the atomic ratio of the components in Bi-Sr-Ca-Cu is Sr:Ca=1:0.3~3 Bi:Cu= 1:1.8-4 (Sr+Ca):(Bi+Cu)=1:1-2 A method for producing a superconductor.
JP63106681A 1988-04-28 1988-04-28 Production of superconductor Pending JPH01278459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106681A JPH01278459A (en) 1988-04-28 1988-04-28 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106681A JPH01278459A (en) 1988-04-28 1988-04-28 Production of superconductor

Publications (1)

Publication Number Publication Date
JPH01278459A true JPH01278459A (en) 1989-11-08

Family

ID=14439808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106681A Pending JPH01278459A (en) 1988-04-28 1988-04-28 Production of superconductor

Country Status (1)

Country Link
JP (1) JPH01278459A (en)

Similar Documents

Publication Publication Date Title
JPH01278459A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01278460A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH01278462A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH02196032A (en) Production of superconductor
JPH01278452A (en) Superconductor and production thereof
JPH01278464A (en) Production of superconductor
JPH01278420A (en) Superconductor and production thereof
JPH01278466A (en) Production of superconductor
JPH01278456A (en) Superconductor and production thereof
JPH01278454A (en) Superconductor and production thereof
JPH02196057A (en) Production of superconductor
JPH02196059A (en) Production of superconductor
JPH01278451A (en) Superconductor and production thereof
JPH01278453A (en) Superconductor and production thereof
JPH02196058A (en) Production of superconductor
JPS63288945A (en) Superconductor
JPH01278455A (en) Superconductor and production thereof
JPS63291853A (en) Production of superconductor
JPS63288951A (en) Production of superconductor