JPH04202093A - Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature - Google Patents
Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperatureInfo
- Publication number
- JPH04202093A JPH04202093A JP2329677A JP32967790A JPH04202093A JP H04202093 A JPH04202093 A JP H04202093A JP 2329677 A JP2329677 A JP 2329677A JP 32967790 A JP32967790 A JP 32967790A JP H04202093 A JPH04202093 A JP H04202093A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- kcl
- oxide superconductor
- formula
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 41
- 239000002887 superconductor Substances 0.000 title claims abstract description 25
- 230000007704 transition Effects 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 9
- 239000000203 mixture Substances 0.000 claims abstract description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 230000004907 flux Effects 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 239000011780 sodium chloride Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 239000011812 mixed powder Substances 0.000 claims description 7
- 238000010583 slow cooling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 abstract description 4
- 229910008649 Tl2O3 Inorganic materials 0.000 abstract 1
- QTQRFJQXXUPYDI-UHFFFAOYSA-N oxo(oxothallanyloxy)thallane Chemical compound O=[Tl]O[Tl]=O QTQRFJQXXUPYDI-UHFFFAOYSA-N 0.000 abstract 1
- 239000000843 powder Substances 0.000 abstract 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 20
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 10
- 239000001103 potassium chloride Substances 0.000 description 10
- 235000011164 potassium chloride Nutrition 0.000 description 10
- 239000000292 calcium oxide Substances 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 229960004643 cupric oxide Drugs 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 230000005292 diamagnetic effect Effects 0.000 description 4
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 description 2
- 229910003438 thallium oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to oxide superconducting materials used in various superconducting application devices and superconducting elements.
[従来の技術]
金属・合金系超伝導材料、化合物超伝導材料は、ジョセ
フソン素子や超伝導マグネットの線材として既に広く利
用されている。ジョセフソン接合は、その磁場に対する
高い感度のため5QUIDを初めとする精密計測に応用
されているほか、その高速性から電子計算機への応用が
期待されている。[Prior Art] Metal/alloy-based superconducting materials and compound superconducting materials are already widely used as wire materials for Josephson elements and superconducting magnets. Josephson junctions are used in precision measurements such as 5QUID due to their high sensitivity to magnetic fields, and are expected to be applied to electronic computers due to their high speed.
また、通常導体では得られないような高磁場を発生でき
る超伝導マグネットは、NMR−CTなどの医療機器や
浮上型リニアモーターカー等にも応用されている。Furthermore, superconducting magnets, which can generate high magnetic fields that cannot be obtained with ordinary conductors, are also used in medical equipment such as NMR-CT, levitated linear motor cars, and the like.
超伝導体の応用を考えた場合、超伝導転移温度(TC)
はできる限り高いことが望まれる。金属・合金系超伝導
体や化合物系超伝導体は、冷媒として高価で希少な液体
ヘリウムを用いな(プればならず、このことがこれらの
超伝導体の広い分野への応用を妨げる一因となっている
。When considering the application of superconductors, the superconducting transition temperature (TC)
is desired to be as high as possible. Metal/alloy-based superconductors and compound-based superconductors must use expensive and rare liquid helium as a coolant, which is one of the obstacles that prevents the application of these superconductors to a wide range of fields. This is the cause.
この点では銅酸化物系超伝導体は、従来の超伝導体より
もはるかに優れており、1987年に3a−y−cu−
o系超伝導体が発見されて以来、[3i−sr−ca−
cu−o系、Tf−1ea−Ca −CU−O系などの
液体窒素温度を超えるTcをもつ超伝導体が相次いで発
見されている。これらの酸化物超伝導体が実用化されれ
ば、今まで考えられなかったような分野にまでその応用
の可能性が広がるとして、現在も研究開発か蔀んに行わ
れている。In this respect, cuprate-based superconductors are far superior to conventional superconductors, and in 1987, 3a-y-cu-
Since the discovery of o-based superconductors, [3i-sr-ca-
Superconductors having Tc exceeding the temperature of liquid nitrogen, such as the cu-o system and the Tf-1ea-Ca-CU-O system, have been discovered one after another. If these oxide superconductors are put into practical use, their potential applications will expand to fields that were previously unimaginable, and research and development efforts are currently underway.
[発明が解決しようとする課題]
現在研究されている酸化物超伝導体試料のほとんどは多
結晶体である。超伝導体の多結晶試料では、その結晶粒
界に無数の超伝導の弱結合が存在するため、望む特性を
持つジョセフソン接合を制御性良く作ることか困難であ
る。また、多結晶体が含んでいる各種の欠陥や不均質性
が超伝導特性の安定性に悪い影響を与えることも考えら
れるため、デバイスなどへの応用には単結晶体を用いる
ことが望ましい。[Problems to be Solved by the Invention] Most of the oxide superconductor samples currently being studied are polycrystalline. In polycrystalline superconductor samples, there are countless superconducting weak bonds at the grain boundaries, making it difficult to create Josephson junctions with desired properties with good control. Furthermore, since various defects and inhomogeneities contained in polycrystals may have a negative effect on the stability of superconducting properties, it is desirable to use single crystals for applications such as devices.
さらに、焼結体における研究から、T1系超伝導体のT
Cは酸素量により大きく変化することが知られている。Furthermore, research on sintered bodies revealed that the T of T1-based superconductors
It is known that C varies greatly depending on the amount of oxygen.
この性質は温度センサ等への応用に有用であるが、単結
晶体では焼結体より酸素が出入りしにくいため、焼結体
の時のように広い範囲で丁Cを変えることが難しい。This property is useful for applications such as temperature sensors, but it is difficult for oxygen to enter and exit in a single crystal body than in a sintered body, so it is difficult to change the temperature over a wide range as in the case of a sintered body.
本発明はこのような従来の事情に鑑みてなされたもので
、良質で充分な大きさを持つT12sa ca
cu、 04+2n単結晶の製造方法お2 n−
1
よびそのTcの制御方法を提供することを目的とする。The present invention was made in view of such conventional circumstances, and is a T12sa ca that is of good quality and of sufficient size.
Cu, 04+2n Single crystal manufacturing method 2 n-
1 and its Tc control method.
[課題を解決するための手段]
本発明は、T12Ba2Can−1Cu、04+2゜(
n−2または3)と表される酸化物超伝導体単結晶の製
造方法において、KClおよび/またはNaClをフラ
ックスとして用い、
CT 1203 +2BaO+(n−1)CaO十nc
uo+x ((1−y)KCl +yl’Jac l
)(n−2または3.3≦x≦500 、 O≦y≦1
)なる組成範囲の混合粉末、もしくは、
CT l 2 Ba2 Can−I CunO4+2n
+x ((1−y) KCl +yNaCl )(n=
2または3.3≦x≦500 、 O≦y≦1)なる組
成範囲の混合粉末を700〜950’Cの温度範囲で融
解し、20 ’C/hourCTの速度で徐冷すること
を特徴とする酸化物超伝導体単結晶の製造方法、および
T I 2 B a2 Can−I CLJ n 04
+2n(n−2または3)と表される酸化物超伝導体単
結晶の製造方法において、PbCl2をフラックスとし
て用い、
CT I2 o3+2BaO+(n−1)CaO十nC
uO+xPbCl 2
(n−2または3.3≦x≦300)
なる組成範囲の混合粉末、もしくは、
CT ’ 2 B 87 Can−I CU n O4
+2n十xPbC12
(n−2または3.3≦x≦300)
なる組成範囲の混合粉末を600〜900℃の温度節囲
で融解し、20℃/hour以下の速度で徐冷すること
を特徴とする酸化物超伝導体単結晶の製造方法である。[Means for Solving the Problems] The present invention provides T12Ba2Can-1Cu, 04+2°(
n-2 or 3), using KCl and/or NaCl as a flux, CT 1203 +2BaO+(n-1)CaO+nc
uo+x ((1-y)KCl +yl'Jac l
) (n-2 or 3.3≦x≦500, O≦y≦1
) or CT l 2 Ba2 Can-I CunO4+2n
+x ((1-y) KCl +yNaCl) (n=
2 or 3.3≦x≦500, O≦y≦1) is melted in a temperature range of 700 to 950'C and slowly cooled at a rate of 20'C/hour CT. A method for producing an oxide superconductor single crystal, and T I 2 B a2 Can-I CLJ n 04
In the method for producing an oxide superconductor single crystal expressed as +2n (n-2 or 3), PbCl2 is used as a flux, CT I2 o3 + 2BaO + (n-1) CaO + nC
Mixed powder with a composition range of uO+xPbCl 2 (n-2 or 3.3≦x≦300), or CT' 2 B 87 Can-I CU n O4
+2n x PbC12 (n-2 or 3.3≦x≦300) A mixed powder having a composition range of 600 to 900°C is melted and slowly cooled at a rate of 20°C/hour or less. This is a method for producing an oxide superconductor single crystal.
この酸化物超伝導体単結晶は、400気圧までの加圧酸
素下で、300〜600℃の温度範囲で熱処理すること
により、超伝導転移温度をO〜85 Kの範囲で任意に
コントロールできる。The superconducting transition temperature of this oxide superconductor single crystal can be arbitrarily controlled in the range of 0 to 85 K by heat treatment in the temperature range of 300 to 600° C. under pressurized oxygen up to 400 atmospheres.
[作用]
T l 13a CaCu、o8+り0KClなる
組2 ?
成の混合粉から、最高温度900 ’C1徐冷速度5℃
/hourで作製した単結晶は、数mm角で厚み050
2mm程度の大きざで、110にで超伝導に転移した。[Effect] T l 13a CaCu, o8 + 0KCl set 2? Maximum temperature 900'C1 slow cooling rate 5℃ from mixed powder
/hour The single crystal produced is several mm square with a thickness of 050 mm.
With a size of about 2 mm, it transitioned to superconductivity at 110 nm.
この単結晶を、15気圧の酸素中で400℃、10時間
熱処理することにより、転移の鋭さを失わずにTcを9
5 Kに変えることができた。By heat-treating this single crystal at 400°C for 10 hours in oxygen at 15 atmospheres, Tc was reduced to 9 without losing the sharpness of the transition.
I was able to change it to 5K.
また、T I2 Ba2 CaCu2 o8+30P
bC12なる組成の混合粉から、最高温度850 ℃1
徐冷速度10’C/ hou rで作製した単結晶は、
数mm角で厚み0.1mm程度の大きさで、110にで
超伝導に転移した。この単結晶を、10気圧の酸素中で
500℃,10時間熱処理することにより、転移の鋭さ
を失わずにTCを95 Kに変えることができた。Also, T I2 Ba2 CaCu2 o8+30P
Maximum temperature 850℃1 from mixed powder with composition bC12
The single crystal produced at a slow cooling rate of 10'C/hour is
It is several mm square and about 0.1 mm thick, and it transitioned to superconductivity at 110 yen. By heat-treating this single crystal at 500° C. for 10 hours in oxygen at 10 atmospheres, the TC could be changed to 95 K without losing the sharpness of the transition.
[実施例] 以下実施例により、本発明を具体的に説明する。[Example] The present invention will be specifically described below with reference to Examples.
実施例1
■出発原料として純度99.9%以上の酸化タリウム(
丁1203)、酸化バリウム(Bad>。Example 1 ■ Thallium oxide with a purity of 99.9% or more as a starting material (
1203), barium oxide (Bad>).
酸化カルシウム(Cab)、1!2化第二銅(CuO)
、塩化カリウム(KCl > 、塩化ナトリウム(Na
Cl)を使用し、
T I203+2BaO+(n−1)CaO+ncuo
+x ((1−V)KCl +yNacl )なる一般
式で、n、x、yについては、第1表′に示す配合比に
なるように秤量、混合し、直径20 mm、深さ25m
mの全坩堝に封入し、700〜950℃で1〜10時間
融解させたのち、1時間に20℃以下の速度で600
’Cまで徐冷した。Calcium oxide (Cab), cupric oxide (CuO)
, Potassium chloride (KCl > , Sodium chloride (Na
Cl), T I203+2BaO+(n-1)CaO+ncuo
+x ((1-V)KCl +yNacl), where n, x, and y are weighed and mixed so as to have the compounding ratio shown in Table 1'.
After melting at 700 to 950°C for 1 to 10 hours, it was melted at 600°C at a rate of 20°C or less per hour.
It was slowly cooled to 'C.
600 ’Cから温湿までは1時間100’Cの割合で
冷却した。単結晶試料は、KClおよびNaClを水で
洗い流すことによって取り出した。From 600'C to temperature and humidity, cooling was performed at a rate of 100'C for 1 hour. Single crystal samples were removed by washing away KCl and NaCl with water.
■試薬は■と同様のものを出発原料とした。初めにTl
2O3,Bad、Cab、CuOをT I 2 B a
2 c a n−1c u n O4+2 n <
n−2。(2) The same reagent as in (2) was used as the starting material. First Tl
2O3, Bad, Cab, CuO T I 2 B a
2 c a n-1 c u n O4+2 n <
n-2.
3)の比になるように混合し、プレスした後、金箔で包
んで860〜900 ’Cで3〜5時間焼結した。得ら
れた焼結体を粉砕し、KCl、NaClと、
Tl2Ba2Can−1CunO4+20+x ((1
−y) KCl、+yNac l )なる一般式で、n
、x、yについては第2表に示す配合比になるように混
合した。融解、固化、単結晶の取り出しは上記の■と同
様の条件で行った。After mixing and pressing to achieve the ratio of 3), the mixture was wrapped in gold foil and sintered at 860-900'C for 3-5 hours. The obtained sintered body was crushed and mixed with KCl, NaCl, and Tl2Ba2Can-1CunO4+20+x ((1
-y) KCl, +yNacl), with the general formula n
, x, and y were mixed at the blending ratio shown in Table 2. Melting, solidification, and single crystal extraction were carried out under the same conditions as in (2) above.
いずれの場合も、得られた単結晶の抵抗率、反磁性磁化
率の測定、および組成分析を行った。抵抗率は金線をリ
ードとする4端子法で、反磁性磁化率は5QUIDマグ
ネツトメーターでそれぞれ測定した。組成分析はEPM
Aを用いて打つlこ 。In each case, the resistivity and diamagnetic susceptibility of the obtained single crystals were measured, and the composition was analyzed. Resistivity was measured using a four-terminal method using a gold wire as a lead, and diamagnetic susceptibility was measured using a 5QUID magnetometer. Composition analysis is EPM
Hit with A.
第1表および第2表に得られた単結晶の県架的な大きさ
とTCを示す。950℃を超える温度では、T L N
aC+およびKClの蒸発が激しくなりすぎるため、単
結晶育成に不向きである。yが0.5に近いほどフラッ
クスの融点が下がるため、育成温度を下げることかでき
る。フラックス量に比べて原料が多すぎると、同時に多
くの場所で核生成が起きるため大きな単結晶が得られず
、原料が少なすぎても単結晶の成長が充分性われないた
め、得られる単結晶は小さくなる。Tables 1 and 2 show the prefectural size and TC of the single crystals obtained. At temperatures above 950°C, T L N
This method is unsuitable for single crystal growth because aC+ and KCl evaporate too rapidly. The closer y is to 0.5, the lower the melting point of the flux, so the growth temperature can be lowered. If the amount of raw material is too large compared to the amount of flux, nucleation will occur in many places at the same time, making it impossible to obtain a large single crystal. If the amount of raw material is too small, the growth of the single crystal will not be sufficient, resulting in a smaller single crystal. becomes smaller.
(以下余白)
−′10−
第 1 表
第 2 表
−11一
実施例2
実施例1で得られた110におよび116にの丁Cを持
つ単結晶を第3表に示す条件で熱処理した。(The following is a blank space) -'10- Table 1 Table 2 Table 11-Example 2 The single crystals obtained in Example 1 and having C of 110 and 116 were heat treated under the conditions shown in Table 3.
酸素圧、熱処理温度を上げるほどTcは低くなることが
確かめられた。この場合も転移の鋭さは変化せず、それ
ぞれの温度で全体積が超伝導に転移することがわかった
。酸素圧が1気圧のもとでは熱処理温度、時間を変えて
も、Tcは変化しなかつ 1こ 。It was confirmed that Tc decreased as the oxygen pressure and heat treatment temperature were increased. In this case as well, it was found that the sharpness of the transition did not change, and that the entire volume transitioned to superconductivity at each temperature. When the oxygen pressure is 1 atm, Tc does not change even if the heat treatment temperature and time are changed.
第3表
= 13−
= 12 一
実施例3
■出発原料として純度99.9%以上の酸化タリウム(
丁1203)、酸化バリウム(Bad)、酸化カルシウ
ム(Cab)、1m化第二銅(Cub)。Table 3 = 13- = 12 Example 3 ■ Thallium oxide with a purity of 99.9% or more as a starting material (
1203), barium oxide (Bad), calcium oxide (Cab), cupric oxide (Cub).
塩化鉛(PbC12>を使用し、
T I203 +28aO+(n−1>6ao+ncu
o+xPbCl 2
なる−数式で、n、Xについては、第4表に示す配合比
になるように秤量、混合し、直径20 mm、深さ25
mmの金相場に封入し、600〜900 ’Cで1〜1
0時間融解させたのち、1時間に10℃以下の速度で5
00’Qまで徐冷した。500’Cから室温までは1時
間100’Cの割合で冷却した。単結晶試料は、PbC
l2を水で洗い流すことによって取り出した。Using lead chloride (PbC12>, T I203 +28aO+(n-1>6ao+ncu
o + x PbCl 2 - In the formula, n and
Enclosed in mm gold price, 1-1 at 600-900'C
After melting for 0 hours, melt at a rate of 10℃ or less per hour.
It was slowly cooled to 00'Q. The temperature was cooled from 500'C to room temperature at a rate of 100'C for 1 hour. The single crystal sample is PbC
12 was removed by rinsing with water.
■試薬は■と同様のものを出発原料とした。初めにTI
203 、B aQ、cao、CuOをT12 Ba2
Can−I Cu、04,2.(n=2.3>の比に
なるように混合し、プレスした後、金箔で包んで860
〜900℃で3〜5時間焼結した。得られた焼結体を粉
砕し、PbCl2と、
T I Ba Ca Cu、 04+2n
十2 2 n−1
x P b Cl 2
なる−数式で、n、xについては第5表に示ず配合比に
なるように混合した。融解、同化、単結晶の取り出しは
上記の■と同様の条件で行った。(2) The same reagent as in (2) was used as the starting material. At first T.I.
203, BaQ, cao, CuO with T12 Ba2
Can-I Cu, 04,2. (Mixed so that the ratio of n = 2.3>, pressed, wrapped in gold foil and heated to 860
Sintered at ~900°C for 3-5 hours. The obtained sintered body was crushed, and PbCl2 and T I Ba Ca Cu, 04+2n
The formula was 12 2 n-1 x P b Cl 2 , where n and x were not shown in Table 5, but were mixed in a mixing ratio. Melting, assimilation, and extraction of single crystals were performed under the same conditions as in (2) above.
いずれの場合も、得られた単結晶の抵抗率、反磁性磁化
率の測定、および組成分析を行った。抵抗率は金線をリ
ードとする4端子法で、反磁性磁化率は5QUIDマグ
ネツ1〜メーターでそれぞれ測定した。組成分析はEP
MAを用いて行つ1こ。In each case, the resistivity and diamagnetic susceptibility of the obtained single crystals were measured, and the composition was analyzed. The resistivity was measured using a four-terminal method using a gold wire as a lead, and the diamagnetic susceptibility was measured using a 5QUID magnet 1-meter. Composition analysis is EP
This is done using MA.
第4表および第5表に得られた単結晶の典型的な大きさ
とT cを示す。900℃を超える温度では、丁1およ
びPbCl2の蒸発が激しくなりすぎるため、単結晶育
成に不向きである。フラックス量に比べて原料が多すぎ
ると、同時に多くの場所で核生成が起きるため大きな単
結晶が得られず、原料が少なずぎでも単結晶の成長か充
分行われないため、得られる単結晶は小さくなる。Tables 4 and 5 show typical sizes and T c of the single crystals obtained. At temperatures exceeding 900°C, evaporation of Pb1 and PbCl2 becomes too rapid, making it unsuitable for single crystal growth. If the amount of raw material is too large compared to the amount of flux, nucleation will occur in many places at the same time, making it impossible to obtain a large single crystal, and even if the amount of raw material is too small, the single crystal will not grow sufficiently, resulting in a smaller single crystal. becomes smaller.
第 4 表
第 5 表
実施例4
実施例3で得られた110におよび116にのTcを持
つ単結晶を第6表に示す条件で熱処理した。Table 4 Table 5 Example 4 The single crystals having Tc of 110 and 116 obtained in Example 3 were heat treated under the conditions shown in Table 6.
酸素圧、熱処理温度を上げるはどTcは低くなることが
確かめられた。この場合も転移の鋭さは変化せず、それ
ぞれの温度で全体積が超伝導に転移することがわかった
。酸素圧が1気圧のもとでは熱処理温度、時間を変えて
も、TCは変化しなかった。It was confirmed that Tc decreased as the oxygen pressure and heat treatment temperature were increased. In this case as well, it was found that the sharpness of the transition did not change, and that the entire volume transitioned to superconductivity at each temperature. When the oxygen pressure was 1 atm, TC did not change even if the heat treatment temperature and time were changed.
第6表
[発明の効果]
本発明の製造方法によれば、Tl2Ba2Can−1C
unO4+2o(n−2または3)の良質な単結晶を得
ることかでき、また、本発明の超伝導転移湿度の制御方
法によると単結晶試料のTOを連続的に変えることがで
きるため、超伝導材料の工業利用にとって極めて有用な
ものである。Table 6 [Effects of the Invention] According to the production method of the present invention, Tl2Ba2Can-1C
It is possible to obtain a high-quality single crystal of unO4+2o (n-2 or 3), and according to the method of controlling the superconducting transition humidity of the present invention, the TO of the single crystal sample can be continuously changed. It is extremely useful for industrial use of the material.
Claims (3)
4_+_2_n(n=2または3)と表される酸化物超
伝導体単結晶の製造方法において、KClおよび/また
はNaClをフラックスとして用い、 〔1〕Tl_2O_3+2BaO+(n−1)CaO+
nCuO+x{(1−y)KCl+yNaCl}(n=
2または3、3≦x≦500、0≦y≦1)なる組成範
囲の混合粉末、もしくは、 〔2〕Tl_2Ba_2Ca_n_−_1Cu_nO_
4_+_2_n+x{(1−y)KCl+yNaCl} (n=2または3、3≦x≦500、0≦y≦1)なる
組成範囲の混合粉末を700〜950℃の温度範囲で融
解し、20℃/hour以下の速度で徐冷することを特
徴とする酸化物超伝導体単結晶の製造方法。(1) Tl_2Ba_2Ca_n_-_1Cu_nO_
In a method for manufacturing an oxide superconductor single crystal expressed as 4_+_2_n (n=2 or 3), using KCl and/or NaCl as a flux, [1] Tl_2O_3+2BaO+(n-1)CaO+
nCuO+x{(1-y)KCl+yNaCl} (n=
2 or 3, 3≦x≦500, 0≦y≦1), or [2] Tl_2Ba_2Ca_n_-_1Cu_nO_
A mixed powder having a composition range of 4_+_2_n+x{(1-y)KCl+yNaCl} (n=2 or 3, 3≦x≦500, 0≦y≦1) is melted in a temperature range of 700 to 950°C and heated at 20°C/hour. A method for producing an oxide superconductor single crystal, characterized by slow cooling at the following rate.
4_+_2_n(n=2または3)と表される酸化物超
伝導体単結晶の製造方法において、PbCl_2をフラ
ックスとして用い、 〔1〕Tl_2O_3+2BaO+(n−1)CaO+
nCuO+xPbCl_2 (n=2または3、3≦x≦300) なる組成範囲の混合粉末、もしくは、 〔2〕Tl_2Ba_2Ca_n_−_1Cu_nO_
4_+_2_n+xPbCl_2 (n=2または3、3≦x≦300) なる組成範囲の混合粉末を600〜900℃の温度範囲
で融解し、20℃/hour以下の速度で徐冷すること
を特徴とする酸化物超伝導体単結晶の製造方法。(2) Tl_2Ba_2Ca_n_-_1Cu_nO_
In a method for manufacturing an oxide superconductor single crystal expressed as 4_+_2_n (n=2 or 3), PbCl_2 is used as a flux, [1] Tl_2O_3+2BaO+(n-1)CaO+
Mixed powder with a composition range of nCuO+xPbCl_2 (n=2 or 3, 3≦x≦300), or [2] Tl_2Ba_2Ca_n_-_1Cu_nO_
4_+_2_n+xPbCl_2 (n=2 or 3, 3≦x≦300) An oxide characterized by melting a mixed powder in the composition range of 600 to 900°C and slowly cooling it at a rate of 20°C/hour or less. Method for producing superconductor single crystals.
を400気圧までの加圧酸素下で、300〜600℃の
温度範囲で熱処理することを特徴とする酸化物超伝導体
単結晶の超伝導転移温度の制御方法。(3) The oxide superconductor single crystal according to claim 1 or 2 is heat-treated in a temperature range of 300 to 600°C under pressurized oxygen up to 400 atmospheres. A method for controlling the superconducting transition temperature of crystals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329677A JPH04202093A (en) | 1990-11-30 | 1990-11-30 | Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329677A JPH04202093A (en) | 1990-11-30 | 1990-11-30 | Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04202093A true JPH04202093A (en) | 1992-07-22 |
Family
ID=18224036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2329677A Pending JPH04202093A (en) | 1990-11-30 | 1990-11-30 | Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04202093A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01119579A (en) * | 1987-10-30 | 1989-05-11 | Kobe Steel Ltd | Heat treatment of superconducting ceramics of composite oxide system |
JPH01275435A (en) * | 1988-03-21 | 1989-11-06 | American Teleph & Telegr Co <Att> | Superconductor and method for its manufacture |
JPH0255298A (en) * | 1988-08-19 | 1990-02-23 | Toshiba Corp | Method for growing oxide superconductor single crystal |
-
1990
- 1990-11-30 JP JP2329677A patent/JPH04202093A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01119579A (en) * | 1987-10-30 | 1989-05-11 | Kobe Steel Ltd | Heat treatment of superconducting ceramics of composite oxide system |
JPH01275435A (en) * | 1988-03-21 | 1989-11-06 | American Teleph & Telegr Co <Att> | Superconductor and method for its manufacture |
JPH0255298A (en) * | 1988-08-19 | 1990-02-23 | Toshiba Corp | Method for growing oxide superconductor single crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4824826A (en) | Millimeter size single crystals of superconducting YBa2 Cu3 O.sub. | |
US5324712A (en) | Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding | |
JPH0259465A (en) | Production of oxide high temperature superconductor | |
US5591698A (en) | Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors | |
JPH04202093A (en) | Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature | |
US5968878A (en) | Oxide superconductor and method of producing same | |
JP2697334B2 (en) | Method for producing oxide superconductor single crystal | |
JPH04130092A (en) | Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature | |
JPH04130093A (en) | Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature | |
US5418214A (en) | Cuprate-titanate superconductor and method for making | |
JPH02275799A (en) | Oxide superconductor and its production | |
Babu et al. | Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions | |
JPH02243519A (en) | Oxide superconductor and production thereof | |
JPH05279191A (en) | Production of oxide superconductor single crystal | |
JPH01179790A (en) | Production of single crystal of high temperature superconductor | |
JPH0769626A (en) | Metal oxide and production thereof | |
JPH06187848A (en) | Oxide superconducting wire and manufacture thereof | |
JPH06219896A (en) | Oxide superconductor single crystal and production thereof | |
McCallum et al. | Microstructure and Superconductivity in High T c Materials | |
JPH03112810A (en) | Production of oxide superconducting film | |
JPH01261229A (en) | Oxide superconductor and production thereof | |
JPH111320A (en) | Oxide superconductor and its production | |
JPH02229787A (en) | Production of oxide superconductor | |
JPH0710734B2 (en) | Method for producing oxide superconductor thin film | |
Radousky et al. | Halogenated high {Tc} superconductors and method of preparation |