JPH0354103A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH0354103A
JPH0354103A JP1190219A JP19021989A JPH0354103A JP H0354103 A JPH0354103 A JP H0354103A JP 1190219 A JP1190219 A JP 1190219A JP 19021989 A JP19021989 A JP 19021989A JP H0354103 A JPH0354103 A JP H0354103A
Authority
JP
Japan
Prior art keywords
crucible
oxide superconductor
raw material
fused
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190219A
Other languages
Japanese (ja)
Inventor
Koichi Furukawa
古川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1190219A priority Critical patent/JPH0354103A/en
Publication of JPH0354103A publication Critical patent/JPH0354103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the subject oxide superconductor of high purity excellent in superconductivity by putting a raw material capable of formation of the oxide superconductor into a specified crucible, fusing the raw material under heating and then solidifying the fused material by cooling. CONSTITUTION:In the production method where a raw material capable of formation of the subject oxide superconductor is put into a crucible, fused by heating and then solidified by cooling the fused material to produce the subject oxide superconductor, the procedures are carried out as mentioned below. That is to say, the crucible used for fusing the raw material by heating is formed so that, at least, the inside wall in contact with the raw material may be composed of MgO. Thereby the raw material capable of formation of the oxide superconductor is prevented from contamination by a harmful crucible substance during fusion. As the raw material of the oxide superconductor is heated and fused using the crucible made of MgO as a non-reactive substance in this production method, the fused raw material is free from contamination by harmful elements of the crucible during fusion. Accordingly, the obtained oxide superconductor is of high purity.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は送配電線、電力ケーブル、機器リード線、マグ
ネットワイヤ、電磁シールド体等に広く適用し得る高純
度で超電導特性に優れた酸化物超電導体の製造方法に関
する. 〔従来の技術とその課題〕 近年液体窒素温度で超電導を示ずY−Ba−Cu−0系
、B i−Sr−Ca−Cu一〇系、T1−Ba−Ca
−Cu−0系等の酸化物超電導体が見出され各分野で実
用化研究が活発に進められている. これらの酸化物超電導体の製造方法としては酸化物超電
導体の構成元素をそれぞれ含有する化合物粉体を所定量
混合し、この混合粉体に所定の加熱処理を施して酸化物
超電導体となす方法が用いられているが、各々の化合物
を均質に混合するのが困難な為、得られる酸化物超電導
体は超電導特性が低い値のものであった。又均質に混合
するには長時間を要し生産性に劣るものであった。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an oxide with high purity and excellent superconducting properties that can be widely applied to power transmission and distribution lines, power cables, equipment lead wires, magnet wires, electromagnetic shields, etc. Concerning the manufacturing method of superconductors. [Conventional technology and its problems] In recent years, Y-Ba-Cu-0 series, Bi-Sr-Ca-Cu10 series, T1-Ba-Ca have not shown superconductivity at liquid nitrogen temperature.
Oxide superconductors such as the -Cu-0 system have been discovered, and research into practical use is actively progressing in various fields. The method for producing these oxide superconductors is to mix a predetermined amount of compound powder containing each of the constituent elements of the oxide superconductor, and then subject this mixed powder to a predetermined heat treatment to form an oxide superconductor. However, because it is difficult to mix each compound homogeneously, the resulting oxide superconductor has low superconducting properties. Further, it takes a long time to mix homogeneously, resulting in poor productivity.

このようなことから酸化物超電導体となし得る原料物質
をるつぼに入れて、加熱溶融せしめ、この溶融体を冷却
凝固させる溶融凝固法が提案された.この溶融凝固法は
溶融体を所望形状に鋳造し必要に応じ加熱処理を施すこ
とにより酸化物超電導威形体となす方法で、任意の形状
のものが容易に得られる利点があって、近年注目を浴び
ている。
For this reason, a melt-solidification method was proposed in which a raw material that can be made into an oxide superconductor is placed in a crucible, heated and melted, and the melt is cooled and solidified. This melt-solidification method is a method of forming oxide superconducting bodies by casting a melt into a desired shape and subjecting it to heat treatment as necessary.It has the advantage of being able to easily obtain any shape, and has attracted attention in recent years. Bathing.

この溶融凝固法では、原料物質を溶融するために用いる
るつぼには白金(pt)やアル稟ナ製のるつぼが用いら
れていたが、加熱熔融処理時にるつぼから溶融体中にP
tやアルミニウム(/l)などのるつぼ材が混入して得
られる酸化物超電導体が汚染されて純度が低下し、臨界
電流密度(JC )等の特性に高い値が得られないとい
う問題があった。
In this melt-solidification method, a crucible made of platinum (PT) or aluminum was used to melt the raw materials, but during the heating melting process, P was transferred from the crucible into the melt.
There is a problem in that the oxide superconductor obtained is contaminated by crucible materials such as t and aluminum (/l) and its purity is reduced, making it impossible to obtain high values for properties such as critical current density (JC). Ta.

〔課題を解決する為の手段] 本発明はかかる状況に鑑み、種々るつぼ材料について酸
化物超電導体との反応性について調査研究を進めた結果
MgOが極めて非反応性であることをつきとめ、本発明
方法を完成させるに到ったものである。
[Means for Solving the Problems] In view of the above circumstances, the present invention has been developed based on research on the reactivity of various crucible materials with oxide superconductors, and as a result, it has been found that MgO is extremely non-reactive. The method has now been completed.

即ち本発明は、酸化物超電導体となし得る原料物質をる
つぼに入れて加熱溶融せしめ、この溶融体を冷却し凝固
せしめて酸化物超電導体を製造する方法において、るつ
ぼとして、るつぼの少なくとも原料物質溶融体と接する
内面が酸化マグネシウム(MgO)からなる材料により
形成されているるつぼを用いて酸化物超電導体となし得
る原料物質の加熱溶融を行うことを特徴とする酸化物超
電導体の製造方法である。
That is, the present invention provides a method for producing an oxide superconductor by placing a raw material that can be made into an oxide superconductor in a crucible, heating and melting the material, and cooling and solidifying the melt, in which at least the raw material in the crucible is used as a crucible. A method for producing an oxide superconductor, characterized in that a raw material that can be made into an oxide superconductor is heated and melted using a crucible whose inner surface in contact with the melt is made of a material made of magnesium oxide (MgO). be.

本発明方法では、原料物質を加熱溶融せしめるるつぼと
して、少なくとも原料物質溶融体が接するるつぼ内面を
MgOにて形成し、酸化物超電導体となし得る原料物質
(以下原料物質と略記)が熔融中に有害なるつぼ材によ
り汚染されるのを防止するようにしたものである. 本発明方法において酸化物超電導体となし得る原料物質
とは、酸化物超電導体の構或元素を各々含有する化合物
をそれぞれ所定量混合した混合粉体又は上記混合粉体を
予め酸素含有雰囲気中にて所定温度にて加熱した仮焼或
粉体、又は酸化物超電導粉体等を総称するものである。
In the method of the present invention, as a crucible for heating and melting a raw material, at least the inner surface of the crucible in contact with the melt of the raw material is made of MgO, and the raw material that can be made into an oxide superconductor (hereinafter abbreviated as raw material) is melted. This is to prevent contamination from harmful crucible materials. The raw material that can be used as an oxide superconductor in the method of the present invention is a mixed powder obtained by mixing predetermined amounts of compounds containing each of the constituent elements of the oxide superconductor, or the above mixed powder is placed in an oxygen-containing atmosphere in advance. It is a general term for calcined powder heated at a predetermined temperature, oxide superconducting powder, etc.

本発明方法において上記るつぼ内にて溶融した原料物質
は、急冷凝固せしめるのが酸化物超電導体の構或元素が
均一微細に分布して好ましいものである。
In the method of the present invention, the raw material melted in the crucible is preferably rapidly solidified so that the constituent elements of the oxide superconductor are uniformly and finely distributed.

而して得られる急冷凝固体は、例えばこれを粉砕して物
体となし、これを所望形状に戒形し、次いで所定の加熱
処理を施して酸化物超電導或形体となすものである. 〔作用〕 本発明では、原料物質を非反応性であるMgO製るつぼ
にて酸化物超電導体を加熱溶融せしめるので、溶融中に
るつぼ材料の有害元素が原料物質の溶融体に混入するこ
とがなく、従って得られる酸化物超電導体は純度の高い
ものとなる。
The rapidly solidified material thus obtained is, for example, pulverized into an object, shaped into a desired shape, and then subjected to a prescribed heat treatment to form an oxide superconducting object. [Operation] In the present invention, since the oxide superconductor is heated and melted in a non-reactive MgO crucible, harmful elements of the crucible material do not mix into the melt of the raw material during melting. Therefore, the obtained oxide superconductor has high purity.

〔実施例] 以下に本発明を実施例により詳細に説明する.実施例1 内径30閤、高さ100mmのMgO製るつぼにB i
 x S r z C a 1 C u z○、の仮焼
或粉を200gr入れ、これを炉中にて1200゜C6
時間加熱して溶融し、次いでこの溶融体を銅板上に滴下
し、滴下と同時にもう1枚の銅板で挟んで急冷凝固させ
た。しかるのちこの急冷凝固体を粉砕して粉体となし、
この粉体を2×3×30ffII1の短冊型に圧縮成形
し、この戒形体を酸素雰囲気中で L O ’C /winの昇温速度で900″Cにまで
昇温せしめ、次いで900゜Cから10゜C/IIli
nの冷却速度で850“Cに降温し、8 5 0 ’C
にて6時間保持したのち炉冷して酸化物超電導戊形体と
なした。
[Examples] The present invention will be explained in detail below using examples. Example 1 B i was placed in an MgO crucible with an inner diameter of 30 mm and a height of 100 mm.
Add 200g of calcined powder of
The molten material was heated for a period of time to melt it, and then this molten material was dropped onto a copper plate, and at the same time as the dropping, it was sandwiched between another copper plate and rapidly solidified. Afterwards, this rapidly solidified material is crushed into powder,
This powder was compression molded into a rectangular shape of 2 x 3 x 30 ffII1, and the shape was heated to 900''C in an oxygen atmosphere at a heating rate of L O'C /win, and then from 900°C to 10°C/IIli
The temperature is lowered to 850"C at a cooling rate of n, and the temperature is lowered to 850'C.
After being held for 6 hours, it was cooled in a furnace to form an oxide superconducting rod.

実施例2 内径30m1高さ100肋のMgO製るつぼの底に11
IIIllφの穴をあけ、この穴をMgO製棒により栓
をし、次いでこのるつぼ内にB+.Sr.Ca+Cu.
○。の仮焼威粉を200gr入れ、これを炉中にて12
00゜C6時間加熱して溶融した。しかるのち溶融体を
るつぼの底にあけた1■φの穴から流出せしめ、この流
出する溶融体に9 5 0 ’Cに加熱した窒素ガスを
7 0 1 /minの流量で吹付けて霧化し、この霧
状体を銅板に吹き付け象、冷凝固して粒径100nの粉
体となした.次に而して得た粉体を2X3X30amの
短冊型に圧縮成形し、この戒形体に実施例1と同じ加熱
処理を施して酸化物超電導威形体となした. 比較例1 実施例1において、るつぼとしてアルξナ製るつぼ及び
CaO製るつぼを用いた他は実施例1と同じ方法により
酸化物超電導成形体を製造した.比較例2〜3 実施例1及び2において、るつぼとしてPt製るつぼを
用いた他はそれぞれ実施例1及び2と同し方法により酸
化物超@導威形体を製造した。
Example 2 11 at the bottom of an MgO crucible with an inner diameter of 30 m and a height of 100 ribs.
A hole of IIIllφ was made, the hole was plugged with an MgO rod, and then B+. Sr. Ca+Cu.
○. Add 200g of calcined powder and heat it in the furnace for 12 hours.
The mixture was melted by heating at 00°C for 6 hours. Thereafter, the molten material was allowed to flow out through a 1 mm diameter hole drilled at the bottom of the crucible, and nitrogen gas heated to 950'C was sprayed onto the flowing out molten material at a flow rate of 701/min to atomize it. This atomized material was sprayed onto a copper plate, and then cooled and solidified to form a powder with a particle size of 100 nm. Next, the powder thus obtained was compression molded into a 2×3×30 am rectangular shape, and the shaped body was subjected to the same heat treatment as in Example 1 to form an oxide superconducting shape. Comparative Example 1 An oxide superconducting molded body was produced in the same manner as in Example 1 except that an alumina crucible and a CaO crucible were used as the crucibles. Comparative Examples 2 to 3 In Examples 1 and 2, oxide superconductive bodies were produced in the same manner as in Examples 1 and 2, except that a Pt crucible was used as the crucible.

斯くの如くして得られた各々の酸化物超電導或形体につ
いてJ,を測定した。又急冷凝固体について不純物を原
子吸光法により分析した。結果は第1表に示した。
J was measured for each of the oxide superconducting bodies thus obtained. In addition, impurities in the rapidly solidified solid were analyzed by atomic absorption spectrometry. The results are shown in Table 1.

?1表より明らかなように本発明方法品(12)は比較
方法品(3〜6)に較べてJ,が高い値のものとなった
。中でも実施例2は、溶融体を霧状化し急速冷却した為
に組威が均質化してJcが特に高い値のものとなった。
? As is clear from Table 1, the product produced using the method of the present invention (12) had a higher value of J than the products produced using the comparative method (3 to 6). Among them, in Example 2, the molten material was atomized and rapidly cooled, so that the composition became homogeneous and the Jc value was particularly high.

不純物を分析した結果Mgは全く検出されなかった. これに対し比較方法品4はるつぼから酸化物超電導体の
横威元素であるCaが混入した為元素の組威比が乱れて
、また比較方法品3,5.6ではるつぼの構成材料であ
るAl、或いはptが混入した為にいずれもJeが極め
て低い値のものとなった. 以上B i−Sr−Ca−Cu一〇系酸化物超電導体に
ついて説明したが、Y−Ba−Cu−0系やTe−Ba
−Ca−Cu−○系等の他の酸化物超電導体についても
同様の効果が得られた。
As a result of impurity analysis, no Mg was detected. On the other hand, in comparison method product 4, the composition ratio of the elements was disturbed due to the mixing of Ca, which is a component of the oxide superconductor, from the crucible, and in comparison method products 3 and 5.6, Ca, which is a component of the crucible, was mixed in. Due to the contamination of Al or PT, the Je values in both cases were extremely low. In the above, the B i-Sr-Ca-Cu 10 series oxide superconductor was explained, but the Y-Ba-Cu-0 series and Te-Ba
Similar effects were obtained with other oxide superconductors such as -Ca-Cu-○ series.

尚、上記実施例ではるつぼ全体をMgOにて形成したる
つぼを用いたが、本発明方法は、るつぼに例えばA 1
2 z O 3製るつぼを用い、このA2■O,製るつ
ぼの溶融体と接する内面にM g Oをコーテイングし
て用いたものでも上記実施例と同様の効果が得られた。
In the above embodiment, a crucible made entirely of MgO was used, but in the method of the present invention, the crucible is made of, for example, A1
The same effect as in the above example was obtained by using a crucible made of 2 z O 3 and coating the inner surface of the crucible made of A 2 z O 3 in contact with the melt with M g O.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、純度の高い、超
電導特性に優れた酸化物超電導体が効率よく製造でき、
工業上顕著な効果を奏する。
As described above, according to the method of the present invention, an oxide superconductor with high purity and excellent superconducting properties can be efficiently produced.
It has remarkable industrial effects.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体となし得る原料物質をるつぼに入れて加
熱溶融せしめ、この溶融体を冷却し凝固せしめて酸化物
超電導体を製造する方法において、るつぼとして、るつ
ぼの少なくとも原料物質溶融体と接する内面が酸化マグ
ネシウムからなる材料により形成されているるつぼを用
いて酸化物超電導体となし得る原料物質の加熱溶融を行
うことを特徴とする酸化物超電導体の製造方法。
In a method of manufacturing an oxide superconductor by placing a raw material that can be made into an oxide superconductor into a crucible and heating and melting the melt, and cooling and solidifying the melt, at least the inner surface of the crucible that is in contact with the melt of the raw material. 1. A method for producing an oxide superconductor, which comprises heating and melting a raw material that can be made into an oxide superconductor using a crucible made of a material made of magnesium oxide.
JP1190219A 1989-07-21 1989-07-21 Production of oxide superconductor Pending JPH0354103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190219A JPH0354103A (en) 1989-07-21 1989-07-21 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190219A JPH0354103A (en) 1989-07-21 1989-07-21 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0354103A true JPH0354103A (en) 1991-03-08

Family

ID=16254458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190219A Pending JPH0354103A (en) 1989-07-21 1989-07-21 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0354103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160069142A (en) * 2014-12-08 2016-06-16 하윤주 Knitting guide device
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160069142A (en) * 2014-12-08 2016-06-16 하윤주 Knitting guide device
US11043841B2 (en) 2016-05-25 2021-06-22 Apple Inc. Coil arrangement
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly

Similar Documents

Publication Publication Date Title
JPH01138168A (en) Production of melt-formed superconductor
US5395820A (en) Oxide superconductor and process for producing the same
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH0354103A (en) Production of oxide superconductor
US5430010A (en) Process for preparing oxide superconductor
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH0350107A (en) Production of oxide superconductor
JP2518043B2 (en) Method for producing ceramics by melt solidification method
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
US5157014A (en) High temperature crystalline superconductors from crystallized glasses
Rikel et al. Introduction to Bulk Firing Techniques
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JPH05193950A (en) Production of oxide superconducting material
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH0524829A (en) Production of oxide superconductor
JPS63315572A (en) Production of superconductor
JPH0738512B2 (en) Method for manufacturing plate-shaped shield material
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JPH01234327A (en) Production of oxide superconductor
JPH02120234A (en) Production of oxide superconductor
JPH0764619B2 (en) Method for producing PVD raw material for oxide superconductor
JPH04254466A (en) Production of yittrium-base superconducting bulk material
JPH03112810A (en) Production of oxide superconducting film