JPH01278454A - Superconductor and production thereof - Google Patents
Superconductor and production thereofInfo
- Publication number
- JPH01278454A JPH01278454A JP63106675A JP10667588A JPH01278454A JP H01278454 A JPH01278454 A JP H01278454A JP 63106675 A JP63106675 A JP 63106675A JP 10667588 A JP10667588 A JP 10667588A JP H01278454 A JPH01278454 A JP H01278454A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- temperature
- superconductor
- compact
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010949 copper Substances 0.000 claims abstract description 22
- 239000011575 calcium Substances 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 13
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims abstract description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000005751 Copper oxide Substances 0.000 claims abstract description 5
- 229910000416 bismuth oxide Inorganic materials 0.000 claims abstract description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000292 calcium oxide Substances 0.000 claims abstract description 5
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 5
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910014454 Ca-Cu Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910002480 Cu-O Inorganic materials 0.000 claims 1
- 238000000748 compression moulding Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 20
- 239000007788 liquid Substances 0.000 abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 8
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 230000001590 oxidative effect Effects 0.000 abstract description 4
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 abstract 2
- 238000001354 calcination Methods 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- -1 strontium-ytterbium-copper oxides Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以上で超電導特性を
示す超電導体に関する。DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and particularly to a superconductor which exhibits superconducting properties at temperatures above liquid nitrogen temperature.
Bi発明の概要
本発明は、出発物質としてビスマス酸化物、ストロンチ
ウム酸化物、カルシウム酸化物、銅酸化物を用いた、ビ
スマス(I3i)、ストロンチウム(Sr)、カルシウ
ム(Ca)、銅(Cu)、及び酸素(O)の成分からな
ら焼結体で、液体窒素温度以」二(絶対温度77℃)以
上で超電導を示す超電導体とその製造方法にある。Summary of Bi Invention The present invention provides bismuth (I3i), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), the present invention provides a superconductor which is a sintered body and exhibits superconductivity at a temperature higher than liquid nitrogen temperature (absolute temperature 77°C), and a method for producing the same.
C1従来の技術
1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発が
進められている。実用化には、臨界温度(Tc)が高け
れば高い程、冷却コストか安くて済むため、より高温で
の超電導の可能性をめぐってその超電導飼料の激しい開
発競争が展開されている。C1 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been made toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting feed for the possibility of superconducting at higher temperatures.
最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、ストロンチウム・イッテルビウム
・銅酸化物、イツトリウム系銅酸化物といった超電導材
料が発見されたと発表されるに至っている。Recently, it has been announced that superconducting materials such as strontium-ytterbium-copper oxides and yttrium-based copper oxides have been discovered as materials that exhibit superconducting phenomena at temperatures above the temperature of liquid nitrogen of 77°C.
D1発明が解決しようとする課題
液体窒素の温度以上の温度で超電導現象を生じることか
ら、この超電導を利用した具体的な適用範囲が拡大して
きた。D1 Problems to be Solved by the Invention Since superconductivity occurs at temperatures higher than the temperature of liquid nitrogen, the scope of specific applications utilizing this superconductivity has expanded.
しかし、上述のようなイツトリウムは希少材料であるこ
とから、高価であり、超電導の適用範囲の拡大にはおの
ずと限界かあり、安価な超電導材料の開発が望まれてい
るが、その開発は、まだ緒についたばかりであるのが現
状である。However, since yttrium is a rare material as mentioned above, it is expensive, and there is a natural limit to the expansion of the application range of superconductivity.Therefore, there is a desire to develop inexpensive superconducting materials, but such development has not yet been achieved. The current situation is that it has just started.
これらの点に鑑み、本発明は、安価な材料にて、77に
で超電導状態となる超電導体とその製造方法を提供しよ
うとする乙のである。In view of these points, the present invention aims to provide a superconductor that becomes superconducting at 77 using inexpensive materials, and a method for manufacturing the same.
E1課題を解決するための手段と作用
発明者らは、種々の材料の配合、焼成温度等の実験を重
ねた結果、ビスマス(Bi)、ストロンチウム(Sr)
、カルシウム(ca)、銅(Cu)、及び酸素(O)の
成分からなる焼結体で、この焼結体を形成するBi−S
r−Ca−Cuにおける成分の原子比が、
Sr +Ca=I :0.3〜3
Bi :Cu=I : 1.8〜4
(Sr+Ca)+ (Bi+Cu)=l:1〜2の範囲
であって、しかも
各成分の出発物質としてビスマス酸化物、ストロンチウ
ム酸化物、カルシウム酸化物、銅酸化物を用いることに
より、液体窒素による冷却で抵抗ゼロのち密でしかも特
性の安定した超電導体が得られることを見いだした。E1 Means and action for solving the problem As a result of repeated experiments on the composition of various materials, firing temperature, etc., the inventors found that bismuth (Bi), strontium (Sr)
, calcium (ca), copper (Cu), and oxygen (O), and the Bi-S that forms this sintered body
The atomic ratio of the components in r-Ca-Cu is in the range of Sr + Ca = I: 0.3 to 3 Bi: Cu = I: 1.8 to 4 (Sr + Ca) + (Bi + Cu) = l: 1 to 2. Moreover, by using bismuth oxide, strontium oxide, calcium oxide, and copper oxide as starting materials for each component, a dense superconductor with zero resistance and stable characteristics can be obtained by cooling with liquid nitrogen. I found it.
しかも、これら各材料の粉末を混合して造粒粉を作り、
これを圧縮成形して酸化性雰囲気中で830〜880℃
の範囲の温度で焼結することにより、13 i −S
r−Cu−0の成分からなる超電導体を容易に得られる
ことを見いだした。Moreover, by mixing the powders of these materials to make granulated powder,
This was compression molded at 830-880℃ in an oxidizing atmosphere.
By sintering at a temperature in the range of 13i-S
It has been found that a superconductor consisting of r-Cu-0 can be easily obtained.
なお、I’3i−Sr−Ca−Cuにおいて、各成分の
原子比が、
Sr:Ca=1:0.3〜3
Bi :Cu=1 : 1.8〜4
(Sr+Ca): (Bi+Cu)=I : 1〜2の
範囲外の場合には、液体窒素で超電導が生じる焼結体を
得ることができなかった。In addition, in I'3i-Sr-Ca-Cu, the atomic ratio of each component is as follows: Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca): (Bi+Cu)= When I was outside the range of 1 to 2, it was not possible to obtain a sintered body in which superconductivity occurred in liquid nitrogen.
F8実施例
以下、本発明を実施例に基づいて説明する。先ず、出発
原料として粒径10μm以下のビスマス酸化物(Bjt
Oi)の粉末、ストロンチウム酸化物(S r O)の
粉末、カルシウム酸化物(Cab)の粉末、銅酸化物(
Cu O)の粉末を各々11.1mo1%、22.2m
o 1%、22.2mo1%。F8 Example Hereinafter, the present invention will be explained based on an example. First, bismuth oxide (Bjt) with a particle size of 10 μm or less is used as a starting material.
Oi) powder, strontium oxide (S r O) powder, calcium oxide (Cab) powder, copper oxide (
11.1mol% and 22.2m of CuO) powder, respectively.
o 1%, 22.2mo1%.
44.4mo1%となるように秤量する。Weigh it so that it becomes 44.4 mo1%.
次に、これらの粉末をボールミルで、アルコール(又は
アセトン)と玉石を入れ数時間充分に混合し、得られた
スラリーを約100℃の温度で乾燥する。Next, these powders are thoroughly mixed in a ball mill with alcohol (or acetone) and cobblestone added thereto for several hours, and the resulting slurry is dried at a temperature of about 100°C.
次に、バインダーとしてポリビニルアルコールを、原料
粉末に対して1重量%となるようにポリビニルアルコー
ル溶液の形で添加する。Next, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution so that the amount is 1% by weight based on the raw material powder.
そしてアルコールを更に加え充分に混練した後、乾燥し
、ふるいにて150メツシユ以下の顆粒状の造粒粉を得
る。After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.
次に、この造粒粉を金型に充填した後、1〜2T o
n 7cm”程度の圧力で圧縮成形して、外径40zx
、厚み約6xxの成形体を作る。Next, after filling this granulated powder into a mold, 1~2T o
Compression molded at a pressure of about 7cm" to an outer diameter of 40zx
, a molded body with a thickness of about 6xx is made.
次に、この成形体を焼成容器内に設置し、酸化性雰囲気
で、且つ約830〜880℃の温度で数時間加熱して焼
結体(セラミックス)を得る。Next, this molded body is placed in a firing container and heated in an oxidizing atmosphere at a temperature of about 830 to 880° C. for several hours to obtain a sintered body (ceramics).
上記の製造方法により得られた焼結体を、約4■、厚さ
4xx、長さ40ixの形状に切り出して第1図に示す
ように電極を設けて4端子法により、焼結体の抵抗を測
定した。The sintered body obtained by the above manufacturing method was cut into a shape of approximately 4mm, 4xx in thickness, and 40ix in length. Electrodes were provided as shown in Figure 1, and the resistance of the sintered body was measured using the 4-terminal method. was measured.
即ち第1図は、抵抗値を測定するための説明図で、焼結
体Sの長方向の両端側に電流を流すための端子a、a′
を設け、その内側に抵抗値を測定するための電圧端子す
、b’を設け、これを液体窒素の低温槽に入れ、端子a
、a′に1アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。That is, FIG. 1 is an explanatory diagram for measuring the resistance value, and terminals a and a' are used to flow current to both ends of the sintered body S in the longitudinal direction.
, and voltage terminals A and B' for measuring the resistance value are provided inside the terminal.
, a' is supplied with a stabilized current of 1 ampere to the terminals, b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.
第2図は、その測定結果を示すもので、絶対温度的11
0にで超電導現象が始まり約85Kに至って電気抵抗が
ゼロになることが確認された。Figure 2 shows the measurement results.
It was confirmed that the superconducting phenomenon begins at 0, and the electrical resistance becomes zero at about 85K.
他の組成比についても同様な実験を行ったので、面述の
例も含めて記載する。Similar experiments were conducted for other composition ratios, so the description will also include surface examples.
(混合時の量を原子比に換算したもの)但し、表の実施
例2が上述したものを示す。(Amounts at the time of mixing are converted into atomic ratios) However, Example 2 in the table shows the above.
なお、上記の表の結果からBi、Sr、Ca。In addition, from the results in the above table, Bi, Sr, and Ca.
Cuの成分原子比の関係が、同じアルカリ土類であるS
r、Caの関係を、
Sr :Ca=1 :0.3〜3
他のBi、Cuの関係を、
Bj :Cu=I : 1.8〜4
そして、両晋の関係を、
(Sr+Ca)+ (Bi+Cu)=1 : 1〜2の
範囲の場合には、液体窒素で超電導現象(抵抗ゼロ又は
微小値)が生じ、それ以外の場合には生じないものであ
った。S with the same alkaline earth component atomic ratio relationship of Cu
The relationship between r and Ca is: Sr:Ca=1:0.3~3 The relationship between other Bi and Cu is: Bj:Cu=I: 1.8~4 And the relationship between both Jin and Jin is (Sr+Ca)+ (Bi+Cu)=1: In the range of 1 to 2, a superconducting phenomenon (resistance zero or minute value) occurred in liquid nitrogen, and did not occur in other cases.
G6発明の効果
以上のように本発明による超電導体は、液体窒素温度(
77K)において超電導状態となる。Effects of the G6 Invention As described above, the superconductor according to the present invention has a temperature of liquid nitrogen (
It becomes superconducting at 77K).
しから、従来のイツトリウムを用いたものは、T cが
90に程度・7.+、・、1=が、本発明のものにあっ
ては、約105にであり、より高温度で超電導現象を生
じることから安定した超電導状態を維持できるしのであ
る。However, conventional products using yttrium have a T c of about 90.7. +, ·, 1= is about 105 in the case of the present invention, and since the superconducting phenomenon occurs at a higher temperature, a stable superconducting state can be maintained.
その上、原材料の各成分は、製造過程で使用しても残r
1:する可能性の少ないアルコールと反応しないことか
ら、取り扱い容易なアルコールが使用でき、しかも反応
分解時にCOtガスの発生が少なく品質向上に寄与でき
る。Moreover, each component of the raw materials remains unused even after being used in the manufacturing process.
1: Because it does not react with alcohols that are unlikely to react, alcohols that are easy to handle can be used, and less COt gas is generated during reaction decomposition, contributing to quality improvement.
しから安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、−層実用化に近付
き、特に電力、運輸等に関連した電気抵抗、及び精密計
器素子、その他エネルギー変換などの分野に利用可能と
なる等極めて侵れた効果を発揮する。However, since superconductors can be formed using inexpensive raw materials and only need to be cooled at liquid nitrogen temperatures, the practical application of superconductors has been brought closer, especially for electric resistance related to electric power, transportation, etc., precision instrument elements, etc. It can be used in fields such as energy conversion, and exhibits extremely advanced effects.
第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(次Ωc!1)の特性曲線図を示す。
a、 a’・・電流供給用端子、b、b’・・・電圧測
定端子、S・・・焼結体。
第1図
抵抗値の測定方法
第2図
絶対温度(K)□Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) shows a characteristic curve diagram of the resistance value (the next Ωc!1). a, a'...terminal for current supply, b, b'...voltage measurement terminal, S...sintered body. Figure 1 How to measure resistance Figure 2 Absolute temperature (K) □
Claims (2)
ルシウム(Ca)、銅(Cu)、及び酸素(O)の成分
からなる焼結体で、該焼結体の主要部を形成するBi−
Sr−Ca−Cuにおける成分の原子比を、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2とし、且
つ各成分の出発物質としてビスマス酸化物、ストロンチ
ウム酸化物、カルシウム酸化物、銅酸化物を用いたこと
を特徴とした超電導体。(1) A sintered body consisting of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), with Bi-
The atomic ratio of the components in Sr-Ca-Cu is Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2, and A superconductor characterized in that bismuth oxide, strontium oxide, calcium oxide, and copper oxide are used as starting materials for each component.
ウム酸化物、銅酸化物の粉末を混合すると共に圧縮成形
した後、酸化性雰囲気中で830〜880℃の範囲の温
度で焼成して、Bi−Sr−Ca−Cu−Oからなる焼
結体を得、該焼結体の主要部を形成するBi−Sr−C
a−Cuにおける成分の原子比が、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2であるこ
とを特徴とした超電導体の製造方法。(2) After mixing and compression molding the powders of bismuth oxide, strontium oxide, calcium oxide, and copper oxide, the Bi-Sr - Obtain a sintered body consisting of Ca-Cu-O, and Bi-Sr-C forming the main part of the sintered body
The atomic ratio of the components in a-Cu is as follows: Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2 A method for manufacturing superconductors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63106675A JPH01278454A (en) | 1988-04-28 | 1988-04-28 | Superconductor and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63106675A JPH01278454A (en) | 1988-04-28 | 1988-04-28 | Superconductor and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01278454A true JPH01278454A (en) | 1989-11-08 |
Family
ID=14439646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63106675A Pending JPH01278454A (en) | 1988-04-28 | 1988-04-28 | Superconductor and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01278454A (en) |
-
1988
- 1988-04-28 JP JP63106675A patent/JPH01278454A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01278454A (en) | Superconductor and production thereof | |
JPH01278452A (en) | Superconductor and production thereof | |
JPH01278451A (en) | Superconductor and production thereof | |
JPH01278420A (en) | Superconductor and production thereof | |
JPH01278456A (en) | Superconductor and production thereof | |
JPH01278458A (en) | Production of superconductor | |
JPH01278453A (en) | Superconductor and production thereof | |
JPH01278457A (en) | Superconductor and production thereof | |
JPH01278421A (en) | Superconductor and production thereof | |
JPH01278455A (en) | Superconductor and production thereof | |
JPH01278462A (en) | Production of superconductor | |
JPH01278465A (en) | Production of superconductor | |
JPH01278467A (en) | Production of superconductor | |
JPH01278460A (en) | Production of superconductor | |
JPH01278459A (en) | Production of superconductor | |
JPH01278468A (en) | Production of superconductor | |
JPH01278461A (en) | Production of superconductor | |
JPH01278463A (en) | Production of superconductor | |
JPH01278466A (en) | Production of superconductor | |
JPS63291853A (en) | Production of superconductor | |
JPH01278464A (en) | Production of superconductor | |
JPS63285161A (en) | Superconductor and production thereof | |
JPS63288947A (en) | Superconductor and its production | |
JPS63288954A (en) | Production of superconductor | |
JPS63288951A (en) | Production of superconductor |