JPH03122042A - Production of ceramic superconducting material - Google Patents

Production of ceramic superconducting material

Info

Publication number
JPH03122042A
JPH03122042A JP1260866A JP26086689A JPH03122042A JP H03122042 A JPH03122042 A JP H03122042A JP 1260866 A JP1260866 A JP 1260866A JP 26086689 A JP26086689 A JP 26086689A JP H03122042 A JPH03122042 A JP H03122042A
Authority
JP
Japan
Prior art keywords
mixture
ceramic
temperature
raw material
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260866A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1260866A priority Critical patent/JPH03122042A/en
Publication of JPH03122042A publication Critical patent/JPH03122042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain a superconducting product having high current density even in a strong magnetic field by mixing a raw material for superconducting ceramics with a substance containing noble metal element, treating the mixture in specific steps and dispersing the noble metal element in the mixture. CONSTITUTION:The objective production process in composed of (1) a step for mixing a raw material for ceramic superconducting material and a substance containing noble metal element, (2) a step to heat the mixture at the melting temperature of the raw material for the ceramic superconducting material and keep at the temperature for a prescribed period, (3) a step to cool mixture at a specific temperature to form an amorphous material, (4) a step to form the amorphous mixture in a prescribed form and (5) a step to reheat the formed article at a prescribed temperature to disperse the noble metal element in the mixture.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コイル、ケーブル、配線用線材、および限流
器等に使用できるセラミック系超電導導体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic superconducting conductor that can be used for coils, cables, wiring wires, current limiters, and the like.

[従来の技術] 近年、液体ヘリウム温度の極低温で超電導現象を生じる
金属超電導体に代わり、液体窒素温度以上の温度におい
て超電導現象を生じる酸化物超電導体、すなわち、臨界
温度Tcが液体窒素tH度以上である酸化物超電導体の
開発が盛んに行われている。なかでもY系、Bi系、お
よびTp系の酸化物超電導体が注目されている。
[Prior Art] In recent years, instead of metal superconductors which produce superconductivity at extremely low temperatures of liquid helium temperature, oxide superconductors which produce superconductivity at temperatures higher than liquid nitrogen temperature, i.e., whose critical temperature Tc is equal to liquid nitrogen tH degrees, have been developed. The above oxide superconductors are being actively developed. Among these, Y-based, Bi-based, and Tp-based oxide superconductors are attracting attention.

これらのセラミック系超電導体は、液体窒素温度以上に
おける臨界温度で優れた電気的特性を発揮するため、例
えば、コイル、ケーブル、配線用線材、および限流器等
の超電導導体としての用途に適している。
These ceramic superconductors exhibit excellent electrical properties at critical temperatures above the liquid nitrogen temperature, making them suitable for use as superconducting conductors in coils, cables, wiring materials, and current limiters, for example. There is.

セラミック系超電導導体を製造する方法には、一般に、
固相法が用いられている。この方法は、例えば、粉末の
セラミック系超電導体原料をそのまま線状、テープ状、
リング状、仮状等の所望形状に成形するか、または金属
と複合化して、この金属複合体を所望形状に加工し、さ
らに成形または加工によって得られたものに焼結、熱処
理を犠してセラミック系超電導導体を形成するものであ
る。
Generally, methods for manufacturing ceramic superconducting conductors include:
A solid phase method is used. This method can be used, for example, to directly convert powdered ceramic superconductor raw materials into wires, tapes, etc.
It can be formed into a desired shape such as a ring shape or a temporary shape, or it can be composited with metal, and this metal composite can be processed into a desired shape, and then the product obtained by molding or processing can be subjected to sintering or heat treatment. It forms a ceramic superconducting conductor.

しかしながら、この方法よれば、熱処理後のセラミック
系超電導体の密度が低く、また、セラミック系超電導体
の結晶配向が制御できない。このため、高いJC(7R
流密度)のものが得られず大電流を流すことができない
。さらに、熱処理後のセラミック系超電導体は、多くの
粒界を有し、この粒界が磁場の印加によってJ。を急激
に低下させる(ウィークリンク)ため、セラミック系超
電導体のJ。−B特性に悪影響を及ぼす。
However, according to this method, the density of the ceramic superconductor after heat treatment is low, and the crystal orientation of the ceramic superconductor cannot be controlled. For this reason, high JC (7R
Current density) cannot be obtained, and large currents cannot be passed. Furthermore, the ceramic superconductor after heat treatment has many grain boundaries, and these grain boundaries become J due to the application of a magnetic field. J of ceramic superconductors to rapidly reduce (weak link). - Has an adverse effect on B characteristics.

一方、近年、固相法に代わって液相法が注目されている
。この方法は、例えば、セラミック系超電導体原料を加
熱溶融し、その後、溶融している原料を急冷してテープ
状、板状、線状等に成形するものである。このほか、液
相法としてフローティングゾーン法や一方向凝固法等の
高密度化、高配向化を目的とするものが行われている。
On the other hand, in recent years, liquid phase methods have been attracting attention instead of solid phase methods. In this method, for example, a ceramic superconductor raw material is heated and melted, and then the molten raw material is rapidly cooled and formed into a tape shape, a plate shape, a wire shape, or the like. In addition, as liquid phase methods, methods such as a floating zone method and a unidirectional solidification method are used for the purpose of achieving high density and high orientation.

これらの方法で得られたセラミック系超電導体は、J 
c カ、OT (テスラ)、液体窒素温度において10
3〜lO’A/cdレベルと高いものである。
Ceramic superconductors obtained by these methods are J
c mosquito, OT (Tesla), 10 at liquid nitrogen temperature
The level is as high as 3 to 10'A/cd.

[発明が解決しようとする課題] しかしながら、液相法によって得られたセラミック系超
電導導体は、数Tの高磁場ではJcが1〜2桁低下して
しまう欠点を持つ。
[Problems to be Solved by the Invention] However, the ceramic superconducting conductor obtained by the liquid phase method has a drawback that Jc decreases by one to two orders of magnitude in a high magnetic field of several T.

実際には、10〜20Tの高磁場において高いJcを有
するセラミック系超電導導体が望まれている。
In reality, a ceramic superconducting conductor having a high Jc in a high magnetic field of 10 to 20 T is desired.

本発明はかかる点に鑑みてなされたものであり、高磁場
で優れた超電導特性を発揮することができるセラミック
系超電導導体の製造方法を提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a method for manufacturing a ceramic superconducting conductor that can exhibit excellent superconducting properties in a high magnetic field.

[課題を解決するための手段] 本発明は、セラミック系超電導体原料と貴金属元素を含
む物質とを混合する工程と、該混合物を前記セラミック
系超電導体原料が溶融する温度に加熱し、該温度で所定
時間前記混合物を保持する工程と、前記混合物を所定温
度まで冷却して非晶質化させる工程と、非晶質化された
前記混合物を所望形状に成形する工程と、該成形体を所
定温度に再加熱して前記貴金属元素を前記混合物中に分
散させる工程とを具備することを特徴とするセラミック
系超電導導体の製造方法である。
[Means for Solving the Problems] The present invention includes a step of mixing a ceramic superconductor raw material and a substance containing a noble metal element, heating the mixture to a temperature at which the ceramic superconductor raw material melts, and heating the mixture to a temperature at which the ceramic superconductor raw material melts. holding the mixture for a predetermined period of time; cooling the mixture to a predetermined temperature to make it amorphous; molding the amorphous mixture into a desired shape; A method for manufacturing a ceramic superconducting conductor, comprising a step of reheating the mixture to a temperature to disperse the noble metal element in the mixture.

ここで、セラミック系超電導体の種類としては、Y B
 a 2 Cu 301−a等のY−Ba−Cu−0系
(Yを他のレアアースと置換したものを含む)や、B 
i2S r2CaCu20.。
Here, as the type of ceramic superconductor, YB
Y-Ba-Cu-0 series (including those in which Y is replaced with other rare earths) such as a 2 Cu 301-a, B
i2S r2CaCu20. .

B j2 S r2 Ca2 Cu13 ()+o等の
B i−3r−Ca−Cu−0系およびTΩ2 B a
 2 Ca Cu z O6+TΩ2 Ba2Ca2(
:u30111T(l Ba2 Ca2 Cu30g、
5等のT、Q−Ba−Ca−Cu−0系(Bi、TRの
一部をPb、Sb、Inで固溶したものを含む)等が挙
げられる。
B i-3r-Ca-Cu-0 system such as B j2 S r2 Ca2 Cu13 ()+o and TΩ2 B a
2 Ca Cu z O6+TΩ2 Ba2Ca2(
: u30111T(l Ba2 Ca2 Cu30g,
Examples include T, Q-Ba-Ca-Cu-0 systems (including those in which Bi and TR are partially dissolved in Pb, Sb, and In).

貴金属元素を含む物質は、セラミック系超電導体原料と
良好に混合できるものであればよい。このようなものと
して、Au、Ag、Pt等の貴金属の単体および酸化物
等の化合物が挙げられる。
The substance containing the noble metal element may be any substance as long as it can be mixed well with the ceramic superconductor raw material. Examples of such metals include simple noble metals such as Au, Ag, and Pt, and compounds such as oxides.

また、これらの物質の形状は、粉末状、バルク状のいず
れであってもよい。
Moreover, the shape of these substances may be either powder or bulk.

セラミック系超電導体原料としては、セラミック系超電
導体を構成する元素の酸化物、炭酸塩等、またはそれら
を混合して仮焼した後の仮焼物が用いられる。
As the ceramic superconductor raw material, oxides, carbonates, etc. of elements constituting the ceramic superconductor, or a calcined product obtained by mixing and calcining them are used.

セラミック系超電導体原料が溶融する温度は、使用する
セラミック系超電導体原料の種類により異なる。例えば
、YBaCuO系のセラミック系超電導体では、120
0〜1400℃、B t S rcacuo系のセラミ
ック系超電導体では、1100〜1300℃である。こ
れは、前記温度下限値(Y系では1200℃、Bi系で
は1100℃)未満であるとセラミック系超電導体原料
が完全に溶融せず、また前記温度上限値(Y系では14
00℃、Bi系では1300℃)を超えるとセラミック
系超電導体の組成に変動が起こるからである。
The temperature at which the ceramic superconductor raw material melts varies depending on the type of ceramic superconductor raw material used. For example, in a YBaCuO ceramic superconductor, 120
0 to 1400°C, and 1100 to 1300°C for BtS rcacuo-based ceramic superconductors. This is because the ceramic superconductor raw material will not be completely melted below the temperature lower limit (1200°C for Y-based systems and 1100°C for Bi-based systems), and the above-mentioned upper temperature limit (1400°C for Y-based systems) will not melt completely.
This is because if the temperature exceeds 00°C (1300°C for Bi-based), the composition of the ceramic superconductor will change.

セラミック系超電導体原料が溶融する温度で混合物を保
L−νする時間は、1時間程度がよい。
The time period for maintaining the mixture L-v at a temperature at which the ceramic superconductor raw material melts is preferably about 1 hour.

混合物を冷却する速度は、50℃/see以上が好まし
い。これは、冷却する速度が50℃/see未満である
と混合物の少なくとも一部が非晶質化しないからである
。また、混合物を冷却する方法は、第2図(a)に示す
ように、矢印方向に回転している一つの冷却ロール20
上に容器21から溶融状態のセラミック系超電導体22
を落下させて、ラミナー状、線状等の形状の冷却材23
を得る単ロール法や、第2図(b)に示すように、互い
に接していて、矢印方向に回転している二つの冷却ロー
ル24.25の接触部分に容器21から溶融状態のセラ
ミック系超電導体22を落下させて冷却材26を得る双
ロール法等が挙げられる。
The rate of cooling the mixture is preferably 50° C./see or higher. This is because if the cooling rate is less than 50° C./see, at least a portion of the mixture will not become amorphous. In addition, the method for cooling the mixture is as shown in FIG. 2(a), using one cooling roll 20 rotating in the direction of the arrow
A molten ceramic superconductor 22 is placed on top from a container 21.
Cooling material 23 in a laminar, linear, etc. shape is dropped.
As shown in FIG. 2(b), the molten ceramic superconductor is transferred from the container 21 to the contact area of two cooling rolls 24 and 25 that are in contact with each other and are rotating in the direction of the arrow. Examples include a twin roll method in which the coolant 26 is obtained by dropping the body 22.

さらに、混合物を冷却する方法として、容器内に入れら
れた冷媒溶液中に溶融状態のセラミック系超電導体を噴
出させて紡糸状の冷却材を得る回転液中紡糸法等がある
Further, as a method for cooling the mixture, there is a spinning method in which a molten ceramic superconductor is spouted into a refrigerant solution placed in a container to obtain a spun coolant.

非晶質化した混合物を再加熱する際の温度は、使用する
セラミック系超電導体の種類により異なるが、例えば、
YBaCuO系では900〜1000℃、B15rCa
CuO系では850〜950°Cである。また、再加熱
時間は、数時間から数十時間である。再加熱する非晶質
化した混合物は、冷却ロールを用いて混合物を非晶質化
させた場合に得られるラミナー状、線状のもの、これら
のラミナー状、線状の混合物を粉砕して粉末とし、その
粉末を用いて所望形状に成形したもの、並びに粉砕後の
粉末を金属管内に充填し、これを減面加工したシース祠
のいずれのものでもよい。
The temperature at which the amorphous mixture is reheated varies depending on the type of ceramic superconductor used, but for example,
YBaCuO system: 900-1000℃, B15rCa
For CuO type, it is 850 to 950°C. Further, the reheating time is from several hours to several tens of hours. The amorphous mixture to be reheated can be a laminar or linear mixture obtained by amorphizing the mixture using a cooling roll, or a powder by pulverizing these laminar or linear mixtures. It may be either a sheathed mill made by molding the powder into a desired shape, or a sheathed mill made by filling a metal tube with the powder after pulverization and processing the tube to reduce its surface area.

〔作用コ 本発明のセラミック系超電導導体の製造方法によれば、
セラミック系超電導体原料と貴金属元素を含む物質とを
混合し、この混合物を溶融して、冷却して非晶質化させ
て、非晶質化された混合物を再加熱する。
[Function] According to the method for manufacturing a ceramic superconducting conductor of the present invention,
A ceramic superconductor raw material and a substance containing a noble metal element are mixed, the mixture is melted, cooled to become amorphous, and the amorphous mixture is reheated.

セラミック系超電導体混合物を溶融することによって、
貴金属がセラミック系超電導体原料と充分に固溶する。
By melting a ceramic superconductor mixture,
The noble metal is sufficiently dissolved in solid solution with the ceramic superconductor raw material.

この固溶体を非晶質化することによって、セラミック系
rE電導体マトリクス内に均一に貴金属元素が分散する
。これによって、セラミック系超電導体マトリクス内に
均一に分散した貴金属元素が、ピン効果を発揮する。こ
のため、セラミック系超電導導体は、磁場の影響を遮断
してセラミック系超電導体に電流が流れやすくなる。
By making this solid solution amorphous, the noble metal element is uniformly dispersed within the ceramic rE conductor matrix. As a result, the noble metal elements uniformly dispersed within the ceramic superconductor matrix exhibit a pin effect. Therefore, the ceramic superconductor blocks the influence of the magnetic field, making it easier for current to flow through the ceramic superconductor.

したがって、本発明方法によるセラミック系超電導導体
は、高磁場においても高い電流密度を達成する。
Therefore, the ceramic superconducting conductor according to the method of the present invention achieves high current density even in high magnetic fields.

[実施例] 以下、本発明について図面を参照して説明する。[Example] Hereinafter, the present invention will be explained with reference to the drawings.

実施例1 まず、B i□O,、S rco3、CaCO3、およ
びCuOの粉末をBi:Sr:Ca:Cuの比が2:2
:1:2となるように秤量した。
Example 1 First, powders of Bi□O,, Srco3, CaCO3, and CuO were prepared at a Bi:Sr:Ca:Cu ratio of 2:2.
:1:2.

秤量した粉末を充分に混合した。混合した粉末を820
°Cで20時間仮焼した。得られた仮焼物を粉砕し、こ
の粉末にAg粉末を20重量%の割合で混合した。この
混合粉末を1150℃に加熱して溶融した。その後、溶
融状態の混合物を第2図(b)に示すような装置を使用
して双ロール法によって冷却し、厚さ30〜50μmの
箔状体を作製した。この箔状体をX線回折により化1定
したところ、アモルファスであり、Agが良好に固溶し
たものであった。
The weighed powders were thoroughly mixed. 820 ml of mixed powder
It was calcined at °C for 20 hours. The obtained calcined product was pulverized, and 20% by weight of Ag powder was mixed with this powder. This mixed powder was heated to 1150°C and melted. Thereafter, the molten mixture was cooled by a twin roll method using an apparatus as shown in FIG. 2(b) to produce a foil-like body having a thickness of 30 to 50 μm. When this foil-like body was chemically determined by X-ray diffraction, it was found to be amorphous, and Ag was well dissolved in solid solution.

次に、この箔状体を充分に粉砕した。粉砕後の粉末を外
径10φ、内径6φのAg製のバイブに充填した。この
Agパイプを圧延加工して厚さ0.3mraのテープ状
体を作製した。このテープ状体を酸素気流中、900℃
×1時間再加熱してセラミック系超電導導体を製造した
Next, this foil-like body was sufficiently crushed. The powder after pulverization was filled into an Ag vibrator having an outer diameter of 10φ and an inner diameter of 6φ. This Ag pipe was rolled to produce a tape-like body with a thickness of 0.3 mra. This tape-like body was heated to 900°C in an oxygen stream.
A ceramic superconducting conductor was produced by reheating for 1 hour.

得られたセラミック系超電導導体の断面をEPMA(エ
レクトロプローブマイクロアナライザー)を用いて観察
したところ、第1図に示すように配向したセラミック系
超電導体結晶粒10 rj+に外径が1μm程度のAg
1lが分散していた。
When the cross section of the obtained ceramic superconducting conductor was observed using an EPMA (Electro Probe Micro Analyzer), it was found that Ag with an outer diameter of about 1 μm was found in the oriented ceramic superconducting crystal grains 10 rj+ as shown in Figure 1.
1 liter was dispersed.

なお、図中12は粒界である。Note that 12 in the figure is a grain boundary.

また、得られたセラミック系超電導導体のJcB(電流
密度−磁場)特性を調べた。その結果を第3図中の特性
曲線Aに示す。なお、Jc  B特性は、セラミック系
超電導導体を液体窒素に浸漬した状態で直流四端子法に
よって行った。
Furthermore, the JcB (current density-magnetic field) characteristics of the obtained ceramic superconducting conductor were investigated. The results are shown in characteristic curve A in FIG. Note that the Jc B characteristics were measured by a DC four-terminal method with the ceramic superconducting conductor immersed in liquid nitrogen.

実施例2 Ag粉末を20重ffi 96混合するかわりにAg2
O粉末を20重量%混合することを除いて実施例1と同
様にしてセラミック系超電導導体を製造した。
Example 2 Instead of mixing Ag powder with 20 layers of ffi 96, Ag2
A ceramic superconductor was produced in the same manner as in Example 1 except that 20% by weight of O powder was mixed.

得られたセラミック系超電導導体のJc  B特性を実
施例1と同様にして調べた。その結果を第3図中の特性
曲線Bに併記する。
The Jc B characteristics of the obtained ceramic superconductor were investigated in the same manner as in Example 1. The results are also shown in characteristic curve B in FIG.

実施例3 Ag粉末を20重重量混合するかわりにAg2O粉末を
20単量%およびAg粉粉末1垂セラミック系超電導導
体を製造した。
Example 3 Instead of mixing 20% Ag2O powder by weight, a ceramic superconducting conductor was produced using 20% Ag2O powder by weight and 1% Ag powder.

得られたセラミック系超電導導体のJc  B特性を実
施例1と同様にして調べた。その結果を第3図中の特性
曲線Cに併記する。
The Jc B characteristics of the obtained ceramic superconductor were investigated in the same manner as in Example 1. The results are also shown in characteristic curve C in FIG.

実施例4 Ag粉末を20重量96混合するかわりにAu粉末を2
0重重量混合すること、および混合粉末を加熱する温度
1150℃を1200℃にすることを除いて実施例1と
同様にしてセラミック系超電導導体を製造した。
Example 4 Instead of mixing 20% of Ag powder, 2% of Au powder was mixed.
A ceramic superconducting conductor was produced in the same manner as in Example 1, except that the powder was mixed at zero weight and the temperature at which the mixed powder was heated was changed from 1150°C to 1200°C.

得られたセラミック系超電導導体のJ。−B特性を実施
例1と同様にして調べた。その結果を第3図中の特性曲
線りに併記する。
J of the obtained ceramic superconductor. -B characteristics were investigated in the same manner as in Example 1. The results are also shown along with the characteristic curve in FIG.

比較例 まず、B 1 2 0 3 、S r C O 3 、
C a C O 3、およびCuOの粉末をBi:Sr
:Ca:Cuの比が2:2:1:2となるように秤量し
た。
Comparative Example First, B 1 2 0 3 , S r CO 3 ,
C a C O 3 and CuO powder were mixed into Bi:Sr
:Ca:Cu ratio was 2:2:1:2.

秤量した粉末を充分に混合した。混合した粉末を820
℃で20時間仮焼した。得られた仮焼物を粉砕した。こ
の仮焼粉末を1150℃に加熱して溶融した。その後、
溶融状態の混合物を第2図(b)に示すような装置を使
用して双ロール法によって冷却し、厚さ30〜50μm
の箔状体を作製した。この箔状体をX線回折により測定
したところ、アモルファスであった。
The weighed powders were thoroughly mixed. 820 ml of mixed powder
It was calcined at ℃ for 20 hours. The obtained calcined product was crushed. This calcined powder was heated to 1150°C and melted. after that,
The molten mixture was cooled by a twin roll method using an apparatus as shown in FIG.
A foil-like body was prepared. When this foil-like material was measured by X-ray diffraction, it was found to be amorphous.

次に、この箔状体を充分に粉砕した。粉砕後の粉末を外
径10φ、内径6φのAg製のパイプに充填した。この
Agバイブを圧延加工して厚さ0、3ml1のテープ状
体を作製した。このテープ状体を酸素気流中、900℃
×1時間再加熱を施してセラミック系超電導導体を製造
した。
Next, this foil-like body was sufficiently crushed. The powder after pulverization was filled into an Ag pipe having an outer diameter of 10φ and an inner diameter of 6φ. This Ag vibrator was rolled to produce a tape-like body with a thickness of 0.3 ml. This tape-like body was heated to 900°C in an oxygen stream.
A ceramic superconducting conductor was produced by reheating for 1 hour.

得られたセラミック系超電導導体の断面をEPMAを用
いて観察したところ、第4図に示すような配向したセラ
ミック系超電導体結晶粒40であった。なお、図中41
は粒界である。
When the cross section of the obtained ceramic superconductor was observed using EPMA, it was found that the ceramic superconductor crystal grains 40 were oriented as shown in FIG. In addition, 41 in the figure
is a grain boundary.

また、得られたセラミック系超電導導体のJc  B特
性を実施例1と同様にして調べた。その結果を第3図中
の特性曲線Eに示す。
Further, the Jc B characteristics of the obtained ceramic superconducting conductor were investigated in the same manner as in Example 1. The results are shown in characteristic curve E in FIG.

第3図から明らかなように、本発明の方法によって得ら
れたセラミック系超電導導体は、IOTの高磁場におい
ても優れた超電導特性を示した。
As is clear from FIG. 3, the ceramic superconducting conductor obtained by the method of the present invention exhibited excellent superconducting properties even in the high magnetic field of IOT.

これに対して、比較例のセラミック系超電導導体は、L
OTの高磁場においてはほとんど超電導特性を示さなか
った。
On the other hand, the ceramic superconducting conductor of the comparative example has L
It showed almost no superconducting properties in the high magnetic field of OT.

[発明の効果] 以上説明した如く、本発明のセラミック系超電導導体の
製造方法は、高磁場で優れた超電導特性を発揮すること
ができ、マグネット、コイル等に適用することができる
セラミック系超電導導体を効率よく製造することができ
るものである。
[Effects of the Invention] As explained above, the method for manufacturing a ceramic superconducting conductor of the present invention can produce a ceramic superconducting conductor that can exhibit excellent superconducting properties in a high magnetic field and can be applied to magnets, coils, etc. can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって得られたセラミック系超
電導導体の組織を示す説明図、第2図(a)および第2
図(b)は本発明の方法における冷却工程で使用される
装置の説明図、第.3図は電流密度と磁場の関係を示す
グラフ図、第4図は比較の方法によって得られたセラミ
ック系超電導導体の組織を示す説明図である。 10、40・・・セラミック系超電導体結晶粒、11・
・・Ag,12.41・・・粒界、20,24。 25・・・冷却ロール、21・・・容器、22・・・セ
ラミック系超電導体、23.26・・・冷却材。
FIG. 1 is an explanatory diagram showing the structure of the ceramic superconducting conductor obtained by the method of the present invention, FIG.
Figure (b) is an explanatory diagram of the apparatus used in the cooling step in the method of the present invention. FIG. 3 is a graph showing the relationship between current density and magnetic field, and FIG. 4 is an explanatory diagram showing the structure of a ceramic superconductor obtained by a comparative method. 10, 40... Ceramic superconductor crystal grain, 11.
...Ag, 12.41...grain boundary, 20,24. 25... Cooling roll, 21... Container, 22... Ceramic superconductor, 23.26... Coolant.

Claims (1)

【特許請求の範囲】[Claims]  セラミック系超電導体原料と貴金属元素を含む物質と
を混合する工程と、該混合物を前記セラミック系超電導
体原料が溶融する温度に加熱し、該温度で所定時間前記
混合物を保持する工程と、前記混合物を所定温度まで冷
却して非晶質化させる工程と、非晶質化された前記混合
物を所望形状に成形する工程と、該成形体を所定温度に
再加熱して前記貴金属元素を前記混合物中に分散させる
工程とを具備することを特徴とするセラミック系超電導
導体の製造方法。
a step of mixing a ceramic superconductor raw material and a substance containing a noble metal element; a step of heating the mixture to a temperature at which the ceramic superconductor raw material melts; and a step of holding the mixture at the temperature for a predetermined time; a step of cooling the mixture to a predetermined temperature to make it amorphous; a step of molding the amorphized mixture into a desired shape; and reheating the molded product to a predetermined temperature to add the noble metal element to the mixture. 1. A method for producing a ceramic superconducting conductor, comprising the step of dispersing the ceramic superconducting conductor.
JP1260866A 1989-10-05 1989-10-05 Production of ceramic superconducting material Pending JPH03122042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260866A JPH03122042A (en) 1989-10-05 1989-10-05 Production of ceramic superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260866A JPH03122042A (en) 1989-10-05 1989-10-05 Production of ceramic superconducting material

Publications (1)

Publication Number Publication Date
JPH03122042A true JPH03122042A (en) 1991-05-24

Family

ID=17353844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260866A Pending JPH03122042A (en) 1989-10-05 1989-10-05 Production of ceramic superconducting material

Country Status (1)

Country Link
JP (1) JPH03122042A (en)

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0374263B1 (en) Oxide superconductive material and process for its production
JP2839415B2 (en) Method for producing rare earth superconducting composition
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
Varanasi et al. A comparison of the effects of PtO2 and BaSnO3 additions on the refinement of Y2BaCuO5 and magnetization of textured YBa2Cu3O6+ x
US5430010A (en) Process for preparing oxide superconductor
JPH03122042A (en) Production of ceramic superconducting material
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH09500083A (en) High temperature superconducting solid and method for producing the same
JPH0365509A (en) Rare earth metal oxide superconductor
JPH052933A (en) Manufacture of oxide superconductive wire
Rikel et al. Introduction to Bulk Firing Techniques
JP2779210B2 (en) Conductor for current lead
JP3709532B2 (en) Manufacturing method of oxide superconductor
JP2004203727A (en) Oxide superconductor having high critical current density
JP2554658B2 (en) How to connect complex oxide superconductors
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JPH01179790A (en) Production of single crystal of high temperature superconductor
JP2774219B2 (en) Manufacturing method of oxide superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPH0354103A (en) Production of oxide superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor