JPH01179790A - Production of single crystal of high temperature superconductor - Google Patents
Production of single crystal of high temperature superconductorInfo
- Publication number
- JPH01179790A JPH01179790A JP63003101A JP310188A JPH01179790A JP H01179790 A JPH01179790 A JP H01179790A JP 63003101 A JP63003101 A JP 63003101A JP 310188 A JP310188 A JP 310188A JP H01179790 A JPH01179790 A JP H01179790A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- sintered body
- compsn
- rod
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 50
- 239000002887 superconductor Substances 0.000 title claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 239000005751 Copper oxide Substances 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001281 superconducting alloy Inorganic materials 0.000 description 2
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温超電導体単結晶の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing a high temperature superconductor single crystal.
(従来技術及びその問題点)
Y−Ba−Cu−0系に代表される稀土類元素−アルカ
リ土類元素−銅の酸化物からなる酸素欠損型層状ペロプ
スカイト構造を有する高温超電導物質は、交通機関、重
電機器、コンピューター、医療機器の多方面への応用が
期待されている。(Prior art and its problems) High-temperature superconducting materials having an oxygen-deficient layered perovskite structure consisting of rare earth element-alkaline earth element-copper oxides represented by the Y-Ba-Cu-0 system are It is expected to be applied to a wide range of applications in institutions, heavy electrical equipment, computers, and medical equipment.
これらの酸化物系高温超電導物質は、液体窒素のような
安価な冷媒で冷却することによっても超電導状態になる
ため、液体ヘリウム中でしか超電導状態を示さないNb
−Ti系超電導合金などの代わりに、超電導マグネット
などに使えれば、経済的に大きなメリットがある。These oxide-based high-temperature superconducting materials also become superconducting when cooled with an inexpensive coolant such as liquid nitrogen, so Nb, which only exhibits a superconducting state in liquid helium,
-If it can be used in superconducting magnets instead of Ti-based superconducting alloys, there will be great economic advantages.
しかし、これまで作られてきた酸化物系超電導物質は臨
界電流密度が数+A/aflと低く、従来−船釣に使わ
れてきたNb−Ti系超電導合金の1/200〜1/4
00に過ぎないという欠点があった。However, the critical current density of the oxide-based superconducting materials that have been produced so far is as low as several + A/afl, which is 1/200 to 1/4 of the Nb-Ti-based superconducting alloys conventionally used for boat fishing.
There was a drawback that it was only 00.
また、常電導〜超電導の転移の温度幅が広く急峻さに欠
けているという点も問題であった。Another problem was that the temperature range of the transition from normal conductivity to superconductivity was wide and lacked steepness.
これらの問題点の原因の一つとして、酸化物系超電導物
質が多孔質で密度が小さいことが指摘されている。It has been pointed out that one of the causes of these problems is that oxide-based superconducting materials are porous and have a low density.
これまで上記問題点を解決しようとして、超電導物質の
大型単結晶の製造法が検討されてきたが、各々の成分元
素の酸化物が異なった温度で融解するため、結晶型及び
元素組成が均一な結晶を育成することが困難であった。Up until now, methods for manufacturing large single crystals of superconducting materials have been studied in an attempt to solve the above problems, but because the oxides of each component element melt at different temperatures, it is difficult to achieve a uniform crystal type and elemental composition. It was difficult to grow crystals.
また結晶冷却時に起きる相転移のため、双晶粒界が多数
発生し、良質な大型単結晶を得ることが困難であった。Furthermore, due to the phase transition that occurs during crystal cooling, many twin grain boundaries occur, making it difficult to obtain large single crystals of good quality.
実際に、酸化物系超電導物質のデバイスへの応用ばかり
ではなく、構造解析、物性測定による超電導状態の発現
機構を解明するためにも、良質な大型単結晶の製造法が
望まれている。In fact, a method for producing large, high-quality single crystals is desired not only for the application of oxide-based superconducting materials to devices, but also for elucidating the mechanism by which superconducting states occur through structural analysis and physical property measurements.
(問題点解決のための技術的手段)
本発明者等は、上記問題点を解決するために鋭意研究を
行った結果、フローティング・ゾーン法によって結晶を
製造する際に、溶融帯の成分元素の組成を制御すること
により組成、結晶方位のより均一な大型単結晶が得られ
ることを見出した。(Technical means for solving the problem) As a result of intensive research to solve the above problem, the present inventors found that when producing crystals by the floating zone method, the constituent elements of the molten zone We have found that by controlling the composition, large single crystals with more uniform composition and crystal orientation can be obtained.
本発明は、稀土類元素−アルカリ土類元素−銅の酸化物
からなる高温超電導体単結晶を、フローティング・ゾー
ン法によって製造する際に、製造する単結晶の元素組成
と同一組成の捧状焼結体(以下捧状焼結体Aという)と
、製造する単結晶と平衡的に共存する溶融帯の元素組成
と同一組成の捧状焼結体(以下捧状焼結体Bという)を
上下方向に組み合わせ、酸素と不活性ガスとの混合ガス
雰囲気中で、溶融帯から前記単結晶を育成することを特
徴とする高温超電導体単結晶の製造法である。The present invention provides a method for producing a high-temperature superconductor single crystal consisting of rare earth element-alkaline earth element-copper oxides by a floating zone method, using a sintered offering having the same elemental composition as the single crystal to be produced. A compact (hereinafter referred to as a sintered compact A) and a sintered compact (hereinafter referred to as a sintered compact B) having the same elemental composition as the molten zone that coexists in equilibrium with the single crystal to be manufactured are placed one above the other. This is a method for producing a high-temperature superconductor single crystal, characterized in that the single crystal is grown from a molten zone in a mixed gas atmosphere of oxygen and an inert gas.
本発明において使用される捧状焼結体Aは、−般に良く
知られた方法で製造できる。即ちR+AzCuiOt−
x (R及びAは、それぞれ稀土類元素及びアルカリ
土類元素を表し、0.≦−X≦0.5である。)の組成
に従って、構成元素の酸化物、炭酸塩、シュウ酸塩ある
いはクエン酸塩の粉末などを、ボールミル、播潰機ある
いは乳棒・乳鉢などで粉砕、混合し、その混合粉体を仮
焼結した後粉体をラバープレスなどで棒状に加圧成形、
焼結によって捧状焼結体Aが得られる。加圧成形用の原
料粉体は、本発明で製造する単結晶の組成に従った構成
元素化合物の溶液と、沈澱形成剤を接触させて形成した
共沈澱物を仮焼結することによっても得られる。The sintered sintered body A used in the present invention can be manufactured by a generally well-known method. That is, R+AzCuiOt-
x (R and A represent rare earth elements and alkaline earth elements, respectively, and 0.≦−X≦0.5.) Salt powder, etc. is crushed and mixed with a ball mill, crusher, pestle, mortar, etc., the mixed powder is temporarily sintered, and then the powder is pressure-formed into a rod shape with a rubber press, etc.
A sintered body A is obtained by sintering. The raw material powder for pressure molding can also be obtained by pre-sintering a coprecipitate formed by contacting a solution of constituent element compounds according to the composition of the single crystal produced in the present invention with a precipitate forming agent. It will be done.
捧状焼結体Aは任意の形状、寸法であってよく、例えば
15xl 5X100mmの角柱、または直径15薗で
長さ150mmの円柱として使用できる。The sintered sintered body A may have any shape and dimensions, and can be used as, for example, a 15xl 5x100 mm square column, or a cylinder with a diameter of 15 mm and a length of 150 mm.
本発明において使用される捧状焼結体Bは、使用する構
成元素化合物の量比が異なる以外は、捧状焼結体Aと同
様な方法で製造することができる。The sintered sintered body B used in the present invention can be produced in the same manner as the sintered sintered body A, except that the quantitative ratio of the constituent element compounds used is different.
捧状焼結体Bの構成元素化合物の量比は、以下の方法で
決めることが出来る。The quantitative ratio of the constituent element compounds of the offering-shaped sintered body B can be determined by the following method.
酸素と不活性ガスとの混合ガス雰囲気中で、稀土類元素
、アルカリ土類元素及び銅酸化物の混合物を、加熱保持
した後急冷し、この急冷物を粉末状にし、結晶相の同定
、組成分析を行うことによって加熱時に共存する面相及
び液相の組成を知ることができる。従って不活性ガス雰
囲気中の酸素分圧、稀土類元素、アルカリ土類元素及び
銅酸化物の混合物の組成及び加熱保持する温度を変えて
、前記の方法で加熱時に共存する固相及び液相の組成を
知れば、本発明で製造する単結晶(RIA tCuzO
7−x)が晶出する溶融帯組成を決めることが出来る。In a mixed gas atmosphere of oxygen and inert gas, a mixture of rare earth elements, alkaline earth elements, and copper oxides is heated and held, then rapidly cooled, and the quenched product is turned into a powder to identify the crystal phase and composition. By performing the analysis, it is possible to know the composition of the surface phase and liquid phase that coexist during heating. Therefore, by changing the oxygen partial pressure in an inert gas atmosphere, the composition of the mixture of rare earth elements, alkaline earth elements, and copper oxide, and the heating and holding temperature, the solid phase and liquid phase coexisting during heating can be Once the composition is known, the single crystal produced by the present invention (RIA tCuzO
The composition of the melting zone where 7-x) crystallizes can be determined.
本発明におけるフローティング・ゾーン法で使用される
異なった組成を有する複数の捧状焼結体の組み合わせ法
としては、(1)捧状焼結体Aと、捧状焼結体Bを上下
方向に重合わせる、あるいは(2)捧状焼結体A2本で
捧状焼結体Bをはさむ方法等がある。As a method of combining a plurality of sintered sintered bodies having different compositions used in the floating zone method of the present invention, (1) sintered sintered bodies A and sintered sintered bodies B are placed in the vertical direction. There are methods such as overlapping, or (2) sandwiching the sintered sintered body B between two sintered sintered bodies A.
本発明におけるフローティング・ゾーン法の例を、上記
捧状焼結体の組み合わせが(2)の場合について、装置
の概念図に基づいて説明する。An example of the floating zone method according to the present invention will be explained based on a conceptual diagram of the apparatus for the case where the combination of the above-mentioned sintered bodies is (2).
第1図において、高周波コイル7から高周波を発生させ
て加熱用のリング6を誘導加熱し、その熱によって捧状
焼結体Bを溶融させて溶融帯5を形成する。溶融帯下端
部における捧状焼結体A3の溶融と、溶融帯下端部にお
ける棒状単結晶4の析出を制御しながら、ホルダー2に
保持された捧状焼結体A3をゆっくり下方に移動させる
。ホルダー2の移動速度は1〜10mm/時が好適であ
る。In FIG. 1, a high frequency coil 7 generates high frequency waves to inductively heat a heating ring 6, and the heat melts a sintered body B to form a molten zone 5. The sintered sintered body A3 held in the holder 2 is slowly moved downward while controlling the melting of the sintered body A3 at the lower end of the melting zone and the precipitation of the rod-shaped single crystal 4 at the lower end of the molten zone. The moving speed of the holder 2 is preferably 1 to 10 mm/hour.
本発明における酸素と不活性ガスとの混合ガス雰囲気は
、体積分率で0.1〜50%の酸素を含む不活性ガス混
合物で、不活性ガスとしてはヘリウム、アルゴン、ネオ
ン、窒素及びそれらの混合物などが挙げられる。酸素を
含む不活性ガス混合物は、主に材料物質の蒸発を抑制し
、加熱用のリング6の消耗を抑制するために用いられる
。酸素と不活性ガスとの混合ガス雰囲気の全圧力は、0
.1〜100気圧、好ましくは0.5〜50気圧である
。0.1気圧より低い圧力では、蒸発、消耗を抑制する
効果が殆どなく、100気圧より高いと対流などによる
熱損失が大きくなるので好ましくない。The mixed gas atmosphere of oxygen and inert gas in the present invention is an inert gas mixture containing oxygen at a volume fraction of 0.1 to 50%, and examples of the inert gas include helium, argon, neon, nitrogen, and their like. Examples include mixtures. The inert gas mixture containing oxygen is used primarily to suppress the evaporation of the material and the wear and tear of the heating ring 6. The total pressure of the mixed gas atmosphere of oxygen and inert gas is 0
.. The pressure is 1 to 100 atm, preferably 0.5 to 50 atm. A pressure lower than 0.1 atm has little effect on suppressing evaporation and consumption, and a pressure higher than 100 atm is undesirable because heat loss due to convection or the like increases.
単結晶を育成させる際に、上下のシャフト1を回転する
ことによって溶融帯を混合攪拌し、単結晶の育成を容易
にすることが出来る。When growing a single crystal, the upper and lower shafts 1 are rotated to mix and stir the molten zone, thereby facilitating the growth of the single crystal.
(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.
実施例l
Y2O3、B a CO3、CuOの粉末を、Y:Ba
:cu−1:2:3原子比の割合で混合した後、ラバー
プレスで直径15mm、長さ150snと50皿の2本
の円柱に成形し、これを大気中900“Cで4時間焼結
してY、BazC11s06.s組成の捧状焼結体Aを
得た。Example 1 Powders of Y2O3, B a CO3 and CuO were mixed into Y:Ba
:cu- After mixing at an atomic ratio of 1:2:3, it was formed into two cylinders with a diameter of 15 mm and a length of 150 sn with 50 dishes using a rubber press, and this was sintered at 900"C in the air for 4 hours. A sintered body A having a composition of Y, BazC11s06.s was obtained.
次にY:Ba:Cu=1:2.1:4.1原子比の割合
で混合した以外は前記と同様にしてYlBaz、7cu
4.+on、7組成の捧状焼結体Bを得た。Next, YlBaz and 7 cu.
4. +on, a sintered body B having a composition of 7 was obtained.
前記の2本の捧状焼結体Aをホルダー(第1図の2)で
支持し、その間に捧状焼結体Bを挟んだ。The two sintered sintered bodies A mentioned above were supported by a holder (2 in FIG. 1), and the sintered sintered body B was sandwiched between them.
全圧5気圧、酸素分圧0.5気圧のヘリウム混合ガス雰
囲気中で、挟まれた溶融帯形成用の捧状焼結体Bを溶か
し溶融帯を形成させ、上方及び下方の捧状焼結体Aを3
胴/時で下方に移動させると共に1Orpmで回転させ
た。その結果、上方捧状焼結体Aは溶融帯中に溶は込み
、溶融帯下部にはY+BazCu30i、s組成の結晶
が育成された。得られた直径12mn、長さ25閣の結
晶棒の品質を調べるために、二重結晶デイフラクトメー
ターを用いてζ (100)面のロッキングカーブを測
定したところ、回折曲線の半値幅は0.1゜であり、こ
の結晶棒は単一結晶粒子より構成され、双晶粒界の割合
が非常に少ない大型の良質な単結晶であることが判った
。In a helium mixed gas atmosphere with a total pressure of 5 atm and an oxygen partial pressure of 0.5 atm, the sandwiched molten zone-forming sintered body B is melted to form a molten zone, and the upper and lower sintered sintered bodies are sintered. body A 3
It was moved downward at a cylinder/hour and rotated at 1 Orpm. As a result, the upper sintered body A melted into the molten zone, and crystals of Y+BazCu30i,s composition were grown in the lower part of the molten zone. In order to check the quality of the obtained crystal rod with a diameter of 12 mm and a length of 25 mm, the rocking curve of the ζ (100) plane was measured using a double crystal diffractometer, and the half width of the diffraction curve was 0. 1°, and this crystal rod was found to be a large, high-quality single crystal composed of single crystal grains and with a very low proportion of twin grain boundaries.
1気圧の酸素雰囲気中、550°Cで2日間アニーリン
グし交流帯磁率を測定したところ、明確なマイスナー効
果を示した。直流4端子法による電気抵抗からの超電導
転移温度は93にであった。When annealing was performed at 550°C for 2 days in an oxygen atmosphere of 1 atm and AC magnetic susceptibility was measured, a clear Meissner effect was shown. The superconducting transition temperature from electrical resistance determined by the DC four-probe method was 93.
実施例2
捧状焼結体Aの組成をLa、BazCu、O,、s、溶
融帯を形成する捧状焼結体Bの組成をLa。Example 2 The composition of the sintered sintered body A is La, BazCu, O,,s, and the composition of the sintered sintered body B forming the molten zone is La.
B a 、、2Cu、0.0.、、にし、全圧20気圧
、酸素分圧0.3気圧のアルゴン混合ガス雰囲気にした
以外は、実施例1と同様の方法を繰り返した。B a , 2Cu, 0.0. The same method as in Example 1 was repeated except that the atmosphere was changed to argon mixed gas with a total pressure of 20 atm and an oxygen partial pressure of 0.3 atm.
得られた直径11.5an、長さ30皿の結晶棒の(1
00)面のロッキングカーブからの半値幅は0.06°
であり、この結晶棒は単一結晶粒子より構成され、双晶
粒界の割合が非常に少ない大型の良質なLaJa2Cu
s06.s単結晶であることが判った。(1
The half width from the rocking curve of the 00) surface is 0.06°
This crystal rod is composed of a single crystal grain, and is a large, high-quality LaJa2Cu with a very low proportion of twin grain boundaries.
s06. It turned out to be a single crystal.
直流4端子法による電気抵抗からの超電導転移温度は3
2にであった。The superconducting transition temperature from electrical resistance using the DC 4-terminal method is 3
It was on 2nd.
実施例3
捧状焼結体Aの組成をEr+BazCusO6,q、溶
融帯を形成する捧状焼結体Bの組成をEr+B a i
、zc u:+、zos、oにし、全圧0.5気圧、酸
素分圧0.3気圧のアルゴン混合ガス雰囲気にした以外
は、実施例1と同様の方法を繰り返した。Example 3 The composition of the sintered sintered body A is Er+BazCusO6,q, and the composition of the sintered sintered body B forming the molten zone is Er+B a i
, zc u:+, zos, o, and an argon mixed gas atmosphere with a total pressure of 0.5 atm and an oxygen partial pressure of 0.3 atm, but the same method as in Example 1 was repeated.
得られた直径11.5mm、長さ30mmの結晶棒の(
100)面のロッキングカーブからの半値幅は0.13
°であり、この結晶棒は単一結晶粒子より構成され、双
晶粒界の割合が非常に少ない大型の良質なE r +B
a zCu30b、q単結晶であることが判った。The obtained crystal rod with a diameter of 11.5 mm and a length of 30 mm (
The half width from the rocking curve of the 100) surface is 0.13
°, and this crystal rod is composed of a single crystal grain, and is a large, high-quality E r +B with a very low proportion of twin grain boundaries.
It was found to be azCu30b,q single crystal.
直流4端子法による電気抵抗からの超電導転移温度は9
5にであった。The superconducting transition temperature from electrical resistance using the DC 4-terminal method is 9
It was on 5th.
第1図は、フローティング・ゾーン法による単結晶の製
造を示す概念図である。
′1はシャフト、
2はホルダー、
3は捧状焼結体A、
4は棒状単結晶、
5は溶融帯(捧状焼結体B)、
6は加熱用リング、
7は高周波誘導加熱用コイルである。FIG. 1 is a conceptual diagram showing the production of a single crystal by the floating zone method. '1 is a shaft, 2 is a holder, 3 is a sintered body A, 4 is a rod-shaped single crystal, 5 is a molten zone (sintered body B), 6 is a heating ring, and 7 is a high-frequency induction heating coil. It is.
Claims (2)
なる高温超電導体単結晶を、フローティング・ゾーン法
によって製造する際に、製造する単結晶の元素組成と同
一組成の棒状焼結体と、製造する単結晶と平衡的に共存
する溶融帯の元素組成と同一組成の棒状焼結体を上下方
向に組み合わせ、酸素と不活性ガスの混合ガス雰囲気中
で、溶融帯から前記単結晶を育成することを特徴とする
高温超電導体単結晶の製造法。(1) When producing a high-temperature superconductor single crystal consisting of a rare earth element-alkaline earth element-copper oxide by the floating zone method, a rod-shaped sintered body having the same elemental composition as the single crystal to be produced is produced. and a rod-shaped sintered body having the same elemental composition as the molten zone that coexists in equilibrium with the single crystal to be produced are vertically assembled, and the single crystal is extracted from the molten zone in a mixed gas atmosphere of oxygen and inert gas. A method for producing a high-temperature superconductor single crystal characterized by growing it.
体の組成が R_1A_2Cu_3O_7_−_xであり、製造する
単結晶と平衡的に共存する溶融帯の元素組成と同一組成
の棒状焼結体の組成が R_1A_2_._7_−_yCu_4_−_zO_8
_._7_−_wである特許請求の範囲第(1)項の製
造法。 上記両式において、R及びAはそれぞれ稀土類元素及
びアルカリ土類元素を表し、0≦x≦0.5、−0.5
≦y≦0.5、−0.8≦z≦0.8、−1.0≦w≦
1.0である。(2) A rod-shaped sintered body whose composition is R_1A_2Cu_3O_7_-_x, which has the same elemental composition as the single crystal to be manufactured, and the same elemental composition as the molten zone that coexists in equilibrium with the single crystal to be manufactured. Body composition is R_1A_2_. _7_−_yCu_4_−_zO_8
_. _7_-_w The manufacturing method according to claim (1). In both formulas above, R and A represent rare earth elements and alkaline earth elements, respectively, and 0≦x≦0.5, -0.5
≦y≦0.5, -0.8≦z≦0.8, -1.0≦w≦
It is 1.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003101A JPH01179790A (en) | 1988-01-12 | 1988-01-12 | Production of single crystal of high temperature superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63003101A JPH01179790A (en) | 1988-01-12 | 1988-01-12 | Production of single crystal of high temperature superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01179790A true JPH01179790A (en) | 1989-07-17 |
Family
ID=11547955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63003101A Pending JPH01179790A (en) | 1988-01-12 | 1988-01-12 | Production of single crystal of high temperature superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01179790A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275800A (en) * | 1988-12-29 | 1990-11-09 | Hironao Kojima | Single crystal of superconductive oxide and its production |
US5444040A (en) * | 1989-12-18 | 1995-08-22 | Seiko Epson Corporation | Superconductive oxide single crystal and manufacturing method thereof |
JPH07237991A (en) * | 1994-02-25 | 1995-09-12 | Agency Of Ind Science & Technol | Production of single crystal containing rare earth element |
-
1988
- 1988-01-12 JP JP63003101A patent/JPH01179790A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275800A (en) * | 1988-12-29 | 1990-11-09 | Hironao Kojima | Single crystal of superconductive oxide and its production |
US5444040A (en) * | 1989-12-18 | 1995-08-22 | Seiko Epson Corporation | Superconductive oxide single crystal and manufacturing method thereof |
JPH07237991A (en) * | 1994-02-25 | 1995-09-12 | Agency Of Ind Science & Technol | Production of single crystal containing rare earth element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0440289B2 (en) | ||
JPH01179790A (en) | Production of single crystal of high temperature superconductor | |
JP3330962B2 (en) | Manufacturing method of oxide superconductor | |
JPH0365509A (en) | Rare earth metal oxide superconductor | |
JPH0416511A (en) | Oxide superconductor and its production | |
JP3242350B2 (en) | Oxide superconductor and manufacturing method thereof | |
JPH01157499A (en) | Production of single crystal of oxide superconductor | |
Rikel et al. | Introduction to Bulk Firing Techniques | |
JPH06219896A (en) | Oxide superconductor single crystal and production thereof | |
JPH04160062A (en) | Production of superconducting material | |
JPH03112810A (en) | Production of oxide superconducting film | |
JPH0769626A (en) | Metal oxide and production thereof | |
JP2545443B2 (en) | Method for manufacturing oxide superconductor | |
JPH07187671A (en) | Oxide superconductor and its production | |
JPH03271156A (en) | Production of oxide superconductor bulk | |
JPH04130093A (en) | Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature | |
JPH02229787A (en) | Production of oxide superconductor | |
JPH04202093A (en) | Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature | |
JPH03122042A (en) | Production of ceramic superconducting material | |
JPH01275493A (en) | Method for growing oxide superconductor single crystal | |
JPH06183730A (en) | Production of oxide superconductive bulky material | |
JPH02153821A (en) | Production of thallium-based superconductor | |
JPH01203257A (en) | Production of superconductor | |
JPH01157453A (en) | Production of oxide superconductor | |
JPH111320A (en) | Oxide superconductor and its production |