JP3461654B2 - Manufacturing method of oxide superconductor - Google Patents

Manufacturing method of oxide superconductor

Info

Publication number
JP3461654B2
JP3461654B2 JP05538696A JP5538696A JP3461654B2 JP 3461654 B2 JP3461654 B2 JP 3461654B2 JP 05538696 A JP05538696 A JP 05538696A JP 5538696 A JP5538696 A JP 5538696A JP 3461654 B2 JP3461654 B2 JP 3461654B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
organic solvent
calcined powder
powder
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05538696A
Other languages
Japanese (ja)
Other versions
JPH09227224A (en
Inventor
篤 村田
守 佐藤
秀二 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP05538696A priority Critical patent/JP3461654B2/en
Publication of JPH09227224A publication Critical patent/JPH09227224A/en
Application granted granted Critical
Publication of JP3461654B2 publication Critical patent/JP3461654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,高い臨界電流密度
を有する酸化物系超電導体に関する。
TECHNICAL FIELD The present invention relates to an oxide superconductor having a high critical current density.

【0002】[0002]

【従来の技術】酸化物系超電導物質として各種の材料が
提案されているが,これらの酸化物焼結体(バルク体)
はその成分組成がどのようなものであっても一様に臨界
電流密度が低いという性質がある。
2. Description of the Related Art Various materials have been proposed as oxide-based superconducting materials, but these oxide sintered bodies (bulk bodies) have been proposed.
Has a property that the critical current density is uniformly low regardless of its composition.

【0003】例えば,Y系,Bi系,Tl系,Hg系の
酸化物超電導体(バルク体)の臨界電流密度(以下,J
cと略することがある)は一般的に200〜300A/c
m2程度である。例えばY系焼結体では,そのJcは高々
100A/cm2程度であり,このため,溶融法で製造する
ことも試みられているが,この場合には意図する形状の
ものが得られないという難点がある。Bi系焼結体につ
いては,或る報告では1000A/cm2のものが得られた
ことが報じられ,また最高で2500A/cm2が得られた
という報告もある。しかし,超電導電流リードへの適用
には少なくとも3000A/cm2以上の可能な限り高いJ
cが必要とされるので満足すべきものではない。このた
め,大容量の超電導電流を流すことのできる酸化物超電
導体を得るべく各方面で開発が進められている。
For example, the critical current density (hereinafter, J) of Y-based, Bi-based, Tl-based, and Hg-based oxide superconductors (bulk bodies)
(sometimes abbreviated as c) is generally 200 to 300 A / c
It is about m 2 . For example, the Yc sintered body has a Jc of about 100 A / cm 2 at most, and therefore, it has been attempted to manufacture it by a melting method, but in this case, the intended shape cannot be obtained. There are difficulties. Regarding the Bi-based sintered body, it was reported in one report that 1000 A / cm 2 was obtained, and it was also reported that a maximum of 2500 A / cm 2 was obtained. However, for the application to the superconducting current lead, at least 3000 A / cm 2 or higher J
It is not satisfactory because c is required. For this reason, development is progressing in various fields in order to obtain an oxide superconductor capable of flowing a large amount of superconducting current.

【0004】酸化物超電導体物質においてそのJcを高
めるには,結晶の方位を揃えるといった方策や, 高密度
化した焼結体にすることが必要である。また不純物を可
能な限り低減することも必要である。したがって,酸化
物超電導体の高Jc化はその焼結原料が決め手になると
いっても過言ではない。
[0004] To increase the Jc in the oxide superconductor material, and measures such as to align the crystal orientation, it is necessary to a sintered body densified. It is also necessary to reduce impurities as much as possible. Therefore, it is no exaggeration to say that the sintering raw material determines the high Jc of the oxide superconductor.

【0005】従来の酸化物系超電導体は,目標組成とな
るように各成分を配合した原料粉を成形・焼結して酸化
物超電導体材料とするものであるが,この原料粉として
は一般に仮焼粉が用いられる。仮焼粉は,目標組成とな
るように各成分を配合した混合物(共沈粉を含む)をい
ったん焼成し,この焼成物を粉砕するという焼成・粉砕
の工程を数回繰り返すことによって得られた粉体であ
る。ここで,焼成後の粉砕にはライカイキ等による乾式
粉砕法とボールミル等を用いる湿式粉砕法が知られてい
るが,湿式粉砕法の方がより均一で粒子径の小さいもの
が得られると考えられている。また,湿式粉砕法では水
への各成分の溶出を防止するために,非水系の有機溶媒
を用いることも提案されている(例えば特開平1−15
722号公報)。
In the conventional oxide superconductor, a raw material powder in which each component is blended so as to have a target composition is molded and sintered to obtain an oxide superconductor material. Calcined powder is used. The calcined powder was obtained by once calcining a mixture (including coprecipitated powder) in which each component was blended so as to have a target composition, and then crushing the calcined product several times. It is a powder. Here, for the pulverization after firing, the dry pulverization method using lycheiki and the like and the wet pulverization method using a ball mill are known, but it is considered that the wet pulverization method can obtain a more uniform and small particle size. ing. Further, in the wet pulverization method, it has been proposed to use a non-aqueous organic solvent in order to prevent the elution of each component into water (for example, JP-A 1-15).
No. 722).

【0006】[0006]

【発明が解決しようとする課題】この仮焼粉の製造工
程,すなわち,各成分の原料粉の秤量−混合(または共
沈粉の使用)−仮焼(焼成)−粉砕という工程(仮焼−
粉砕工程は数回繰り返すこともある)において,秤量を
正確にし且つ工程管理を厳密に行って,得られる仮焼粉
の成分組成を目標酸化物超電導体と実質的に同一に調整
しても,また原料から同伴する不可避的不純物を可能な
限り低減したとしても,それだけでは,Jcの向上効果
には限度があることがわかった。本発明はこの限界を克
服することを目的としたものである。
[Problems to be Solved by the Invention] This calcination powder production process, that is, the steps of weighing-mixing (or using coprecipitated powder) raw material powders of each component-calcination (baking) -crushing (calcination-
In the crushing process may be repeated several times), even if the weighing is performed accurately and the process control is strictly performed to adjust the composition of the obtained calcined powder to be substantially the same as the target oxide superconductor, It was also found that even if the inevitable impurities accompanying the raw materials were reduced as much as possible, there was a limit to the effect of improving Jc by itself. The present invention aims to overcome this limitation.

【0007】[0007]

【課題を解決するための手段】前記の目的は,仮焼粉の
製造過程における焼成品の粉砕工程で,非極性有機溶媒
と極性有機溶媒とを混合した混合有機溶媒を用いて湿式
粉砕することによって達成できることがわかった。すな
わち非極性有機溶媒または極性有機溶媒をそれぞれ単独
で使用しても効果はないが,両者の混合有機溶媒を用い
た場合には,平均粒子径2.5μm以下の極めて微細で
均一な仮焼粉とすることができ,この仮焼粉を用いて焼
結すると高い臨界電流密度の酸化物超電導体が得られる
ことがわかった。
[Means for Solving the Problems] The above object is to perform wet pulverization using a mixed organic solvent in which a nonpolar organic solvent and a polar organic solvent are mixed in the pulverization step of a calcined product in the process of producing calcined powder. It turns out that can be achieved by. That is, it is not effective to use the nonpolar organic solvent or the polar organic solvent alone, but when a mixed organic solvent of both is used, an extremely fine and uniform calcined powder with an average particle size of 2.5 μm or less is used. It was found that an oxide superconductor with a high critical current density can be obtained by sintering using this calcined powder.

【0008】したがって,本発明によれば,原料配合物
を焼成し,この焼成品を粉砕して仮焼粉とし,この仮焼
粉を成形・焼結して酸化物超電導体を製造する方法にお
いて,該焼成品を粉砕するさいに,非極性有機溶媒と極
性有機溶媒の混合溶媒を用いて湿式粉砕することを特徴
とする酸化物超電導体の製造法を提供する。
Therefore, according to the present invention, the raw material formulation
In the method for manufacturing an oxide superconductor , the calcined product is crushed to obtain a calcined powder, and the calcined powder is molded and sintered .
When crushing the baked product, a non-polar organic solvent and
Characterized by wet milling using a mixed solvent of organic solvents
A method of manufacturing an oxide superconductor is provided.

【0009】[0009]

【発明の実施の形態】本発明は,先駆体としての仮焼粉
を焼結してなる酸化物超電導体に係るものであり,これ
まで知られたBi系,Y系,Tl系,Hg系等のあらゆ
る酸化物超電導体(バルク体)のJcを一層高めること
ができる。仮焼粉の製造法には,原料混合物を共沈物の
形態で得る湿式法と,原料混合物を各成分の粉体(酸化
物や炭酸塩等)の混合によって得る乾式混合法が知られ
ているが,本発明に従う仮焼粉はいずれの方法によるも
のでもよい。乾式混合法が適用される場合には,各成分
の粉体を混合するさいに非極性有機溶媒と極性有機溶媒
の混合有機溶媒を用いることが有利である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to an oxide superconductor obtained by sintering a calcined powder as a precursor, and is based on the Bi-based, Y-based, Tl-based, and Hg-based known so far. It is possible to further increase Jc of any oxide superconductor (bulk body) such as. Known methods for producing calcined powder include a wet method for obtaining a raw material mixture in the form of coprecipitate and a dry mixing method for obtaining a raw material mixture by mixing powders (oxides, carbonates, etc.) of each component. However, the calcined powder according to the present invention may be produced by any method. When the dry mixing method is applied, it is advantageous to use a mixed organic solvent of a nonpolar organic solvent and a polar organic solvent when mixing the powders of the respective components.

【0010】いずれにしても,仮焼粉は原料混合物をい
ったん焼成したうえ,その焼成品を粉砕することによっ
て製造されるが,本発明においては,この粉砕を,非極
性有機溶媒と極性有機溶媒の混合有機溶媒を用いた湿式
粉砕で実施することが肝要である。使用できる非極性有
機溶媒としてはベンゼン,n−ヘキサン,シクロヘキサ
ン等があり,使用できる極性有機溶媒としてはメタノー
ルやエタノール等のアルコール類,アセトン,メチルエ
チルケトン等がある。
In any case, the calcined powder is produced by once calcining the raw material mixture and then pulverizing the calcined product. In the present invention, this pulverization is performed by using a nonpolar organic solvent and a polar organic solvent. It is essential to carry out the wet pulverization using the mixed organic solvent. Nonpolar organic solvents that can be used include benzene, n-hexane, cyclohexane, and the like, and polar organic solvents that can be used include alcohols such as methanol and ethanol, acetone, and methyl ethyl ketone.

【0011】酸化物超電導体の先駆体としての焼成品の
湿式粉砕において,該先駆体と溶媒との親和性,分離
性,粉砕効率等の関係についてこれまで検討された例は
ない。本発明者らは,非極性有機溶媒単独或いは極性有
機溶媒単独で使用した場合に比べて,両者の混合有機溶
媒を用いた場合には,高Jcの酸化物超電導体を得るこ
とができる均一で微細な仮焼粉になることを見い出し
た。その理由は必ずしも明らかではないが,およそ次の
ように考えることができる。
In the wet pulverization of a fired product as a precursor of an oxide superconductor, there has been no study so far on the relationship between the affinity of the precursor and a solvent, the separability, the pulverization efficiency and the like. The present inventors have found that, when a mixed organic solvent of both is used, an oxide superconductor having a high Jc can be obtained more uniformly than in the case of using the nonpolar organic solvent alone or the polar organic solvent alone. We found that it became a fine calcined powder. The reason is not always clear, but it can be thought about as follows.

【0012】非極性有機溶媒は超電導酸化物(先駆体)
との親和性が劣るので粉砕混合の効率を高めることはで
きない。他方,極性有機溶媒は超電導酸化物(先駆体)
の表面で反応して重合物を生成し,これが付着すると分
離が困難となり,不純物として残存するばかりでく,後
工程の炉内加熱では発火の原因ともなる。また極性有機
溶媒は水分を吸収し易く,吸収された水分と超電導酸化
物とが反応して水酸化物等の不純物が生成して組成がズ
レたり,該不純物自体が超電導特性を低下させる。とこ
ろが,両者を適量混合したものは,超電導酸化物との親
和性が良く且つ非反応性で分離性も良くなり,微細粒径
にまで均一に粉砕することができるようになると共に超
電導酸化物の純度に与える影響も少ないので,この粉体
を焼結したものは高いJcを有した酸化物超電導体とな
る。
The non-polar organic solvent is a superconducting oxide (precursor)
The efficiency of pulverization and mixing cannot be increased because of poor affinity with. On the other hand, polar organic solvents are superconducting oxides (precursors)
If a polymer is formed by reacting on the surface of, and it adheres, it becomes difficult to separate and remains as an impurity, and it may cause ignition in the heating in the furnace in the subsequent process. Further, the polar organic solvent easily absorbs moisture, and the absorbed moisture reacts with the superconducting oxide to generate impurities such as hydroxide, resulting in composition shift, and the impurities themselves deteriorate superconducting properties. However, a mixture of both in an appropriate amount has good affinity with the superconducting oxide, is non-reactive, and has good separability, and can be uniformly pulverized to a fine particle size, and at the same time the superconducting oxide can be Since there is little influence on the purity, the sintered product of this powder becomes an oxide superconductor having a high Jc.

【0013】この場合,非極性有機溶媒と極性有機溶媒
との混合割合によって,その効果にも差異が生じるが,
この混合割合は,使用する有機溶媒の種類と対象とする
超電導酸化物の種類に応じて適切な範囲に選定すればよ
い。一般的には,非極性有機溶媒が30〜99.5重量
%,残部が極性有機溶媒となる範囲の混合割合によっ
て,超電導酸化物と反応せず且つ親和性が良くて(なじ
みが良くて),分離性も良好になる。より好ましい混合
割合は,非極性有機溶媒が70〜96重量%,残部が極
性有機溶媒のものである。この混合有機溶媒を用いる湿
式粉砕はボールミル等によって行うことができる。
In this case, the effect is different depending on the mixing ratio of the nonpolar organic solvent and the polar organic solvent.
This mixing ratio may be selected within an appropriate range depending on the type of organic solvent used and the type of target superconducting oxide. Generally, the non-polar organic solvent is 30 to 99.5% by weight, and the balance is a polar organic solvent, so that it does not react with superconducting oxide and has good affinity (good compatibility). , The separability is also good. The more preferable mixing ratio is 70 to 96% by weight of the nonpolar organic solvent and the balance of the polar organic solvent. Wet grinding using this mixed organic solvent can be performed by a ball mill or the like.

【0014】このようにして,当該混合溶媒を用いて超
電導酸化物(先駆体)を湿式粉砕すると平均粒径が2.
5μm以下の均一な微粒子とすることができ,この微粒
子を圧粉成形して焼結すると高密度の焼結体が得られ,
この結果Jcを高めることができる。
As described above, when the superconducting oxide (precursor) is wet-milled using the mixed solvent, the average particle size becomes 2.
It is possible to make uniform fine particles of 5 μm or less, and by compacting and sintering these fine particles, a high-density sintered body can be obtained.
As a result, Jc can be increased.

【0015】他方,Jcの向上には,仮焼粉の成分組成
が目標とする超電導酸化物の成分組成に限りなく近いも
のであることのほか,仮焼粉中の炭素含有量および水分
含有量が少ないことが必要である。以下にこれらの点に
ついて説明する。
On the other hand, in order to improve Jc, the composition of the calcined powder is as close as possible to the target composition of the superconducting oxide, and the carbon content and the water content in the calcined powder are also improved. Needs to be small. These points will be described below.

【0016】仮焼粉を作るための原料粉として先ず高純
度のものを使用することが必要である。ビスマス系酸化
物超電導体,例えばBi1.85Pb0.35Sr1.90Ca2.05
Cu3.05x の焼結体を得るには,その組成比に限りな
く近い組成比をもつ高純度の仮焼粉を準備する必要があ
る。かような仮焼粉の出発原料としては,Bi23,P
bO,SrCO3,CaOおよびCuOの粉体が用いら
れるが,これらの原料粉自体が高純度であることが必要
である。また, このような原料を共沈法によって製造す
る場合にも,不純物が混在するようなことは避けねばな
らない。
First, it is necessary to use high-purity raw material powder for producing the calcined powder. Bismuth-based oxide superconductor such as Bi 1.85 Pb 0.35 Sr 1.90 Ca 2.05
In order to obtain a sintered body of Cu 3.05 O x , it is necessary to prepare a high-purity calcined powder having a composition ratio as close as possible to the composition ratio. The starting materials for such calcined powder are Bi 2 O 3 and P
Powders of bO, SrCO 3 , CaO and CuO are used, but it is necessary that the raw material powders themselves have high purity. Also , when producing such raw materials by the coprecipitation method, it is necessary to avoid mixing impurities.

【0017】しかし,酸化物超電導体物質の成分組成と
なるように仮焼粉の成分量を精密に制御し且つ高純度の
原料を使用して原料から同伴する不純物を可及的に低減
しても,仮焼粉製造過程で大気中の水分と炭酸ガスに起
因して仮焼粉中に炭素と水分が含有されることがあり,
これが酸化物超電導体のJcに有害に作用する。
However, the component amount of the calcined powder is precisely controlled so as to obtain the component composition of the oxide superconductor material, and a high-purity raw material is used to reduce impurities accompanying the raw material as much as possible. However, carbon and water may be contained in the calcined powder due to atmospheric moisture and carbon dioxide during the calcined powder manufacturing process.
This adversely affects Jc of the oxide superconductor.

【0018】大気中から炭素が混入する経路は次のよう
に考えることができる。すなわち,大気中の水分が超電
導結晶を構成していない微量な物質と接すると水酸化物
を形成し,この水酸化物が雰囲気中の炭酸ガスと作用し
て炭酸物を作り,この炭酸物がCとしての含有量を増加
させ,最終的にCが結晶粒界に析出する。このようにし
て結晶粒界にCが析出すると粒子間を流れる超電導電流
を阻害する。
The route by which carbon is mixed from the atmosphere can be considered as follows. That is, when moisture in the atmosphere comes into contact with a trace amount of a substance that does not form a superconducting crystal, a hydroxide is formed, and this hydroxide reacts with carbon dioxide gas in the atmosphere to form a carbonate, and this carbonate is The content as C is increased, and finally C precipitates at the grain boundaries. When C is deposited on the crystal grain boundaries in this manner, the superconducting current flowing between the grains is obstructed.

【0019】このような大気中からの水分と炭素の混入
は,出発原料物質をいくら高純度のものに厳選しても回
避できるものではなく,とりわけ,仮焼粉の製造過程に
おける焼成後の粉砕工程で混入する機会が多いことがわ
かった。これは,焼成後に粉砕した状態では,比表面積
の急激な増大と活性点の増大によって,大気中の湿分を
吸湿しやすい状態となっているからであろう。
Such mixing of water and carbon from the atmosphere cannot be avoided even if the starting raw material is carefully selected to have a high purity. It turns out that there are many opportunities to mix in the process. This is probably because in the pulverized state after firing, the moisture in the atmosphere is easily absorbed due to the rapid increase in the specific surface area and the increase in active sites.

【0020】しかし,本発明に従う前記の混合有機溶媒
を用いた湿式粉砕では,このような大気中からの水分と
炭素の混入が防止できることが明らかとなった。例えば
Bi系超電導体においては,仮焼粉中のC含有量は0.
10%以下,場合によっては0.05%以下にまで,水
分含有量については0.5重量%以下にまで,両成分を
同時に低下することができる。このような作用効果は,
極性有機溶媒単独の使用では,混合したもののほどには
得られない。なお,Y系超電導体においては,同様にし
て,仮焼粉中のC含有量を1.0重量%以下,好ましく
は0.50%以下に,また水分含有量は1.0%未満に低
下することができる。
However, it has been clarified that such wet grinding using the mixed organic solvent according to the present invention can prevent such contamination of water and carbon from the atmosphere. For example, in Bi-based superconductors, the C content in the calcined powder is 0.
Both components can be simultaneously reduced to below 10%, in some cases below 0.05%, and to a water content below 0.5% by weight. Such effects are
The use of polar organic solvents alone does not give as good a mixture. In the case of Y-based superconductors, similarly, the C content in the calcined powder was reduced to 1.0% by weight or less, preferably 0.50% or less, and the water content was reduced to less than 1.0%. can do.

【0021】したがって,酸化物超電導体のJcを高め
るという本発明の目的は,当該超電導体焼結品の焼結原
料たる仮焼粉の製造にさいし,焼成後の超電導体酸化物
を湿式粉砕する場合に,非極性有機溶媒と極性有機溶媒
の混合溶媒を用いて湿式粉砕する点に特徴を有する仮焼
粉の製造法によって有利に達成することができる。この
製造法で得られた仮焼粉を用いた焼結体からなる酸化物
超電導体は,Bi系のものでは,後記の実施例に示すよ
うに,Jcは3000A/cm2 以上,好ましくは500
0A/cm2 にも達し,Y系のものでは500A/cm2
達する。
Therefore, the object of the present invention to increase the Jc of the oxide superconductor is to produce a calcined powder as a sintering raw material for the superconductor sintered product by wet pulverizing the superconductor oxide after firing. In this case, it can be advantageously achieved by a method for producing a calcined powder, which is characterized in that wet pulverization is performed using a mixed solvent of a nonpolar organic solvent and a polar organic solvent. The oxide superconductor made of a sintered body using the calcined powder obtained by this production method is of Bi type, and has a Jc of 3000 A / cm 2 or more, preferably 500 A / cm 2 or more, as shown in Examples described later.
0A / cm 2 to reach even the intended Y-reach 500A / cm 2.

【0022】[0022]

【実施例】【Example】

〔実施例1〕Bi23 ,PbO,SrCO3 ,Ca
O,CuOの各粉体を,Bi:Pb:Sr:Ca:Cu
のモル比が1.85:0.35:1.90:2.05:3.
05となるように秤量した。他方,ベンゼン:メタノー
ルの重量比が9:1となるように混合した溶媒を準備
し,この混合溶媒を添加して前記粉体をよく混合し,混
合後は,減圧乾燥法により溶媒を除去回収した。
Example 1 Bi 2 O 3, PbO, SrCO 3, Ca
Powders of O and CuO were converted into Bi: Pb: Sr: Ca: Cu.
The molar ratio of 1.85: 0.35: 1.90: 2.05: 3.
Weighed to be 05. On the other hand, prepare a mixed solvent such that the weight ratio of benzene: methanol is 9: 1, add this mixed solvent and mix the powder well, and after mixing, remove the solvent by vacuum drying method and recover. did.

【0023】次いで,該粉体混合物を大気中で800℃
×10時間の焼成を行い,得られた焼成物に先と同じ溶
媒を添加して湿式粉砕し,粉砕後は溶媒を先と同様に除
去回収した。湿式粉砕には直径8mmのジルコニアボー
ル(ZrO2 98%)使用のボールミルを使用した。得
られた粉体のC%,H2O%,平均粒子径および収率を
測定し,その結果を表1に示した。この粉体を再び大気
中で800℃×10時間の焼成を行って仮焼粉を得た。
Next, the powder mixture is heated to 800 ° C. in the atmosphere.
Firing was carried out for 10 hours, the same solvent as above was added to the obtained fired product, and wet pulverization was performed. After pulverization, the solvent was removed and recovered in the same manner as above. A ball mill using zirconia balls (ZrO 2 98%) having a diameter of 8 mm was used for the wet pulverization. The C%, H 2 O%, average particle size and yield of the obtained powder were measured, and the results are shown in Table 1. This powder was fired again in the atmosphere at 800 ° C. for 10 hours to obtain a calcined powder.

【0024】得られた仮焼粉を「プレス成形」−「焼
結」−「中間圧縮」−「焼結」−「中間圧縮」−「焼
結」の工程で焼結体とした。これらの工程の条件は次の
とおりである。 プレス成形:3.0トン/cm2 で直径20φmm,厚
さ2mmの円盤状圧粉体にプレス成形。 焼結:いずれも850℃×50時間。 中間圧縮:CIP法(冷間等方圧縮法)により3.0ト
ン/cm2 で圧縮。
The resulting calcined powder was made into a sintered body in the steps of "press molding"-"sintering"-"intermediate compression"-"sintering"-"intermediate compression"-"sintering". The conditions of these steps are as follows. Press molding: Press molding into a disk-shaped green compact having a diameter of 20 mm and a thickness of 2 mm at 3.0 ton / cm 2 . Sintering: All are 850 degreeC x 50 hours. Intermediate compression: CIP method (cold isotropic compression method) compressed to 3.0 ton / cm 2 .

【0025】得られた焼結体から試験片を切り出し,臨
界電流密度(Jc)を測定し,その結果を表1に併記し
た。
A test piece was cut out from the obtained sintered body, the critical current density (Jc) was measured, and the results are also shown in Table 1.

【0026】〔実施例2〕溶媒として,ベンゼン:メタ
ノールの重量比が5:5となるように混合した溶媒を用
いた以外は,実施例1を繰り返した。実施例1のものと
同じ測定を行い,その結果を表1に示した。
Example 2 Example 1 was repeated except that the solvent used was a mixed solvent of benzene: methanol at a weight ratio of 5: 5. The same measurement as in Example 1 was performed, and the results are shown in Table 1.

【0027】〔実施例3〕原料粉体として,Y23
BaCO3 ,CuOの各粉体を,Y:Ba:Cuのモル
比が1:2:3となるように秤量した以外は実施例1を
繰り返した。用いた溶媒も実施例1と同じものである。
ただし,この原料粉体の焼成は2回とも大気中で940
℃×50時間とした。実施例1と同様の項目の測定を行
い,その結果を表1に示した。
Example 3 As the raw material powder, Y 2 O 3 ,
Example 1 was repeated except that each powder of BaCO 3 and CuO was weighed so that the molar ratio of Y: Ba: Cu was 1: 2: 3. The solvent used is the same as in Example 1.
However, the firing of this raw material powder was performed twice in the air at 940
℃ × 50 hours. The same items as in Example 1 were measured, and the results are shown in Table 1.

【0028】〔比較例1〕溶媒を,ベンゼン:メタノー
ルの重量比が10:0のもの(ベンゼン単独)のものに
変えた以外は,実施例1を繰り返した。実施例1のもの
と同じ測定を行い,その結果を表1に示した。
Comparative Example 1 Example 1 was repeated except that the solvent was changed to a benzene: methanol weight ratio of 10: 0 (benzene alone). The same measurement as in Example 1 was performed, and the results are shown in Table 1.

【0029】〔比較例2〕溶媒を,ベンゼン:メタノー
ルの重量比が0:10のもの(メタノール単独)のもの
に変えた以外は,実施例1を繰り返した。実施例1のも
のと同じ測定を行い,その結果を表1に示した。
Comparative Example 2 Example 1 was repeated except that the solvent was changed to a benzene: methanol weight ratio of 0:10 (methanol alone). The same measurement as in Example 1 was performed, and the results are shown in Table 1.

【0030】〔比較例3〕溶媒を,ベンゼン:メタノー
ルの重量比が10:0のもの(ベンゼン単独)のものに
変えた以外は,実施例3を繰り返した。実施例1のもの
と同じ測定を行い,その結果を表1に示した。
Comparative Example 3 Example 3 was repeated except that the solvent was changed to a benzene: methanol weight ratio of 10: 0 (benzene alone). The same measurement as in Example 1 was performed, and the results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1における各項目の測定法は次のとおり
である。 炭素含有量(C%):大気中の水分や二酸化炭素との反
応を防止するために乾燥空気中で取り扱った粉体からそ
の一部をサンプリングし,1000℃以上の高温に加熱
し,燃焼させた状態で出てくる炭酸ガスを赤外線分光器
で定量する。 水分含有量(H2O%):300℃まで加熱した際に出
てくる水分をカールフイッシャー水分計を用いて測定す
る。 平均粒子径:レーザー回析計(島津製作所製・島津レー
ザー回析用粒度分布測定装置・SALD−1100)を
用いてメディアン径を測定する。 臨界電流密度(Jc):焼結体から1mm角の断面をも
つ短冊状の試験片を切り出し,Jc測定用電極およびリ
ード線を取付けて4端子法により測定する。
The measuring method of each item in Table 1 is as follows. Carbon content (C%): In order to prevent the reaction with moisture and carbon dioxide in the atmosphere, a part of it is sampled from the powder handled in dry air, heated to a high temperature of 1000 ° C or more, and burned. The carbon dioxide gas that comes out in a closed state is quantified with an infrared spectroscope. Moisture content (H 2 O%): Moisture generated when heated to 300 ° C. is measured using a Karl Fischer moisture meter. Average particle diameter: The median diameter is measured using a laser diffractometer (manufactured by Shimadzu Corporation, particle size distribution measuring device for Shimadzu laser diffraction, SALD-1100). Critical current density (Jc): A strip-shaped test piece having a cross section of 1 mm square is cut out from a sintered body, an electrode for Jc measurement and a lead wire are attached, and measurement is performed by a four-terminal method.

【0033】表1の結果に見られるように,Bi系の酸
化物超電導体では,溶媒がベンゼン単独またはエタノー
ル単独の比較例1と2のものでは臨界電流密度が100
0A/cm2 であったものが,両者を混合した溶媒を用い
た実施例1と2では臨界電流密度が5000または30
00A/cm2 にまで向上した。とくに実施例1のもので
は,C%とH2O%が低く且つ粒径が小さい仮焼粉が得
られており,このことが高い臨界電流密度をもたらした
ものであると見てよい。
As can be seen from the results in Table 1, in the Bi-based oxide superconductors, the critical current density of 100 was obtained in Comparative Examples 1 and 2 in which the solvent was benzene alone or ethanol alone.
It was 0 A / cm 2 , but the critical current density was 5000 or 30 in Examples 1 and 2 which used a solvent in which both were mixed.
It has been improved to 00 A / cm 2 . Particularly, in Example 1, a calcined powder having a low C% and a H 2 O% and a small particle size was obtained, and it can be considered that this resulted in a high critical current density.

【0034】同様にY系の酸化物超電導体でも,ベンゼ
ン単独の比較例3に比べ,メタノールを10%混合した
実施例3のものでは,臨界電流密度が100A/cm2
ら500A/cm2 にまで向上している。この向上効果
も,粒子径が小さくなったことによると見てよい。
Similarly, in the case of the Y-based oxide superconductor, the critical current density is 100 A / cm 2 to 500 A / cm 2 in Example 3 in which 10% of methanol is mixed, as compared with Comparative Example 3 in which benzene is used alone. Has improved. It can be seen that this improvement effect is also due to the smaller particle size.

【0035】[0035]

【発明の効果】以上説明したように,酸化物超電導体の
焼結体を製造するのに用いる焼結原料粉として,ベンゼ
ン等の非極性溶媒,或いはメタノール等の極性溶媒を用
いて当該原料粉の混合や湿式粉砕を行うのに比べ,本発
明のように非極性溶媒と極性溶媒を混合して用いると,
品質の良い(C濃度およびH2O濃度が低く,粒子径の
小さい)焼結原料粉(仮焼粉)を製造することができ,
これを用いて焼結した酸化物超電導体は高い臨界電流密
度を示すようになる。
As described above, a non-polar solvent such as benzene or a polar solvent such as methanol is used as the sintering raw material powder used for producing the sintered body of the oxide superconductor. In comparison with the case of mixing and wet pulverizing, the nonpolar solvent and the polar solvent are mixed and used as in the present invention.
Sintering raw material powder (calcined powder) of good quality (low C concentration and H 2 O concentration, small particle size) can be manufactured,
Oxide superconductors sintered using this exhibit a high critical current density.

フロントページの続き (56)参考文献 特開 平4−237910(JP,A) 特開 平2−204358(JP,A) 特開 平1−45722(JP,A) 特開 平1−9812(JP,A) 特開 昭50−18396(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/45 C01G 1/00 Continuation of the front page (56) Reference JP-A-4-237910 (JP, A) JP-A-2-204358 (JP, A) JP-A-1-45722 (JP, A) JP-A-1-9812 (JP , A) JP-A-50-18396 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 35/45 C01G 1/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料配合物を焼成し,この焼成品を粉砕
して仮焼粉とし,この仮焼粉を成形・焼結して酸化物超
電導体を製造する方法において,該焼成品を粉砕するさ
いに,非極性有機溶媒と極性有機溶媒の混合溶媒を用い
て湿式粉砕することを特徴とする酸化物超電導体の製造
1. A raw material mixture is fired, and the fired product is crushed.
And a calcined powder, a process for the preparation of oxides superconductors The calcined powder was molded and sintered, grinding the calcination product
Use a mixed solvent of non-polar organic solvent and polar organic solvent
Production of oxides superconductor, characterized by wet milling Te
Law .
【請求項2】 混合溶媒は非極性有機溶媒が30〜9
9.5重量%,残部が極性有機溶媒からなる請求項1に
記載の酸化物超電導体の製造法
2. The mixed solvent comprises a nonpolar organic solvent of 30 to 9
The method for producing an oxide superconductor according to claim 1 , wherein the balance is 9.5% by weight and the balance is a polar organic solvent .
【請求項3】 焼成品は,平均粒子径2.5μm以下の
仮焼粉に粉砕される請求項1または2に記載の酸化物超
電導体の製造法
3. The fired product has an average particle diameter of 2.5 μm or less.
The method for producing an oxide superconductor according to claim 1, which is pulverized into a calcined powder .
【請求項4】 酸化物超電導体はビスマス系酸化物超電
導体であり,その仮焼粉は炭素含有量0.1重量%以
下,水分含有量0.5重量%以下および平均粒子径2.0
μm以下である請求項1,2または3に記載の酸化物超
電導体の製造法
4. The oxide superconductor is a bismuth oxide superconductor, and the calcined powder thereof has a carbon content of 0.1% by weight or less, a water content of 0.5% by weight or less, and an average particle diameter of 2.0.
The method for producing an oxide superconductor according to claim 1, 2 or 3 , wherein the thickness is not more than μm.
【請求項5】 酸化物超電導体はイットリウム系酸化物
超電導体であり,その仮焼粉は炭素含有量0.5重量%
以下,水分含有量1.0重量%未満および平均粒子径2.
5μm以下である請求項1,2または3に記載の酸化物
超電導体の製造法
5. The oxide superconductor is a yttrium-based oxide superconductor, and the calcined powder thereof has a carbon content of 0.5% by weight.
Below, the water content is less than 1.0 wt% and the average particle size is 2.
It is 5 micrometers or less, The manufacturing method of the oxide superconductor of Claim 1, 2 or 3 .
JP05538696A 1996-02-20 1996-02-20 Manufacturing method of oxide superconductor Expired - Lifetime JP3461654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05538696A JP3461654B2 (en) 1996-02-20 1996-02-20 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05538696A JP3461654B2 (en) 1996-02-20 1996-02-20 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH09227224A JPH09227224A (en) 1997-09-02
JP3461654B2 true JP3461654B2 (en) 2003-10-27

Family

ID=12997076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05538696A Expired - Lifetime JP3461654B2 (en) 1996-02-20 1996-02-20 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3461654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109381B (en) * 2022-07-26 2024-02-23 惠州市良化新材料有限公司 ABS composite material with electromagnetic shielding effect and preparation method thereof

Also Published As

Publication number Publication date
JPH09227224A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP2721189B2 (en) Method for producing oxide superconductor, composite oxide powder as precursor of oxide superconductor, and method for producing the same
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JP3461654B2 (en) Manufacturing method of oxide superconductor
EP0354537B1 (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
JP3630889B2 (en) Calcinated powder for oxide superconductor with high critical current density
JP3568657B2 (en) Manufacturing method of oxide superconductor
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JP3157183B2 (en) Manufacturing method of oxide superconductor
JP2915546B2 (en) Manufacturing method of oxide superconducting material
JP2004026625A (en) Thick film of oxide superconductor and method for manufacture the same
JP2555734B2 (en) Production method of superconducting material
JP2000344525A (en) Bismuth based oxide superconducting body and calcined powder for manufacturing the same
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP2751230B2 (en) Method for producing Bi-based superconducting oxide sintered body containing lead
JPH01172211A (en) Production of raw material for compound oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JPH0570133A (en) Oxide superconductor and its production
JPH0570139A (en) Oxide superconductor and its production
JPH10226569A (en) Calcined powder for producing bi-containing oxide superconductor and bi-2223 phase polycrystalline body obtained by sintering same
JPH10101337A (en) Calcined powder for producing bi-containing oxide superconductor
JPH06325621A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term