JPH01278455A - Superconductor and production thereof - Google Patents

Superconductor and production thereof

Info

Publication number
JPH01278455A
JPH01278455A JP63106676A JP10667688A JPH01278455A JP H01278455 A JPH01278455 A JP H01278455A JP 63106676 A JP63106676 A JP 63106676A JP 10667688 A JP10667688 A JP 10667688A JP H01278455 A JPH01278455 A JP H01278455A
Authority
JP
Japan
Prior art keywords
oxide
sintered body
superconductor
powders
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106676A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Yoshiyuki Kashiwagi
佳行 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63106676A priority Critical patent/JPH01278455A/en
Publication of JPH01278455A publication Critical patent/JPH01278455A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductor capable of exhibiting superconductive characteristics at liquid nitrogen temperature or above by mixing powders of Bi oxide, Sr oxide, Ca hydroxide and Cu oxide, compression forming the mixed powders and calcining the resultant compact in an oxidizing atmosphere. CONSTITUTION:Powders of Bi oxide, Sr oxide, Ca hydroxide and Cu oxide are mixed so as to provide atomic ratios of Sr:Ca=1:0.3-3, Bi:Cu=1:1.8-4 and (Sr+Ca):(Bi+Cu)=1:1-2 and afford mixed powder. The resultant mixed powder is then compression formed and calcined at 830-880 deg.C in an oxidizing atmosphere to provide a superconductor consisting of Bi, Sr, Ca, Cu and O.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、一定の温度で電気抵抗がゼロになるいわゆる
超電導体に係り、特に液体窒素温度以上で超電導特性を
示す超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention relates to a so-called superconductor whose electrical resistance becomes zero at a certain temperature, and particularly to a superconductor which exhibits superconducting properties at temperatures above liquid nitrogen temperature.

Bi発明の概要 本発明は、出発物質としてビスマス酸化物、ストロンヂ
ウム酸化物、カルシウム水酸化物、銅酸化物を用いた、
ビスマス(Bi)、ストロンチウム(Sr)、カルシウ
ム(Ca)、銅(Cu)、及び酸素(O)の成分からな
ら焼結体で、液体窒素温度以上(絶対温度77℃)以上
で超電導を示す超電導体とその製造方法にある。
Summary of Bi Invention The present invention uses bismuth oxide, strondium oxide, calcium hydroxide, and copper oxide as starting materials.
A sintered body consisting of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O) is a superconductor that exhibits superconductivity above the liquid nitrogen temperature (absolute temperature of 77°C). It's in the body and how it's manufactured.

C0従来の技術 1911年にカメリング・オンネスにより超電導現象が
発見されて以来、実用化に向けてさまざまな研究開発が
進められている。実用化には、臨界温度(Tc)が高け
れば高い程、冷却コストが安くて済むため、より高温で
の超電導の可能性をめぐってその超電導材料の激しい開
発競争が展開されている。
C0 Conventional Technology Since the discovery of superconductivity by Kamerling Onnes in 1911, various research and development efforts have been made toward practical application. For practical application, the higher the critical temperature (Tc), the lower the cooling cost, so there is intense competition to develop superconducting materials with the potential for superconducting at higher temperatures.

最近、液体窒素の温度77に以上の温度にて超電導現象
を生じるものとして、ストロンチウム・イッテルビウム
・銅酸化物、イツトリウム系銅酸化物といった超電導材
料が発見されたと発表されるに至っている。
Recently, it has been announced that superconducting materials such as strontium-ytterbium-copper oxides and yttrium-based copper oxides have been discovered as materials that exhibit superconducting phenomena at temperatures above the temperature of liquid nitrogen of 77°C.

D9発明が解決しようとする課題 液体窒素の温度以上の温度で超電導現象を生じることか
ら、この超電導を利用した具体的な適用範囲が拡大して
きた。
D9 Problems to be Solved by the Invention Since superconductivity occurs at temperatures higher than the temperature of liquid nitrogen, the range of specific applications utilizing this superconductivity has expanded.

しかし、上述のようなイツトリウムは希少材料であるこ
とから、高価であり、超電導の適用範囲の拡大にはおの
ずと限界があり、安価な超電導材料の開発が望まれてい
るが、その開発は、まだ緒についたばかりであるのが現
状である。
However, since yttrium is a rare material as mentioned above, it is expensive, and there is a natural limit to the expansion of the application range of superconductivity.Therefore, there is a desire to develop inexpensive superconducting materials, but the development has not yet been completed. The current situation is that it has just started.

これらの点に鑑み、本発明は、安価な材料にて、77に
で超電導状態となる超電導体とその製造方法を提供しよ
うとするものである。
In view of these points, the present invention aims to provide a superconductor that becomes superconducting at 77 using inexpensive materials and a method for manufacturing the same.

60課題を解決するための手段と作用 発明者らは、種々の材料の配合、焼成温度等の実験を重
ねた結果、ビスマス(B i ) 、ストロンチウム(
Sr)、カルシウム(Ca) 、銅(Cu)、及び酸素
(O)の成分からなる焼結体で、この焼結体を形成する
Bi−Sr−Ca−Cuにおける成分の原子比が、 S r : Ca= l : 0.3〜3I3i :C
υ=l:1.8〜4 (Sr+Ca)+ (Bf+Cu)−1:1〜2の範囲
であって、しかも 各成分の出発物質としてビスマス酸化物、ストロンヂウ
ム酸化物、カルシウム水酸化物、銅酸化物を用いること
により、液体窒素による冷却で抵抗ゼロのち密でしかも
特性の安定した超電導体が得られることを見いだした。
60 Means and Effects for Solving the Problems As a result of repeated experiments with various material formulations, firing temperatures, etc., the inventors found that bismuth (B i ), strontium (
Sr), calcium (Ca), copper (Cu), and oxygen (O), and the atomic ratio of the components in Bi-Sr-Ca-Cu forming this sintered body is S r : Ca=l : 0.3~3I3i :C
υ=l: 1.8-4 (Sr+Ca)+ (Bf+Cu)-1: in the range of 1-2, and the starting materials for each component are bismuth oxide, strondium oxide, calcium hydroxide, and copper oxide. We have discovered that by cooling with liquid nitrogen, a dense superconductor with zero resistance and stable properties can be obtained.

しかも、これら各材料の粉末を混合して造粒粉を作り、
これを圧縮成形して酸化性雰囲気中で830〜880℃
の範囲の温度で焼結することにより、Bi−Sr−Cu
−0の成分からなる超電導体を容易に得られることを見
いだした。
Moreover, by mixing the powders of these materials to make granulated powder,
This was compression molded at 830-880℃ in an oxidizing atmosphere.
Bi-Sr-Cu by sintering at a temperature in the range of
It has been found that a superconductor consisting of -0 components can be easily obtained.

なお、Bi−Sr−Ca−Cuにおいて、各成分の原子
比が、 Sr :Ca=1 : 0.3〜3 r3i :Cu=1 : 1.8〜4 (Sr+Ca): (Bi+cu) −1: I 〜2
の範囲外の場合には、液体窒素で超電導が生じる焼結体
を得ることができなかった。
In addition, in Bi-Sr-Ca-Cu, the atomic ratio of each component is as follows: Sr:Ca=1:0.3~3 r3i:Cu=1:1.8~4 (Sr+Ca): (Bi+cu) -1: I ~2
Outside the range, it was not possible to obtain a sintered body in which superconductivity occurred in liquid nitrogen.

F、実施例 以下、本発明を実施例に基づいて説明する。先ず、出発
原料として粒径10μm以下のビスマス酸化物(Biz
O3)の粉末、ストロンチウム酸化物(SrO)の粉末
、カルシウム水酸化物(Ca(Of−1) z)の粉末
、銅酸化物(Cub)の粉末を各々I1.1mo1%、
22.2mo1%、22.2mo1%、44.4mo1
%となるように秤量する。
F. Examples The present invention will be explained below based on examples. First, as a starting material, bismuth oxide (Biz
O3) powder, strontium oxide (SrO) powder, calcium hydroxide (Ca(Of-1) z) powder, and copper oxide (Cub) powder each at I1.1 mo1%,
22.2mo1%, 22.2mo1%, 44.4mo1
%.

次に、これらの粉末をボールミルで、アルコール(又は
アセトン)と玉石を入れ数時間充分に混合し、得られた
スラリーを約100℃の温度で乾燥する。
Next, these powders are thoroughly mixed in a ball mill with alcohol (or acetone) and cobblestone added thereto for several hours, and the resulting slurry is dried at a temperature of about 100°C.

次に、バインダーとしてポリビニルアルコールを、原料
粉末に対して1重量%となるようにポリビニルアルコー
ル溶液の形で添加する。
Next, polyvinyl alcohol is added as a binder in the form of a polyvinyl alcohol solution so that the amount is 1% by weight based on the raw material powder.

そしてアルコールを更に加え充分に混練した後、乾燥し
、ふるいにて150メツシユ以下の顆粒状の造粒粉を得
る。
After further adding alcohol and thoroughly kneading, the mixture is dried and sieved to obtain granulated powder having a size of 150 mesh or less.

次に、この造粒粉を金型に充填した後、1〜2Ton/
Cx’程度の圧力で圧縮成形して、外径40zm、厚み
約6■の成形体を作る。
Next, after filling this granulated powder into a mold, 1 to 2 tons/
Compression molding is performed at a pressure of approximately Cx' to produce a molded body with an outer diameter of 40 zm and a thickness of approximately 6 cm.

次に、この成形体を焼成容器内に設置し、酸化性雰囲気
で、且つ約830〜880℃の温度で数時間加熱して焼
結体(セラミックス)を得る。
Next, this molded body is placed in a firing container and heated in an oxidizing atmosphere at a temperature of about 830 to 880° C. for several hours to obtain a sintered body (ceramics).

上記の製造方法により得られた焼結体を、約41、厚さ
4xm、長さ4011の形状に切り出して第1図に示す
ように電極を設けて4端子法により、焼結体の抵抗を測
定した。
The sintered body obtained by the above manufacturing method was cut into a shape of approximately 41mm, 4xm thick, and 4011mm long. Electrodes were provided as shown in Figure 1, and the resistance of the sintered body was determined by the four-terminal method. It was measured.

即ち第1図は、抵抗値を測定するための説明図で、焼結
体Sの長方向の両端側に電流を流すための端子a、a′
を設け、その内側に抵抗値を測定するための電圧端子す
、b’を設け、これを液体窒素の低温槽に入れ、端子&
、a′に1アンペアの安定化電流を流して端子す、b’
間の電圧を電圧計(V)で測定して端子す、b’間の電
圧降下によって抵抗値を測定する。なお、Aは電流計を
示す。
That is, FIG. 1 is an explanatory diagram for measuring the resistance value, and terminals a and a' are used to flow current to both ends of the sintered body S in the longitudinal direction.
, and voltage terminals S and B' for measuring the resistance value are provided inside it, and this is placed in a liquid nitrogen cryostat, and the terminals &
, a' is supplied with a stabilized current of 1 ampere to the terminals, b'
Measure the voltage between terminals A and B with a voltmeter (V), and measure the resistance value by the voltage drop between terminals A and B'. Note that A indicates an ammeter.

第2図は、その測定結果を示すもので、絶対温度的11
0にで超電導現象が始まり約85Kに至って電気抵抗が
ゼロになることが確認された。
Figure 2 shows the measurement results.
It was confirmed that the superconducting phenomenon begins at 0, and the electrical resistance becomes zero at about 85K.

他の組成比についても同様な実験を行ったので、前述の
例も含めて記載する。
Similar experiments were conducted with other composition ratios, so the above examples will also be described.

(混合時の量を原子比に換算したもの)但し、表の実施
例2が上述したものを示す。
(Amounts at the time of mixing are converted into atomic ratios) However, Example 2 in the table shows the above.

なお、上記の表の結果からBi、Sr、Ca。In addition, from the results in the above table, Bi, Sr, and Ca.

Cuの成分原子比の関係が、同じアルカリ土類であるS
r、Caの関係を、 Sr :Ca=1 +0.3〜3 他のI3i、Cuの関係を、 Bi :Cu=I : 1.8〜4 そして、両者の関係を、 (Sr+Ca): ([3i+Cu)=l : 1〜2
の範囲の場合には、液体窒素で超電導現象(抵抗ゼロ又
は微小値)が生じ、それ以外の場合には生じないもので
あった。
S with the same alkaline earth component atomic ratio relationship of Cu
The relationship between r and Ca is: Sr:Ca=1 +0.3~3 The relationship between other I3i and Cu is: Bi:Cu=I: 1.8~4 And the relationship between them is: (Sr+Ca): ([ 3i+Cu)=l: 1~2
In the case of the range of , superconductivity phenomenon (resistance zero or minute value) occurred in liquid nitrogen, and did not occur in other cases.

G1発明の効果 以上のように本発明による超電導体は、液体窒素温度(
77K)において超電導状態となる。
G1 Effects of the Invention As described above, the superconductor according to the present invention has a temperature of liquid nitrogen (
It becomes superconducting at 77K).

しかも、従来のイツトリウムを用いたものは、Tcが9
0に程度であったが、本発明のらのにあっては、約10
5にであり、より高温度で超電導現象を生じることから
安定した超電導状態を維持できるものである。
Moreover, the conventional one using yttrium has a Tc of 9
However, in the case of the rat of the present invention, it was about 10
5, and since the superconducting phenomenon occurs at higher temperatures, a stable superconducting state can be maintained.

その上、原材料の各成分は、製造過程で使用しても残存
する可能性の少ないアルコールと反応しないことから、
取り扱い容易なアルコールが使用でき、しかも反応分解
時にCO,ガスの発生がなく品質向上に寄与できる。
Furthermore, each component of the raw materials does not react with alcohol, which is unlikely to remain even if used during the manufacturing process.
Alcohol, which is easy to handle, can be used, and there is no generation of CO or gas during reaction and decomposition, contributing to quality improvement.

しかも安価な原材料にて超電導体を形成でき、その上液
体窒素温度での冷却でよいことから、−層実用化に近付
き、特に電力、運輸等に関連した電気抵抗、及び精密計
器素子、その他エネルギー変換などの分野に利用可能と
なる等極めて優れた効果を発揮する。
Moreover, since superconductors can be formed using inexpensive raw materials and only need to be cooled at liquid nitrogen temperatures, they are close to practical application, especially for electric resistance related to power, transportation, etc., precision instrument elements, and other energy sources. It can be used in fields such as conversion, and exhibits extremely excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の抵抗値測定の方法を説明する
ための説明図、第2図は本発明の焼結体の絶対温度(K
)に対する抵抗値(xΩcm)の特性曲線図を示す。 a、a′・・・電流供給用端子、b、b’・・・電圧測
定端子、S・・・焼結体。 第1図 抵抗値の測定方法 第2図 砲対温’f(K)−
Figure 1 is an explanatory diagram for explaining the method of measuring the resistance value of the sintered body of the present invention, and Figure 2 is the absolute temperature (K) of the sintered body of the present invention.
) is a characteristic curve diagram of resistance value (xΩcm). a, a'... Current supply terminal, b, b'... Voltage measurement terminal, S... Sintered body. Figure 1: How to measure resistance Figure 2: Gun temperature 'f(K)-

Claims (2)

【特許請求の範囲】[Claims] (1)ビスマス(Bi)、ストロンチウム(Sr)、カ
ルシウム(Ca)、銅(Cu)、及び酸素(O)の成分
からなる焼結体で、該焼結体の主要部を形成するBi−
Sr−Ca−Cuにおける成分の原子比を、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2とし、且
つ各成分の出発物質としてビスマス酸化物、ストロンチ
ウム酸化物、カルシウム水酸化物、銅酸化物を用いたこ
とを特徴とした超電導体。
(1) A sintered body consisting of bismuth (Bi), strontium (Sr), calcium (Ca), copper (Cu), and oxygen (O), with Bi-
The atomic ratio of the components in Sr-Ca-Cu is Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2, and A superconductor characterized in that bismuth oxide, strontium oxide, calcium hydroxide, and copper oxide are used as starting materials for each component.
(2)ビスマス酸化物、ストロンチウム酸化物、カルシ
ウム水酸化物、銅酸化物の粉末を混合すると共に圧縮成
形した後、酸化性雰囲気中で830〜880℃の範囲の
温度で焼成して、Bi−Sr−Ca−Cu−Oからなる
焼結体を得、該焼結体の主要部を形成するBi−Sr−
Ca−Cuにおける成分の原子比が、 Sr:Ca=1:0.3〜3 Bi:Cu=1:1.8〜4 (Sr+Ca):(Bi+Cu)=1:1〜2であるこ
とを特徴とした超電導体の製造方法。
(2) After mixing and compression molding the powders of bismuth oxide, strontium oxide, calcium hydroxide, and copper oxide, the mixture is fired at a temperature in the range of 830 to 880°C in an oxidizing atmosphere to produce Bi- A sintered body made of Sr-Ca-Cu-O is obtained, and Bi-Sr- which forms the main part of the sintered body is obtained.
The atomic ratio of the components in Ca-Cu is as follows: Sr:Ca=1:0.3~3 Bi:Cu=1:1.8~4 (Sr+Ca):(Bi+Cu)=1:1~2 A method for manufacturing superconductors.
JP63106676A 1988-04-28 1988-04-28 Superconductor and production thereof Pending JPH01278455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106676A JPH01278455A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106676A JPH01278455A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01278455A true JPH01278455A (en) 1989-11-08

Family

ID=14439672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106676A Pending JPH01278455A (en) 1988-04-28 1988-04-28 Superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01278455A (en)

Similar Documents

Publication Publication Date Title
JPH01278455A (en) Superconductor and production thereof
JPH01278452A (en) Superconductor and production thereof
JPH01278456A (en) Superconductor and production thereof
JPH01278451A (en) Superconductor and production thereof
JPH01278421A (en) Superconductor and production thereof
JPH01278457A (en) Superconductor and production thereof
JPH01278453A (en) Superconductor and production thereof
JPH01278420A (en) Superconductor and production thereof
JPH01278454A (en) Superconductor and production thereof
JPH01278466A (en) Production of superconductor
JPH01278465A (en) Production of superconductor
JPH01278462A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01278460A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH01278464A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278459A (en) Production of superconductor
JPH02196057A (en) Production of superconductor
JPH02196059A (en) Production of superconductor
JPS63291853A (en) Production of superconductor
JPH02196058A (en) Production of superconductor
JPS63288945A (en) Superconductor