JP2554658B2 - How to connect complex oxide superconductors - Google Patents
How to connect complex oxide superconductorsInfo
- Publication number
- JP2554658B2 JP2554658B2 JP62163104A JP16310487A JP2554658B2 JP 2554658 B2 JP2554658 B2 JP 2554658B2 JP 62163104 A JP62163104 A JP 62163104A JP 16310487 A JP16310487 A JP 16310487A JP 2554658 B2 JP2554658 B2 JP 2554658B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- powder
- normal conductor
- oxygen
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、複合酸化物超電導体の接続方法に関する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method for connecting a composite oxide superconductor.
(従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて以来、各所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter 64,189−193(198
6))。その中でもY−Ba−Cu−O系で代表される酸素
欠陥を有する欠陥ペロブスカイト型((LnBa2Cu3O
7−δ型)(δは酸素欠陥を表わし通常1以下、Lnは、
Y、La、Sc、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Ybおよ
びLuから選ばれた少なくとも1種の元素、Baの一部はSr
等で置換可能))の酸化物超電導体は、臨界温度TCが90
k以上と液体窒素以上の高い温度を示すため非常に有望
な材料として注目されている(Phys.Rev.Lett.vol.58 N
o.9,908−910)。(Prior Art) In recent years, since it was announced that Ba-La-Cu-O-based layered perovskite type oxides may have a high critical temperature, research on oxide superconductors has been conducted at various places. (Z.Phys.B Condensed Matter 64,189-193 (198
6)). Among them, a defect perovskite type ((LnBa 2 Cu 3 O having an oxygen defect represented by a Y-Ba-Cu-O system.
7-δ type) (δ represents an oxygen defect and is usually 1 or less, and Ln is
At least one element selected from Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and part of Ba is Sr.
, Etc.)) has a critical temperature T C of 90
It has attracted attention as a very promising material because of its high temperature of over k and over liquid nitrogen (Phys. Rev. Lett. vol. 58 N
o.9,908-910).
しかしながら、この超電導体は、結晶性の酸化物であ
って、焼結体またはこれを粉砕した粉末として得られる
ため、長尺物に加工することが困難である。このため、
酸化物超電導体粉末を金属被覆内に収容して細線化する
ことが提案されているが、このように金属と酸化物超電
導体とを複合体にして細線化した場合には、接続端面を
互いに一致させることが難しいため接続作業が困難であ
るという問題がある。However, since this superconductor is a crystalline oxide and is obtained as a sintered body or a powder obtained by crushing this, it is difficult to process it into a long product. For this reason,
It has been proposed that the oxide superconductor powder be housed in a metal coating to be thinned. However, when the metal and the oxide superconductor are made into a complex thin wire as described above, the connecting end surfaces are mutually separated. There is a problem that connection work is difficult because matching is difficult.
(発明が解決しようとする問題点) このように金属と酸化物超電導体とを複合化した酸化
物超電導線材においては、接続端面を互いに一致させる
ことが難しいという問題がある。(Problems to be Solved by the Invention) In an oxide superconducting wire in which a metal and an oxide superconductor are composited as described above, there is a problem that it is difficult to make the connection end faces coincide with each other.
また、上記ペロブスカイト型酸化物超電導体はその結
晶のC面に沿って超電導電流が流れるため、単に接続し
ただけでは、その接続部において結晶の配列方向がラン
ダムになり、所望の電流密度が得られないという問題も
ある。Further, in the above perovskite type oxide superconductor, a superconducting current flows along the C-plane of the crystal. Therefore, if they are simply connected, the arrangement direction of the crystals becomes random at the connecting portion, and a desired current density can be obtained. There is also the problem of not having it.
本発明はこのような事情に対処してなされたもので、
酸化物超電導線材どうしの接続を容易に行うことがで
き、かつ接続部においても所望の電流密度の得られるよ
うにした複合酸化物超電導体の接続方法を提供すること
を目的とする。The present invention has been made in response to such a situation,
It is an object of the present invention to provide a method for connecting a composite oxide superconductor in which oxide superconducting wires can be easily connected to each other and a desired current density can be obtained at a connecting portion.
[発明の構成] (問題点を解決するための手段) 本発明の複合酸化物超電導線材の接続方法は、酸化物
超電導体と常電導体とからなる複合酸化物超電導体どう
しの接続にあたって、前記酸化物超電導体の粉末と前記
常電導体の粉末との混合粉末を介して、前記複合酸化物
超電導体の各端面を当接させ、少なくとも前記酸化物超
電導体の粉末と前記常電導体の粉末のどちらかの融点以
上の温度で加熱した後、少なくとも接続部を一方向に温
度勾配を与えながら冷却することを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The method for connecting a composite oxide superconducting wire according to the present invention is a method for connecting composite oxide superconductors including an oxide superconductor and a normal conductor as described above. Through the mixed powder of the oxide superconductor powder and the normal conductor powder, contact each end face of the composite oxide superconductor, at least the oxide superconductor powder and the normal conductor powder After heating at a temperature equal to or higher than the melting point of either of the above, at least the connecting portion is cooled while giving a temperature gradient in one direction.
酸化物超電導体としては多数のものが知られている
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体の接続に適用した場合に特に実用的
効果が大きい。Although many oxide superconductors are known, the practical effect is particularly large when applied to the connection of a rare earth element-containing perovskite type oxide superconductor having a high critical temperature.
ここでいう希土類元素を含有しペロブスカイト型構造
を有する酸化物超電導体は、超電導状態を実現できるも
のであればよく、LnBa2Cu3O7−δ系(δは酸素欠陥を
表し通常1以下の数、Lnは、Y、La、Sc、Nd、Sm、Eu、
Gd、Dy、Ho、Er、Tm、YbおよびLuから選ばれた少なくと
も1種の元素:Baの一部はSr等で置換可能)等の酸素欠
陥を有する欠陥ペロブスカイト型、Sr−La−Cu−O系等
の層状ペロブスカイト型等の広義にペロブスカイト型を
有する酸化物が例示される。また希土類元素も、広義の
定義とし、Sc、YおよびLa系を含むものとする。代表的
な系としてY−Ba−Cu−O系のほかに、YをEu、Dy、H
o、Er、Tm、Yb、Lu等の希土類で置換した系、Sc−Ba−C
u−O系、Sr−La−Cu−O系、さらにSrをBa,Caで置換し
た系等が挙げられる。The oxide superconductor containing a rare earth element and having a perovskite type structure as long as it can realize a superconducting state is referred to as LnBa 2 Cu 3 O 7-δ system (δ represents an oxygen defect and is usually 1 or less. Number, Ln is Y, La, Sc, Nd, Sm, Eu,
At least one element selected from Gd, Dy, Ho, Er, Tm, Yb and Lu: a part of Ba can be replaced by Sr etc.) and other defect perovskite type having oxygen defects, Sr-La-Cu- An oxide having a perovskite type in a broad sense such as an O-based layered perovskite type is exemplified. Rare earth elements are also defined in a broad sense and include Sc, Y and La systems. As a typical system, in addition to the Y-Ba-Cu-O system, Y is Eu, Dy, H
Systems substituted with rare earths such as o, Er, Tm, Yb, Lu, Sc-Ba-C
Examples thereof include u-O system, Sr-La-Cu-O system, and a system in which Sr is replaced with Ba and Ca.
本発明における酸化物超電導体は、例えば以下に示す
ようにして製造される。The oxide superconductor in the present invention is manufactured, for example, as shown below.
まず、Y、Ba、Cu等のペロブスカイト型酸化物超電導
体の構成元素を十分混合する。混合の際には、Y2、O3、
Eu2O3、BaO、CuO等の酸化物を原料として用いることが
できる。また、これらの酸化物のほかに、焼成後酸化物
に転化する炭酸塩、硝酸塩、水酸化物等の化合物を用い
てもよい。さらには、共沈法等で得たシュウ酸塩等を用
いてもよい。ペロブスカイト型酸化物超電導体を構成す
る元素は、基本的に化学量論比の組成となるように混合
するが、多少製造条件等との関係等でずれていても差支
えない。例えば、Y−Ba−Cu−O系ではY1molに対しBa2
mol、Cu3molが標準組成であるが、実用上はY1molに対し
て、Ba2±0.6mol、Cu3±0.2mol程度のずれは問題ない。First, the constituent elements of the perovskite type oxide superconductor such as Y, Ba and Cu are sufficiently mixed. When mixing, Y 2 , O 3 ,
An oxide such as Eu 2 O 3 , BaO or CuO can be used as a raw material. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Further, an oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a composition with a stoichiometric ratio, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, Ba2 is added to Y1 mol.
The standard compositions are mol and Cu3mol, but in practice there is no problem with deviations of Ba2 ± 0.6mol and Cu3 ± 0.2mol from Y1mol.
前述の原料を混合した後、仮焼・粉砕し所望の形状に
した後、850〜980℃程度で焼成する。仮焼は必ずしも必
要ではない。仮焼および焼成は十分な酸素が供給できる
ような酸素含有雰囲気で行うことが好ましい。所望の形
状に焼成した後、酸素中で加熱処理し、特に300℃程度
まで徐冷を行うことにより、超電導特性を向上させるこ
とができる。この加熱処理は、通常300〜700℃程度で行
う。After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980 ° C. Calcination is not always necessary. The calcination and firing are preferably performed in an oxygen-containing atmosphere so that sufficient oxygen can be supplied. After firing into a desired shape, heat treatment in oxygen, and especially slow cooling to about 300 ° C. can improve superconducting properties. This heat treatment is usually performed at about 300 to 700 ° C.
このようにして得られた酸化物超電導体は、酸素欠陥
δを有する酸素欠陥型ペロブスカイト構造(LnBa2Cu3O
7−δ(δは通常1以下))となる。なお、BaをSr、Ca
の少なくとも一種で置換することもでき、さらにCuの一
部をTi、V、Cr、Mn、Fe、Co、Ni、Zn等で置換すること
もできる。これらCu元素、Ba元素の置換元素はそれぞれ
サイトに置換したかたちで入る。この置換量は、超電導
特性を低下させない程度の範囲で適宜設定可能である
が、あまり多量の置換は超電導特性を低下してしまうの
で80mol%以下、さらに実用上は20mol%以下程度までと
する。The thus obtained oxide superconductor has an oxygen-defective perovskite structure (LnBa 2 Cu 3 O
7-δ (δ is usually 1 or less)). In addition, Ba is Sr, Ca
It is also possible to substitute at least one of the above, and it is also possible to substitute a part of Cu with Ti, V, Cr, Mn, Fe, Co, Ni, Zn or the like. Substitution elements of these Cu element and Ba element enter the site in the form of substitution. This substitution amount can be appropriately set within a range that does not deteriorate the superconducting property, but since a too large amount of substitution deteriorates the superconducting property, it is set to 80 mol% or less, and practically to about 20 mol% or less.
本発明における複合酸化物超電導体としては、酸化物
超電導体からなる条体の外周に常電導体の被覆を設けた
ものや、常電導体中に酸化物超電導体を埋設したもの等
が挙げられ、例えば線材として使用される。Examples of the composite oxide superconductor in the present invention include those in which a coating of a normal conductor is provided on the outer circumference of a strip made of an oxide superconductor, and those in which an oxide superconductor is embedded in the normal conductor. , For example, used as a wire rod.
このような酸化物超電導体からなる条体の外周に常電
導体の被覆を設けた酸化物超電導体線材は、例えば上記
酸化物超電導体の焼成して結晶化した焼成物をボールミ
ル、その他公知の手段により粉砕し、この粉末を金属管
に50〜70%程度の充填率で充填して延伸加工を施すこと
により線材化したり、酸化物超電導体の素線表面に溶射
法等により常電導体の被覆を形成することにより得られ
る。Such oxide superconductor wire rod in which a coating of a normal conductor is provided on the outer periphery of a strip made of such an oxide superconductor is, for example, a ball mill of a fired product obtained by firing the above oxide superconductor and crystallizing the fired product. It is crushed by a means, and this powder is filled into a metal tube at a filling rate of about 50 to 70% and drawn to form a wire, or the surface of an oxide superconductor element wire is sprayed to form a normal conductor. Obtained by forming a coating.
なお、ペロブスカイト型の酸化物超電導体粉末は、平
板状結晶であって、へき開面から分割されて微粉末とな
るものであり、そのC面方向の直径対C軸方向の厚さの
比が3〜5で、その直径(C面上の長軸)が1〜5μm
程度のものが好ましい。また、その結晶のC面が電流の
流れる方向に少なくとも70%、好ましくは80〜90%の配
向率で配向されていることが望ましい。The perovskite-type oxide superconductor powder is a plate-like crystal and is divided into fine powders by cleavage from the cleavage plane, and the ratio of the diameter in the C-plane direction to the thickness in the C-axis direction is 3 ~ 5 and its diameter (long axis on C plane) is 1 to 5 μm
Something is preferable. Further, it is desirable that the C-plane of the crystal is oriented in the direction of current flow at an orientation rate of at least 70%, preferably 80-90%.
このような複合酸化物超電導体は、最終形状まで加工
した後、酸素または酸素含有雰囲気内で800〜940℃で数
時間焼鈍を施す。この酸素または酸素含有雰囲気内での
焼鈍により、ペロブスカイト型超電導体の酸素空席に酸
素が導入され、δの値が減少して複合酸化物超電導体の
電流密度がさらに向上する。Such a composite oxide superconductor is processed to the final shape and then annealed at 800 to 940 ° C. for several hours in an oxygen or oxygen-containing atmosphere. By this annealing in oxygen or an oxygen-containing atmosphere, oxygen is introduced into oxygen vacancies of the perovskite type superconductor, the value of δ is reduced, and the current density of the complex oxide superconductor is further improved.
本発明の複合酸化物超電導体に使用される常電導体と
しては、特にAgまたはCuが好ましい。これらは、上述し
た酸素空席への酸素導入工程において酸素キャリヤとな
り、十分な酸素導入が行えるためである。As the normal conductor used in the complex oxide superconductor of the present invention, Ag or Cu is particularly preferable. This is because these serve as oxygen carriers in the oxygen introduction step into the oxygen vacancy described above, and sufficient oxygen introduction is possible.
本発明の接続方法についてさらに詳述すると、まず接
続すべき複合酸化物超電導体の各端面間に、被接合物と
同一の酸化物超電導体の粉末と酸化物超電導体の被覆に
用いた常電導体の粉末との混合粉末を配置する。この混
合粉末の混合比率としては、被接合物である酸化物超電
導線材における酸化物超電導体/常電導体比と同程度の
比率が好ましい。また、介在させる混合粉末の厚さとし
ては、500μm〜3mm程度が好ましい。The connection method of the present invention will be described in more detail. First, between each end face of the complex oxide superconductor to be connected, the same powder of the oxide superconductor as the object to be joined and the normal electric current used for coating the oxide superconductor are used. Arrange the mixed powder with the conductor powder. The mixing ratio of the mixed powder is preferably approximately the same as the oxide superconductor / normal conductor ratio in the oxide superconducting wire which is the object to be joined. Further, the thickness of the mixed powder to be interposed is preferably about 500 μm to 3 mm.
次いで、酸化物超電導体の粉末と常電導体の粉末の少
なくともどちらかの融点以上に加熱し、この混合粉末を
少なくとも部分的に溶融状態にし、少なくとも接続部を
一方向に温度勾配を与えながら徐冷して冷却固化する。
これにより接続部の酸化物超電導体は、一方の複合酸化
物超電導体の接合端面より一方向に繊維状に凝固析出
し、超電導体として良好に接続される。また、これによ
り結晶の方位もそろい接続部により電流密度を損われる
こともない。Next, the oxide superconductor powder and the normal conductor powder are heated to a melting point of at least one of them to melt the mixed powder at least partially, and at least the connecting portion is gradually heated while giving a temperature gradient in one direction. Cool and solidify by cooling.
As a result, the oxide superconductor at the connecting portion is solidified and precipitated in a fibrous form in one direction from the joint end surface of one of the composite oxide superconductors, and is well connected as a superconductor. Further, this prevents the current density from being impaired by the connection portion in which the crystal orientations are uniform.
なお、この加熱接続後に必要に応じて、接続部の酸素
または酸素雰囲気中での熱処理を行う。After this heating connection, heat treatment is performed in oxygen or an oxygen atmosphere at the connection portion, if necessary.
(作 用) 本発明の接続方法では、酸化物超電導体の粉末と常電
導体の粉末との混合粉末を介して、複合酸化物超電導体
の端面どうしを当接させ熱処理しているので、接続時の
位置合せが容易であり、かつ複合酸化物超電導体の常電
導体と酸化物超電導体との接続が同時に行うことが可能
となる。さらに、一方向に温度勾配を与えながら冷却固
化しているので、接続部の酸化物超電導体の結晶が接続
方向に繊維状に成長し、酸化物超電導体としての特性を
損うことなく良好に接続される。(Operation) In the connection method of the present invention, since the end faces of the composite oxide superconductor are brought into contact with each other via the mixed powder of the oxide superconductor powder and the normal conductor powder to perform heat treatment, The time alignment is easy, and the normal conductor of the composite oxide superconductor and the oxide superconductor can be simultaneously connected. Furthermore, since it is cooled and solidified while giving a temperature gradient in one direction, the crystal of the oxide superconductor in the connection part grows in a fibrous shape in the connection direction, and it is possible to satisfactorily maintain the characteristics as an oxide superconductor. Connected.
(実施例) 次に、本発明の実施例について説明する。(Example) Next, the Example of this invention is described.
実施例1 それぞれ粒径1〜5μmとしたBaCO3粉末2mol%、Y2O
3粉末0.5mol%、CuO粉末3mol%を十分混合して大気中90
0℃で48時間焼成して反応させた後、この粉末原料を酸
素中で800℃で24時間焼成して反応させ、酸素空席に酸
素を導入した後、ボールミルを用いて粉砕し、分級し
て、平均粒径2μm、直径対厚さの比が1〜5のペロブ
スカイト型の酸化物超電導体粉末を得た。Example 1 BaCO 3 powder 2 mol% and Y 2 O each having a particle size of 1 to 5 μm
3 powder 0.5 mol%, the atmosphere was sufficiently mixed CuO powder 3 mol% 90
After firing at 0 ° C for 48 hours to react, this powdered raw material was fired in oxygen at 800 ° C for 24 hours to react, introduce oxygen into the oxygen vacant space, then pulverize with a ball mill and classify. A perovskite-type oxide superconductor powder having an average particle diameter of 2 μm and a diameter-to-thickness ratio of 1 to 5 was obtained.
次に、この酸化物超電導体粉末を、外径12mm、内径10
mm、流さ1000mmの一端を銀材により封止した銀管中に入
れ、他端に銀の栓をして通気孔を残して溶接した後、外
径1mmにまで冷間で線引きし、次いで窒素中で900℃で12
時間焼鈍を行った。Next, the oxide superconducting powder was applied with an outer diameter of 12 mm and an inner diameter of 10
mm, flow 1000 mm, put one end in a silver tube sealed with silver material, put a silver plug on the other end and weld with leaving a vent hole, then cold draw to an outer diameter of 1 mm, then nitrogen. At 900 ℃ 12
Annealed for a period of time.
このようにして得た酸化物超電導体線材の長さ方向の
超電導体粉末の配向率を測定したところ約80%であり、
またその充填率は80%であった。さらに、その超電導特
性を測定したところ、臨界電流密度は2400A/cm2、臨界
温度は87Kであった。When the orientation ratio of the superconductor powder in the length direction of the oxide superconductor wire thus obtained was measured, it was about 80%,
The filling rate was 80%. Furthermore, when the superconducting property was measured, the critical current density was 2400 A / cm 2 and the critical temperature was 87K.
次に、上記酸化物超電導体線材を、2条用意し、端部
を研摩して対向させた後、この接合すべき面間にこの酸
化物超電動線材の製造に用いたペロブスカイト型の酸化
物超電導体粉末と、これと同粒径の銅粉末とを重量比1:
1で混合した粉末を厚さ1mmとなるように介在させて当接
させ、5kg/cm2の圧力で加圧しながら全体を1060℃で30
分間加熱処理し、次いで一方の酸化物超電導線材の側に
移動させながら0.5℃/分・mmの温度勾配をつけて全体
を冷却した。Next, two lines of the above oxide superconducting wire are prepared, the end portions are polished and faced each other, and the perovskite type oxide used for manufacturing the oxide superconducting wire is provided between the surfaces to be joined. A weight ratio of superconductor powder to copper powder having the same particle size as 1:
1 interposed allowed to abut such that the mixed powder thickness of 1mm at 30 throughout the 1060 ° C. under a pressure of 5 kg / cm 2
Heat treatment was performed for one minute, and then the whole was cooled while being moved to one of the oxide superconducting wire sides with a temperature gradient of 0.5 ° C./minute·mm.
このようにして接続した酸化物超電導体線材の接続部
を切断して顕微鏡観察を行ったところ、各々の酸化物超
電導体線材中の酸化物超電導体の結晶は互いに相手の酸
化物超電導体線材の方向に繊維状に成長しており、酸化
物超電導体線材として十分な接合がなされていることを
確認した。When microscopic observation was performed by cutting the connection portion of the oxide superconductor wire rods thus connected, the crystals of the oxide superconductor in each oxide superconductor wire rod of the counterpart oxide superconductor wire rod It has been confirmed that the fiber has grown in the direction of fibrous material and has been sufficiently joined as an oxide superconductor wire.
また、この接続された酸化物超電導体線材の超電導特
性を測定したところ、臨界電流密度は2000A/cm2、臨界
温度は87Kであり、接続による影響はほとんど認められ
なかった。Further, when the superconducting properties of the connected oxide superconductor wire were measured, the critical current density was 2000 A / cm 2 and the critical temperature was 87 K, and the effect of the connection was hardly recognized.
[発明の効果] 以上の実施例からも明らかなように、本発明の複合酸
化物超電導体の接続方法によれば、超電導体としての連
続性を損うことなく複合酸化物超電導体の酸化物超電導
体部分と常電導体部分の接続を同時に行うことができ
る。[Effects of the Invention] As is clear from the above examples, according to the method for connecting a composite oxide superconductor of the present invention, the oxide of the composite oxide superconductor can be obtained without impairing the continuity as a superconductor. The superconductor part and the normal conductor part can be connected at the same time.
Claims (6)
酸化物超電導体どうしの接続にあたって、 前記酸化物超電導体の粉末と前記常電導体の粉末との混
合粉末を介して、前記複合酸化物超電導体の各端面を当
接させ、少なくとも前記酸化物超電導体の粉末と前記常
電導体の粉末のどちらかの融点以上の温度で加熱した
後、少なくとも接続部を一方向に温度勾配を与えながら
冷却することを特徴とする複合酸化物超電導体の接続方
法。1. When connecting a composite oxide superconductor composed of an oxide superconductor and a normal conductor, the composite oxide is mixed with a powder of the oxide superconductor and a powder of the normal conductor. The end faces of the oxide superconductor are brought into contact with each other, and after heating at least a melting point of at least one of the oxide superconductor powder and the normal conductor powder, at least the connecting portion is subjected to a temperature gradient in one direction. A method for connecting a composite oxide superconductor, characterized by cooling while applying.
電導体からなる条体の外周に前記常電導体の被覆を形成
してなることを特徴とする特許請求の範囲第1項記載の
複合酸化物超電導体の接続方法。2. The complex oxide superconductor according to claim 1, wherein a coating of the normal conductor is formed on an outer periphery of a strip made of the oxide superconductor. Method for connecting complex oxide superconductors.
するペロブスカイト型の酸化物超電導体であることを特
徴とする特許請求の範囲第1項または第2項記載の複合
酸化物超電導体の接続方法。3. The complex oxide superconductor according to claim 1 or 2, wherein the oxide superconductor is a perovskite type oxide superconductor containing a rare earth element. How to connect.
Y、La、Sc、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Ybおよ
びLuから選ばれた少なくとも1種の元素)、BaおよびCu
を原子比で実質的に1:2:3の割合で含有することを特徴
とする特許請求の範囲第1項ないし第3項のいずれか1
項記載の複合酸化物超電導体の接続方法。4. The oxide superconductor comprises a Ln element (Ln is
At least one element selected from Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu), Ba and Cu
Is substantially contained in an atomic ratio of 1: 2: 3.
7. A method for connecting a composite oxide superconductor according to the item.
(δは酸素欠陥を表わす)で表わされる酸素欠陥型ペロ
ブスカイト構造を有することを特徴とする特許請求の範
囲第1項ないし第4項のいずれか1項記載の複合酸化物
超電導体の接続方法。5. The oxide superconductor is LnBa 2 Cu 3 O 7-δ.
The method for connecting a complex oxide superconductor according to any one of claims 1 to 4, which has an oxygen-defective perovskite structure represented by (δ represents an oxygen defect).
特徴とする特許請求の範囲第1項ないし第5項のいずれ
か1項記載の複合酸化物超電導体の接続方法。6. The method for connecting a complex oxide superconductor according to any one of claims 1 to 5, wherein the normal conductor is Cu or Ag.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62163104A JP2554658B2 (en) | 1987-06-30 | 1987-06-30 | How to connect complex oxide superconductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62163104A JP2554658B2 (en) | 1987-06-30 | 1987-06-30 | How to connect complex oxide superconductors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS647482A JPS647482A (en) | 1989-01-11 |
JP2554658B2 true JP2554658B2 (en) | 1996-11-13 |
Family
ID=15767246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62163104A Expired - Lifetime JP2554658B2 (en) | 1987-06-30 | 1987-06-30 | How to connect complex oxide superconductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2554658B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157017A (en) * | 1987-06-12 | 1992-10-20 | At&T Bell Laboratories | Method of fabricating a superconductive body |
-
1987
- 1987-06-30 JP JP62163104A patent/JP2554658B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS647482A (en) | 1989-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2877149B2 (en) | Method for producing composite oxide ceramic superconducting wire | |
US5306700A (en) | Dense melt-based ceramic superconductors | |
KR910007385B1 (en) | Flaky oxide superconductor and its manufacturing method | |
JP2554658B2 (en) | How to connect complex oxide superconductors | |
JP2554659B2 (en) | Composite oxide superconductor wire connection | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JP2514690B2 (en) | Superconducting wire manufacturing method | |
JP2558695B2 (en) | Method for manufacturing oxide superconducting wire | |
JP2656253B2 (en) | Superconductor wire and manufacturing method thereof | |
JP2563352B2 (en) | Manufacturing method of composite superconductor | |
JP2622123B2 (en) | Method for producing flake-like oxide superconductor | |
JP2597578B2 (en) | Superconductor manufacturing method | |
JP2588200B2 (en) | Manufacturing method of oxide superconductor | |
JP2563411B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2590157B2 (en) | Manufacturing method of superconductor wire | |
JP2597579B2 (en) | Superconductor manufacturing method | |
JP2678619B2 (en) | Oxide superconducting wire and its manufacturing method | |
JP2509642B2 (en) | Superconducting power lead manufacturing method | |
JP2644245B2 (en) | Oxide superconducting wire | |
JPH03237094A (en) | High temperature oxide superconductor, superconducting wire, coil using the wire and production of them | |
JPH01151169A (en) | Oxide superconducting member | |
EP1143531A2 (en) | Permanent magnet comprising superconducting ceramic material | |
JPH01134809A (en) | Superconductive wire material | |
Poeppel et al. | Recent improvements in bulk properties of ceramic superconductors | |
JPS63265853A (en) | Production of superconductive material |