JP2678619B2 - Oxide superconducting wire and its manufacturing method - Google Patents

Oxide superconducting wire and its manufacturing method

Info

Publication number
JP2678619B2
JP2678619B2 JP63154744A JP15474488A JP2678619B2 JP 2678619 B2 JP2678619 B2 JP 2678619B2 JP 63154744 A JP63154744 A JP 63154744A JP 15474488 A JP15474488 A JP 15474488A JP 2678619 B2 JP2678619 B2 JP 2678619B2
Authority
JP
Japan
Prior art keywords
particles
oxide superconducting
oxide
wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63154744A
Other languages
Japanese (ja)
Other versions
JPH01105409A (en
Inventor
厚子 添田
孝明 鈴木
邦裕 前田
武夫 山崎
高橋  研
忠彦 三吉
長四郎 北沢
正年 中沢
幸男 竹田
貴枝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63154744A priority Critical patent/JP2678619B2/en
Publication of JPH01105409A publication Critical patent/JPH01105409A/en
Application granted granted Critical
Publication of JP2678619B2 publication Critical patent/JP2678619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導線及びその製造方法に係り、特に臨
界電流密度を向上させた超電導線及びその製造方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a superconducting wire and a method for manufacturing the same, and more particularly to a superconducting wire having an improved critical current density and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、超電導材料としてはNb3SnやNb3Ge等の金属間化
合物が知られており、実用化されている。これらの金属
間化合物は超電導状態が得られる臨界温度(Tc)は最も
高いNb3Geでも23Kであり、冷却には液体ヘリウムを用い
ることが必要であつた。
Conventionally, intermetallic compounds such as Nb 3 Sn and Nb 3 Ge have been known as superconducting materials and have been put to practical use. The critical temperature (Tc) for obtaining the superconducting state of these intermetallic compounds was 23 K even for Nb 3 Ge, which was the highest, and it was necessary to use liquid helium for cooling.

ところが、1987年になつて、YBa2Cu3O7_δ系酸化物は
Tcが約90Kと従来の金属間化合物に比べ飛躍的に高いこ
とが発見された。このTcの温度は液体窒素の沸点である
77Kを大きく上まわつており、上記酸化物超電導体は極
めて高価な液体ヘリウムを用いなくても安価な液体窒素
を用いて冷却し、超電導状態を得ることができる。
However, in 1987, YBa 2 Cu 3 O 7 _δ-based oxide
It was discovered that Tc was about 90K, which was dramatically higher than that of conventional intermetallic compounds. This Tc temperature is the boiling point of liquid nitrogen
It greatly exceeds 77K, and the oxide superconductor can be cooled by using inexpensive liquid nitrogen without using extremely expensive liquid helium to obtain a superconducting state.

従来の超電導材は金属であるため線引きなど線材化は
比較的容易であつたが、該酸化物超電導材はセラミツク
スであるため延性に乏しく、線材化は非常に困難であ
る。そのため、該酸化物超電導粉末をパイプにつめて引
つぱり、その後熱処理をすることにより線材化する方法
が報告されている(1987年MRS Spring Meeting,P219〜
221)。
Since the conventional superconducting material is a metal, it is relatively easy to form a wire such as wire drawing. However, since the oxide superconducting material is a ceramic, the ductility is poor and it is very difficult to form a wire. Therefore, a method has been reported in which the oxide superconducting powder is packed in a pipe, pulled up, and then heat treated to form a wire (1987 MRS Spring Meeting, P219-
221).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記従来技術は、粉末をつめて線材化してい
るため、超電導粉末間の接触面積が小さく、高い臨界電
流密度(Jc)が得られないという問題点がある。さらに
該酸化物超電導材は層状ペロブスカイト型構造をとり、
電流の流れる方向に異方性がある。しかし、従来法では
この異方性をなんら考慮していないため粒子間の結合の
方位によつては粒子間の電流が流れにくくなり、高Jc化
の妨げとなつている。
However, the above-mentioned conventional technique has a problem that the contact area between the superconducting powders is small and a high critical current density (Jc) cannot be obtained because the powder is packed into a wire. Further, the oxide superconducting material has a layered perovskite structure,
There is anisotropy in the direction of current flow. However, since the conventional method does not consider this anisotropy at all, the current between particles becomes difficult to flow depending on the direction of the bond between particles, which hinders the increase in Jc.

本発明の目的は、臨界電流密度が増大した酸化物超電
導線を得ることである。
An object of the present invention is to obtain an oxide superconducting wire having an increased critical current density.

本発明の別の目的は、臨界電流密度の高い酸化物超電
導線を製造する方法を提供することにある。
Another object of the present invention is to provide a method for producing an oxide superconducting wire having a high critical current density.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、線材を作製する際に用いる酸化物超電導
材にC面を成長させた板状粒子を用いることにより、達
成される。
The above-mentioned object is achieved by using plate-shaped particles having a C-plane grown as an oxide superconducting material used when producing a wire.

本発明の酸化物超電導線は、長手方向に延在する金属
製の管と、該管内に充てんされ且つ互いに結合している
ペロブスカイト型結晶構造の超電導酸化物粒から成る酸
化物超電導材とを有し、前記超電導酸化物粒は、C面方
向の寸法がC軸方向の寸法よりも大きな板状粒子を有
し、前記酸化物超電導材は、Y,Ba,Cu,O、希土類及びア
ルカリ金属のうち少なくとも1つを含み、且つ前記超電
導酸化物粒の前記C面が前記長手方向に向かつて配列し
た優先方位を有する酸化物超電導線において、前記超電
導酸化物粒は前記板状粒子を50vol%より大きな割合で
有し、前記酸化物超電導材は、ビスマス及びタリウムの
うち少なくとも1つを含むことを特徴とする。
The oxide superconducting wire of the present invention comprises a metal tube extending in the longitudinal direction, and an oxide superconducting material composed of superconducting oxide particles having a perovskite type crystal structure filled in the tube and bonded to each other. However, the superconducting oxide particles have plate-like particles having a dimension in the C-plane direction larger than the dimension in the C-axis direction, and the oxide superconducting material is composed of Y, Ba, Cu, O, rare earths and alkali metals. In the oxide superconducting wire containing at least one of the superconducting oxide particles, and the C-plane of the superconducting oxide particles having a preferred orientation oriented in the longitudinal direction, the superconducting oxide particles contain the plate-like particles in an amount of 50 vol% or more. The oxide superconducting material has a large proportion, and the oxide superconducting material contains at least one of bismuth and thallium.

板状粒子とは、ペロブスカイト型結晶構造においてC
面方向の寸法がC軸方向の寸法より大きい粒子を意味す
る。
Plate-like particles are C in the perovskite type crystal structure.
It means a particle having a dimension in the plane direction larger than that in the C-axis direction.

本発明の酸化物超電導線製造方法は、長手方向に延在
する金属製の管を準備する段階と、ペロブスカイト型結
晶構造の超電導酸化物粒を含み、該粒子のC面方向の寸
法がC軸方向の寸法よりも2倍以上大きい板状粒子が酸
化物超電導材粉末の50vol%より大きい割合で含む酸化
物超電導材であり、且つY,Ba,Cu,O、及び希土類とアル
カリ金属とビスマスとタリウムとから成る群から選択さ
れた少なくとも一種を含む酸化物超電導材を準備する段
階と、該酸化物超電導材を該管に充てんした複合導体を
長手方向に伸線加工及び/又は圧延加工して線材としそ
れにより酸化物超電導材粉末の粒のC面が長手方向に向
かつた優先方位を酸化物超電導材が有するようにする段
階と、加工された複合導体を熱処理し酸化物超電導材を
焼結する段階とを有することを特徴とする。
The method for producing an oxide superconducting wire according to the present invention comprises the steps of preparing a metal tube extending in the longitudinal direction, including superconducting oxide particles having a perovskite type crystal structure, and the dimension of the particles in the C-plane direction being the C-axis. Is an oxide superconducting material in which plate-like particles larger than the dimension in the direction are contained in a proportion of more than 50 vol% of the oxide superconducting material powder, and Y, Ba, Cu, O, and rare earths, alkali metals, and bismuth are included. A step of preparing an oxide superconducting material containing at least one selected from the group consisting of thallium, and wire-drawing and / or rolling a composite conductor in which the oxide superconducting material is filled in the tube in the longitudinal direction. Forming a wire and thereby allowing the oxide superconducting material to have a preferred orientation in which the C planes of the particles of the oxide superconducting material powder are oriented in the longitudinal direction; and heat the processed composite conductor to burn the oxide superconducting material. And a step of tying The features.

複合導体を形成するには、板状粒子からなる酸化物超
電導材を管状金属材の内部に充てんする方法と、管状金
属材の内部に原料粉を充てんした後熱処理して化合物超
電導材の板状粒子を生成する方法がある。特に後者の場
合には、熱処理によつて酸化物超電導材の板状粒子を生
成しながら、複合導体を伸線加工及び/又は圧延加工で
細線化して板状粒子を配向させてもよい。板状粒子焼結
時に酸素の供給を充分とするため金属製管の壁に多数の
貫通孔を設けてもよい。
To form a composite conductor, a method of filling an oxide superconducting material composed of plate-like particles into the inside of a tubular metal material, and a method of filling a raw material powder into the inside of the tubular metal material and then heat-treating the compound superconducting material into a plate shape There is a method of generating particles. In the latter case in particular, the composite conductor may be thinned by wire drawing and / or rolling to orient the plate-like particles while generating the plate-like particles of the oxide superconducting material by heat treatment. A large number of through holes may be provided in the wall of the metal tube in order to sufficiently supply oxygen during the sintering of the plate-like particles.

酸化物超電導体はYとBaとCuとOから成る組成物であ
る。酸化物超電導体はY,Ba,Cu,O、及び希土類元素とア
ルカリ金属とビスマスとタリウムとから成る群から選択
された少なくとも一種から成る組成物であつてもよい。
超電導線の酸化物超電導材は、C軸方向に対するC面方
向の長さが2倍以上あるC面を有する板状粒子が線材の
長手方向軸線に向つて配向し、該板状粒子が酸化物超電
導材の60vol%以上であるのが好ましい。
The oxide superconductor is a composition composed of Y, Ba, Cu and O. The oxide superconductor may be a composition containing Y, Ba, Cu, O, and at least one selected from the group consisting of rare earth elements, alkali metals, bismuth, and thallium.
In an oxide superconducting material of a superconducting wire, plate-like particles having a C-plane having a length in the C-plane direction with respect to the C-axis direction of 2 times or more are oriented toward the longitudinal axis of the wire, and the plate-like particles are oxides. It is preferably 60 vol% or more of the superconducting material.

バリウム,イツトリウム,銅の複合酸化物のような酸
化物高温超電導材料は、ペロブスカイト型をもとにした
層状の結晶構造をもち、結晶内ではその層に沿つて、電
子が流れやすくなつている。また結晶構造が層状である
ため、結晶粒子は生成時の熱処理条件とその後の粉砕時
間を適切に選択することで板状になり、板状粒子のC面
に垂直な方向であるC軸方向に比べてC面方向には電子
が流れやすい。したがって、このような材料を線材化す
る際に、線材の長手方向に向かつて板状粒子のC面が配
向するようにさせることにより、超電導線の臨界電流密
度が高くなる。管状金属の内部に板状粒子を充てんした
状態、あるいは原料粉を充てんした後熱処理して板状粒
子を生成した状態では、板状粒子は特に配向性を持た
ず、任意の方向を霧いている。この複合導体を伸線加工
する過程で、内部の粒子にも線材の長手方向に引つ張
り、それに垂直な方向に圧縮する力が加わるため、板状
粒子がそのC面が長手方向に向かうように配向する。
High-temperature oxide superconducting materials such as complex oxides of barium, yttrium, and copper have a layered crystal structure based on the perovskite type, and electrons easily flow along the layers in the crystal. In addition, since the crystal structure is layered, the crystal particles become a plate shape by appropriately selecting the heat treatment condition at the time of generation and the subsequent pulverization time, and the crystal particles are oriented in the C-axis direction which is a direction perpendicular to the C plane of the plate particles. In comparison, electrons easily flow in the C plane direction. Therefore, when converting such a material into a wire rod, the critical current density of the superconducting wire is increased by orienting the C planes of the plate-like particles in the longitudinal direction of the wire rod. In the state where the tubular metal is filled with the plate-like particles, or in the state where the raw material powder is filled and then heat-treated to produce the plate-like particles, the plate-like particles have no particular orientation and mist in an arbitrary direction. . In the process of drawing this composite conductor, the particles inside are also pulled in the longitudinal direction of the wire and a compressive force is applied in a direction perpendicular to it, so that the C-plane of the plate-shaped particles is oriented in the longitudinal direction. Orient to.

C面を成長させた板状粒を含む酸化物超電導塊状物
は、焼成温度及び時間と粉砕処理の時間(粉砕の程度)
を適切に選ぶことにより作製される。従来の線材化に用
いている粉末は、これらの条件に対する考慮がされてい
なかつたため、80vol%以上が、C軸方向の長さに対す
るC面の長さの比が2倍より小さい粒子から成つてい
た。そのため先述したように、線材内での超電導粉末間
の接触面積が小さく、粒子間の結合の方位もランダム
で、高いJcが得られなかつた、本発明では、C軸方向の
長さに対するC面の長さが2倍以上であるC面を成長さ
せた粒から成る粉末を線材化に用いることにより高Jc化
を達成した。該粉末は焼成条件を適切に選ぶことにより
柄られる。焼成温度は900℃以上1050℃以下、好ましく
は970℃以上1025℃以下である。焼成時間は温度との兼
合で、温度が高い場合は短い時間でよいが、温度が低い
場合は長い時間が必要となる。焼成温度は900℃より低
い温度ではC面が成長しにくく、1050℃より高い温度で
は該酸化物超電導相が他の生成物に変化してしまう。
Oxide superconducting agglomerates containing plate-shaped grains on which the C-plane is grown, the firing temperature and time and the time of the crushing process (degree of crushing)
Is produced by appropriately selecting. Since the powder used in the conventional wire formation has not been considered for these conditions, 80 vol% or more is composed of particles whose ratio of the length of the C plane to the length in the C axis direction is less than twice. Was there. Therefore, as described above, the contact area between the superconducting powders in the wire is small, the orientation of the bonds between the particles is random, and a high Jc cannot be obtained. In the present invention, in the C plane with respect to the length in the C axis direction. A high Jc was achieved by using a powder composed of grains having a C-plane grown to have a length of 2 times or more for forming a wire. The powder is patterned by appropriately selecting firing conditions. The firing temperature is 900 ° C or higher and 1050 ° C or lower, preferably 970 ° C or higher and 1025 ° C or lower. The firing time is a short time when the temperature is high in consideration of the temperature, but a long time is required when the temperature is low. When the firing temperature is lower than 900 ° C, the C-plane is difficult to grow, and when the temperature is higher than 1050 ° C, the oxide superconducting phase is changed to another product.

第9図は酸化物超電導体のペロブスカイト型結晶構造
を示す。結晶におけるC軸とC面との関係は図の関係に
ある。粉末においてC面は劈開面に相当し、C軸はその
面に垂直な方向である。
FIG. 9 shows a perovskite type crystal structure of an oxide superconductor. The relationship between the C-axis and the C-plane in the crystal is as shown in the figure. In the powder, the C plane corresponds to the cleavage plane, and the C axis is the direction perpendicular to that plane.

〔作用〕[Action]

C面を成長させた板状の酸化物超電導粒子は、線を得
るための加工によつて線の長手方向にC面が方向ずけら
れた優先方位を有するように配列すると共に、加工後も
加工前の板状粒子の形状とこの特定形状の板状粒子の割
合を保持する。これは酸化物超電導材がほとんど延性を
有さず且つC面方向の寸法がC面と直角なC軸方向の寸
法より大きい形状を板状粒子を有し、更に板状粒子のC
面方向の寸法が、最小10μm以上のものを50vol%より
多く含み、全体として大体10〜60μmの小さいことによ
ると考えられる。
The plate-shaped oxide superconducting particles on which the C-plane is grown are arranged so that the C-plane has a preferred orientation in the longitudinal direction of the line by the process for obtaining the line, and after the process, The shape of the plate-like particles before processing and the ratio of the plate-like particles having the specific shape are retained. This is because the oxide superconducting material has almost no ductility and has a plate-like particle whose shape in the C-plane direction is larger than the size in the C-axis direction perpendicular to the C-plane.
It is considered that the dimension in the surface direction contains more than 50 vol% of those having a minimum of 10 μm or more, and is small as a whole of about 10 to 60 μm.

該超電導材は結晶系の異方性からほとんどC面方向に
のみ電流が流れる。従来の粉末を用いて作製した線材に
比べて高い臨界電流密度Jcが得られるのは、電流の流れ
る方向にこの電導面のC面が配向し、粒同士のつながり
が電流が流れやすい方位で結合しやすいためと考えられ
る。
Due to the anisotropy of the crystal system, the superconducting material causes a current to flow almost only in the C-plane direction. Higher critical current density Jc can be obtained compared to the wire made by using the conventional powder because the C plane of this conducting surface is oriented in the direction of current flow and the connection between grains is bonded in the direction in which the current easily flows. It is thought that it is easy to do.

〔実施例〕〔Example〕

実施例1 第1図に、本実施例による超電導線の構成図を示す。
図において、細線化された銅管1の内部に超電導材2が
埋設されている。また超電導材2は、板状粒子21のC面
が線の長手方向に向つて配向している。
Example 1 FIG. 1 shows a block diagram of a superconducting wire according to this example.
In the figure, a superconducting material 2 is embedded inside a thinned copper tube 1. Further, in the superconducting material 2, the C-plane of the plate-like particles 21 is oriented in the longitudinal direction of the line.

このような超電導線を、以下の様にして作製した。第
2図に示すように、外径30mm,内径20mmの銅管11の内部
に、超電導材の粉末22を充てんした。超電導材の粉末22
は、酸化バリウム(BaO)、酸化イツトリウム(Y
2O3)、酸化銅(CuO)をYとBaとCuのモル比が1:2:3と
なるように混合した後、950℃で5時間熱処理して得ら
れたBa1.81.2Cu3O7_δの粉末である。粉末の粒形状を
光学顕微鏡で観察した結果、大部分が径30〜60μm、厚
さ10〜30μmの板状粒子から成ることがわかつた。次い
で超電導材22を充てんした銅管11から成る複合導体を押
出加工により径が1mmの細線に加工した後、Ar中で950℃
で5時間保持して超電導線(A)を作製した。
Such a superconducting wire was produced as follows. As shown in FIG. 2, a superconducting material powder 22 was filled inside a copper tube 11 having an outer diameter of 30 mm and an inner diameter of 20 mm. Superconducting material powder 22
Is barium oxide (BaO), yttrium oxide (Y
2 O 3 ) and copper oxide (CuO) were mixed so that the molar ratio of Y, Ba and Cu was 1: 2: 3, and then heat-treated at 950 ° C. for 5 hours to obtain Ba 1.8 Y 1.2 Cu 3 It is a powder of O 7 _δ. As a result of observing the particle shape of the powder with an optical microscope, it was found that most of them consisted of plate-like particles having a diameter of 30 to 60 μm and a thickness of 10 to 30 μm. Then, the composite conductor consisting of the copper tube 11 filled with the superconducting material 22 was processed into a thin wire with a diameter of 1 mm by extrusion, and then 950 ° C in Ar.
Was maintained for 5 hours to prepare a superconducting wire (A).

得られた超電導線(A)の抵抗値を測定した結果、臨
界温度は91Kであつた。また臨界電流密度は95A/cm2であ
つた。
As a result of measuring the resistance value of the obtained superconducting wire (A), the critical temperature was 91K. The critical current density was 95 A / cm 2 .

一方、これと比較するために、別に原料粉末を所定量
混合して外径30mm、内径20mmの銅管の内部に充てんし、
銅管を押出し、伸線加工により径が1mmの細線に加工し
た後、Ar中で950℃、5時間の仮焼成及びAr中で950℃,5
時間の本焼成を行つた。得られた超電導線(B)の臨界
温度は91Kで、超電導線(A)と同様であつたが、臨界
電流密度は50A/cm2と小さかつた。超電導線(B)内の
超電導材をX線回折により解析した結果、上記同様Ba
1.81.2Cu3O7_δの結晶粒の集まりであることがわかつ
た。結晶粒は大部分が径が30〜60μm、厚さが10〜30μ
mの板状であつた。
On the other hand, for comparison with this, a predetermined amount of raw material powder was separately mixed and filled inside a copper tube having an outer diameter of 30 mm and an inner diameter of 20 mm,
After extruding a copper pipe and processing it into a fine wire with a diameter of 1 mm by wire drawing, calcination in Ar at 950 ° C for 5 hours and 950 ° C in Ar at 5
The main firing of time was performed. The obtained superconducting wire (B) had a critical temperature of 91 K, which was similar to that of the superconducting wire (A), but the critical current density was as small as 50 A / cm 2 . As a result of analyzing the superconducting material in the superconducting wire (B) by X-ray diffraction,
It was found to be a collection of crystal grains of 1.8 Y 1.2 Cu 3 O 7 _δ. Most crystal grains have a diameter of 30-60 μm and a thickness of 10-30 μm.
It had a plate shape of m.

結晶粒の配向性を調べるために、それぞれの超電導線
の長手方向に平行な断面を観察し、画像解析装置を用い
て結晶粒の方位分布を測定した。ここで結晶粒の方位
は、結晶粒の周上の距離が最大である2点を結ぶ軸線
(長軸線)が、超電導線の長手方向となす角度で表わし
た。第3図に測定結果を示す。図において、曲線aは本
実施例で最初に述べた板状粒子から成る超電導材を銅管
に充てんした後に細線化して作製した超電導線(A)の
場合であり、曲線bは比較のために後から述べた細線化
した後に熱処理して作製した超電導線(B)の場合であ
る。図により明らかなように、曲線bの場合は粒子が特
別な配向性を持たないのに対し、曲線aは粒子の方位が
超電導線の長手方向に偏りを持つている。板状粒子を充
てんした後に細線化する過程で粒子の配向が起こり、こ
れが臨界電流密度を大きくする原因となつたと考えられ
る。
In order to investigate the orientation of crystal grains, the cross section parallel to the longitudinal direction of each superconducting wire was observed, and the orientation distribution of crystal grains was measured using an image analyzer. Here, the orientation of the crystal grains is represented by the angle formed by the axis line (long axis line) connecting the two points having the maximum distance on the circumference of the crystal grains with the longitudinal direction of the superconducting wire. FIG. 3 shows the measurement results. In the figure, a curve a is the case of a superconducting wire (A) prepared by filling a copper tube with the superconducting material composed of the plate-like particles first described in this example, and then thinning it, and a curve b is for comparison. This is the case of the superconducting wire (B) manufactured by heat treatment after thinning described later. As is clear from the figure, in the case of the curve b, the particles have no special orientation, whereas in the curve a, the orientation of the particles is biased in the longitudinal direction of the superconducting wire. It is considered that the orientation of the particles occurs in the process of thinning after filling the plate-like particles, which is the cause of increasing the critical current density.

実施例2 酸化バリウム(BaO),酸化イツトリウム(Y2O3),
酸化銅(CuO)を実施例1と同じ条件で混合して外径30m
m,内径20mmの銅管の内部に充てんした。この管をAr中で
950℃で熱処理しながら徐々に伸線加工し、径が1mmの細
線に加工して複合導体を形成した後、さらにAr中で950
℃,5時間の熱処理を行つて超電導線(C)を作製した。
また同様に原料粉を充てんした銅管を押出加工により細
線化した後に、Ar中で950℃,5時間の熱処理を2度行
い、超電導線(D)を作製した。
Example 2 Barium oxide (BaO), yttrium oxide (Y 2 O 3 ),
Copper oxide (CuO) was mixed under the same conditions as in Example 1 to obtain an outer diameter of 30 m.
It was filled in a copper tube having an inner diameter of 20 mm and a diameter of 20 m. This tube in Ar
Gradually draw wire while heat-treating at 950 ℃ to form a fine wire with a diameter of 1 mm to form a composite conductor, then 950 in Ar.
A superconducting wire (C) was produced by carrying out heat treatment at 5 ° C for 5 hours.
Similarly, a copper tube filled with raw material powder was thinned by extrusion, and then heat-treated twice at 950 ° C. for 5 hours in Ar to produce a superconducting wire (D).

得られた超電導線の臨界温度は、(C),(D)とも
93Kであつた。臨界電流密度は(C)が105A/cm2
(D)が58A/cm2で、(C)の方が大きかつた。超電導
線内の超電導材をX線回折により解析した結果、
(C),(D)ともBa2YCu3O7_δの結晶粒の集まりであ
ることがわかつた。結晶粒の大きさは、長軸が30〜60μ
m短軸が10〜30μmであつた。画像解析装置を用いて結
晶粒の方位分布を測定したところ、超電導線(D)につ
いては第3図の曲線bと同様に粒子の配向性が認められ
なかつたが、超電導線(C)については曲線aと同様に
線の長手方向に粒子が配向している傾向が認められた。
The critical temperature of the obtained superconducting wire is (C), (D)
It was 93K. The critical current density (C) is 105 A / cm 2 ,
(D) was 58 A / cm 2 , and (C) was larger. As a result of analyzing the superconducting material in the superconducting wire by X-ray diffraction,
It has been found that both (C) and (D) are aggregates of Ba 2 YCu 3 O 7 — δ crystal grains. The crystal grain size is 30-60μ on the long axis.
The short axis was 10 to 30 μm. When the orientation distribution of the crystal grains was measured by using an image analyzer, the superconducting wire (D) showed no particle orientation similar to the curve b in FIG. 3, but the superconducting wire (C) showed Similar to the curve a, it was recognized that the particles were oriented in the longitudinal direction of the line.

以上説明したように、本発明の方法によれば板状粒子
の電子が流れやすい方向が線の長手方向に配向した超電
導線を作製することができるので、臨界電流密度を配向
のない場合に比べて2倍近く大きくできる効果がある。
As described above, according to the method of the present invention, it is possible to produce a superconducting wire in which the direction in which the electrons of the plate-like particles easily flow is oriented in the longitudinal direction of the line, so that the critical current density is higher than that in the case of no orientation The effect is that it can be nearly doubled.

なおこの効果は、実施例に限らず面内に電流が流れや
すい板状粒子から成る他の超電導材料や、他の金属管を
用いた場合にも得られることは明らかである。
It is obvious that this effect can be obtained not only in the example but also in the case of using another superconducting material composed of plate-like particles through which an electric current easily flows, or another metal tube.

更に本発明の超電導材線材によれば、酸化物超電導材
の線材の臨界電流密度を向上できるという効果がある。
Further, the superconducting wire of the present invention has an effect that the critical current density of the oxide superconducting wire can be improved.

実施例3 市販の粉末であるY2O3,BaCO3,CuOを、これらの材料の
YとBaとCuのモル比がそれぞれ1:2:3となるように全体
で20g秤量し、メノウ製のライカイ機で1時間混合し
た。Y2O3粉末の粒径は2〜3μm、BaCO3粉末の粒径は
2〜5μm、CuOは1〜3μmであつた。該粉末混合物
をO2中で950℃の温度で5時間予備焼成し次にこの予備
焼成で生じた塊状物を粉砕する操作を2回繰返し、酸化
物超電導材の粉末を得た。この粉末を油圧プレスにて30
mm直径で1.0mm厚さのペレツトに成形し、このペレツト
を975℃×20時間、O2中で焼成し十分にC面を成長させ
たところ、C軸方向の長さに対するC面方向の長さが3
倍以上である粒が80vol%以上含まれる塊状物を得た。
この塊状物をメノウ製のライカイ機で30分間粉砕し、C
軸方向の長さに対するC面方向の長さが2倍以上ある、
C面が成長した板状粒子からなる200メッシュ以下の超
電導粉末を得た。該粉末のSEM像を観察した結果、該粉
末は、粒径10〜60μmの板状粒子から成ることが判明し
た。画像解析装置を用いて板状粒子の割合を調べた結
果、C面方向の長さがC軸方向の長さの2倍以上である
この板状粒子の割合は該粉末の約70vol%であつた。該
粉末の粉末X線回折の結果を第4図に示した。第4図か
ら(oon)面(但しnは整数)が強調され、板状粒子は
そのC面が成長した粒であることが確認された。次に該
粉末を内径10mmのAg製管に約2.7g/cm2の割合で充てんし
て複合導体を作り、この複合導体を直径3mmまでは0.1mm
ずつ径が減少するように押出加工し直径3mm以下では0.0
5mmずつ径が減少するように押出し加工し、外径1.2mm A
g材の厚さ約0.1mmの細線とした。この細線を更に冷間圧
延し厚さ0.1mmのテープ状線材を得た。該テープ状線材
を酸素雰囲気中で910℃の温度で5時間焼成した後に室
温まで徐冷して、超電導線を得た。この超電導線の臨界
電流密度(Jc)を77Kの温度で且つ外部磁界を付与して
いない状態で測定した結果、Jcは4200A/cm2であつた。
Example 3 20 g of Y 2 O 3 , BaCO 3 and CuO, which are commercially available powders, were weighed in total so that the molar ratio of Y, Ba and Cu of these materials was 1: 2: 3, and made by Agate. The mixture was mixed for 1 hour with a raikai machine. The Y 2 O 3 powder had a particle size of 2 to 3 μm, the BaCO 3 powder had a particle size of 2 to 5 μm, and CuO had a particle size of 1 to 3 μm. The operation of pre-calcining the powder mixture in O 2 at a temperature of 950 ° C. for 5 hours and then pulverizing the agglomerates generated by the pre-calcination was repeated twice to obtain a powder of an oxide superconducting material. This powder is 30
The pellet was formed into a pellet having a diameter of 1.0 mm and a thickness of 1.0 mm, and the pellet was baked in O 2 at 975 ° C. for 20 hours to grow the C plane sufficiently. Saga 3
An agglomerate containing 80 vol% or more of grains that are more than double the amount was obtained.
This agglomerate is crushed for 30 minutes with an agate raikai machine, and C
The length in the C-plane direction is more than twice the length in the axial direction,
A superconducting powder having a mesh size of 200 mesh or less, which is composed of plate-like particles having grown C plane, was obtained. As a result of observing an SEM image of the powder, it was found that the powder was composed of plate-like particles having a particle size of 10 to 60 μm. As a result of examining the proportion of the plate-like particles using an image analyzer, the proportion of the plate-like particles whose length in the C-plane direction is twice or more the length in the C-axis direction is about 70 vol% of the powder. It was The result of powder X-ray diffraction of the powder is shown in FIG. It was confirmed from FIG. 4 that the (oon) plane (where n is an integer) was emphasized and that the plate-like grain was a grain in which the C plane grew. Next, the powder is filled into an Ag pipe having an inner diameter of 10 mm at a rate of about 2.7 g / cm 2 to form a composite conductor, and the composite conductor is 0.1 mm up to a diameter of 3 mm.
Extruded so that the diameter gradually decreases, and 0.0 for diameters of 3 mm or less.
Extruded so that the diameter decreases by 5 mm, and the outer diameter is 1.2 mm A
A thin wire with a thickness of about 0.1 mm was used. The thin wire was further cold-rolled to obtain a tape-shaped wire having a thickness of 0.1 mm. The tape-shaped wire was fired in an oxygen atmosphere at a temperature of 910 ° C. for 5 hours and then gradually cooled to room temperature to obtain a superconducting wire. As a result of measuring the critical current density (Jc) of this superconducting wire at a temperature of 77 K and without applying an external magnetic field, Jc was 4200 A / cm 2 .

次にこの超電導線のAg管を除去し、超電導線の内部に
ある酸化物超電導材の圧延方向の面の方位をX線回折に
より調べた結果、第5図に示すように(oon)面が強調
され、超電導線の長手方向に粒のC面が配列している
(すなわち優先方向を有する)ことが判明した。これは
酸化物超電導材として板状粒子を多く含む材料を使用し
たことにより伸線加工及び圧延加工の過程でC面が線の
長手方向に方向づけられたためと考えられる。
Next, the Ag tube of this superconducting wire was removed, and the orientation of the plane in the rolling direction of the oxide superconducting material inside the superconducting wire was examined by X-ray diffraction. As a result, as shown in FIG. It was emphasized that it was found that the C planes of the grains were arranged in the longitudinal direction of the superconducting wire (that is, had the preferential direction). It is considered that this is because the C plane was oriented in the longitudinal direction of the wire in the process of wire drawing and rolling by using a material containing a lot of plate-like particles as the oxide superconducting material.

実施例1の場合と比較して実施例3の場合のJcが著し
く大きくなつた理由は、C軸方向の長さに対するC面方
向の長さが2倍以上ある板状粒子が約70vol%含まれる
超電導粉末を使用していること、及びこの板状粒子は延
性が著しく小さく且つ10〜60μmの小さな寸法であるこ
とに起因して線材に加工された後も加工前の板状粒子の
形状及び割合が保持されていること、更にこの特別な形
状の板状粒子のC面が線の長手方向に向つて配列してい
ること並びに酸素雰囲気中で焼結していることによると
考えられる。
The reason why Jc in Example 3 was significantly larger than that in Example 1 was that plate-like particles having a length in the C-plane direction twice or more the length in the C-axis direction were contained at about 70 vol%. Due to the use of superconducting powder that is used, and because the plate-like particles have extremely small ductility and a small size of 10 to 60 μm, the shape and shape of the plate-like particles before being processed after being processed into a wire are It is considered that the ratio is maintained, the C-planes of the plate-shaped particles having the special shape are arranged in the longitudinal direction of the line, and the sintering is performed in the oxygen atmosphere.

本発明の上記実施例3と比較するため、実施例3と同
一の原料混合物を、予備焼成温度を910℃とした以外は
同じ条件で酸化物超電導材の粉末を得た。該粉末を実施
例5と同様な操作でペレツトに成形した。このペレツト
を910×5時間、O2中で焼成した後、メノウ製ライカイ
機で1時間粉砕し超電導粉末を得た。該粉末のSEM像の
写真を観察した結果、該粉末は粒径2〜20μm程度の粒
からなり実施例3に示した粉末と比較して粒径と形状が
著しく相違していたのが判明した。該粉末の粉末X線回
折の結果は第6図に示すとおりであり、この第6図の結
果は第4図の場合と異なり(oon)面が強調されていな
かつた。
In order to compare with the above-mentioned Example 3 of the present invention, the same raw material mixture as in Example 3 was used to obtain the oxide superconducting material powder under the same conditions except that the pre-baking temperature was 910 ° C. The powder was molded into pellets in the same manner as in Example 5. This pellet was fired in O 2 for 910 × 5 hours and then pulverized for 1 hour with an agate raikai machine to obtain a superconducting powder. As a result of observing a photograph of an SEM image of the powder, it was found that the powder was composed of particles having a particle size of about 2 to 20 μm and the particle size and the shape were significantly different from the powder shown in Example 3. . The result of powder X-ray diffraction of the powder is as shown in FIG. 6, and the result of FIG. 6 is different from the case of FIG.

次に該粉末を用いて実施例3の場合と同じ操作により
厚さ0.1mmのテープ状超電導線を得た。この超電導線のJ
cを77Kの温度で且つ外部磁界を付与していない状態で測
定した結果、Jcは400A/cm2であつた。次にこの比較材の
超電導線のAg管を除去し、酸化物超電導材の圧延方向の
面の方位をX線回折により調べた。その結果を第7図に
示した。
Next, using the powder, a tape-shaped superconducting wire having a thickness of 0.1 mm was obtained by the same operation as in Example 3. J of this superconducting wire
As a result of measuring c at a temperature of 77 K and without applying an external magnetic field, Jc was 400 A / cm 2 . Next, the Ag tube of the superconducting wire of this comparative material was removed, and the orientation of the surface of the oxide superconducting material in the rolling direction was examined by X-ray diffraction. The result is shown in FIG.

第7図のX線回折結果は、実施例3の場合の第5図に
示されているX線回折結果と異なつていた。
The X-ray diffraction result of FIG. 7 was different from the X-ray diffraction result of FIG. 5 in the case of Example 3.

実施例4 実施例3の場合と同じ原料混合物を使用し、実施例3
と同じ操作により、C軸方向の長さに対するC面方向の
長さが3倍以上の粒が80vol%以上含まれる塊状物を得
た。次にこの塊状物の粉砕時間を変化させて、板状粒子
の存在割合を変動させた多数の粉末を得た。この粉末を
用いて実施例3と同じ製造条件によりテープ状超電導線
を作つた。この超電導線のJcを温度77Kで外部磁界を付
与していない状態で測定し第8図に示す結果が得られ
た。
Example 4 Using the same raw material mixture as in Example 3, Example 3
By the same operation as described above, an agglomerate containing 80 vol% or more of grains having a length in the C-plane direction that is 3 times or more the length in the C-axis direction was obtained. Next, the crushing time of this agglomerate was changed to obtain a large number of powders in which the abundance ratio of plate-like particles was changed. Using this powder, a tape-shaped superconducting wire was produced under the same manufacturing conditions as in Example 3. The Jc of this superconducting wire was measured at a temperature of 77 K without applying an external magnetic field, and the results shown in FIG. 8 were obtained.

第8図から、超電導線のJcは、板状粒子の存在割合が
50vol%を越えた場合に、好ましくは60vol%以上で、著
しく向上することが判明した。この板状粒子の存在割合
は酸化物超電導材の上記粉末のSEM像から画像解析装置
を用いて求めた。
From Fig. 8, Jc of superconducting wire is
It has been found that when it exceeds 50 vol%, preferably 60 vol% or more, a remarkable improvement is obtained. The abundance ratio of the plate-like particles was determined from an SEM image of the powder of the oxide superconducting material using an image analyzer.

実施例5 Y(NO3・2H2Oを30.6gとBa(NO3を41.8gとCu
(NO3・3H2Oを58.0gを2の水溶液とし、これにシ
ュウ酸100gとトリエチルアミン120gを1の水溶液とし
て、前者水溶液に1/minの速度で後者水溶液をマイク
ロチユーブポンプで滴下かくはんした。得られたスラリ
ーを固液分離し固形物を回収した。得られた固形物を12
0℃で乾燥したあと、400℃で3時間加熱分解した。得ら
れた固形物を微細に粉砕して、これを磁性アルミナのル
ツボにとり、800℃で3時間焼成した。得られた固形物
を微細に粉砕し900℃で3時間焼成する工程を3回繰返
し超電導粉末を得た。該粉末を油圧プレスにて直径30m
m,厚さ1.5mmの形状のペレツトに成形し、このペレツト
を950℃×15時間、O2中で焼成し十分にC面を成長させ
たところ、C面方向の長さがC軸方向の長さよりも4倍
以上である板状粒が60vol%以上含まれる塊状物を得
た。該塊状物をメノウ製のライカイ機で30分間粉砕し、
200メツシユ以下の粒度の板状粒子から成る酸化物超電
導粉末を作つた。該粉末を次に、外径15mmで壁に0.1mm
直径の貫通穴を多数有する長さ300mmで肉厚0.5mmのAg製
メツシユ管に2.7g/cm3の割合で充てんし複合導体を作
り、この複合導体に各押出工程で直径が約0.1mm減少す
る加工を施し外部1mmの細線とした。この細線を冷間圧
延により厚さ0.2mmのテープ状線材に成形した。次に該
テープ状線材を酸素雰囲気中で910℃の温度で10時間焼
成し、その後室温まで徐冷し酸化物超電導線を得た。該
超電導線のJcを液体窒素(77K)温度で且つ外部磁界を
付与していない状態で測定したところJc値は6600A/cm2
であつた。
Example 5 30.6 g of Y (NO 3 ) 3 .2H 2 O, 41.8 g of Ba (NO 3 ) 2 and Cu
(NO 3) the 58.0g of 2 · 3H 2 O and 2 of an aqueous solution, to which oxalic acid 100g of triethylamine 120g as one of an aqueous solution, dropwise stirring the latter solution at a rate of 1 / min to the former aqueous solution in the micro switch Yubu pump did. The resulting slurry was subjected to solid-liquid separation to collect solids. 12 solids obtained
After drying at 0 ° C., it was decomposed by heating at 400 ° C. for 3 hours. The obtained solid material was finely pulverized, put in a crucible of magnetic alumina, and fired at 800 ° C. for 3 hours. The step of finely pulverizing the obtained solid material and firing at 900 ° C. for 3 hours was repeated 3 times to obtain a superconducting powder. The powder is hydraulically pressed to a diameter of 30 m.
When the pellet was formed into a pellet having a shape of m and a thickness of 1.5 mm, and the pellet was baked in O 2 at 950 ° C. for 15 hours to grow the C-plane sufficiently, the length in the C-plane direction was in the C-axis direction. An agglomerate containing 60 vol% or more of plate-like particles having a length four times or more than the length was obtained. The agglomerates were crushed for 30 minutes with an agate raikai machine,
An oxide superconducting powder composed of plate-like particles with a particle size of 200 mesh or less was prepared. The powder is then applied to the wall with an outer diameter of 15 mm and 0.1 mm on the wall.
A 300 m long, 0.5 mm thick Ag mesh tube with a large number of through-holes of diameter is filled at a rate of 2.7 g / cm 3 to make a composite conductor, and the diameter is reduced by about 0.1 mm in each extrusion process. A thin wire with an external diameter of 1 mm was applied. This thin wire was formed into a tape-shaped wire rod having a thickness of 0.2 mm by cold rolling. Next, the tape-shaped wire was fired in an oxygen atmosphere at a temperature of 910 ° C. for 10 hours and then gradually cooled to room temperature to obtain an oxide superconducting wire. Jc value of the superconducting wire was 6600 A / cm 2 when measured at liquid nitrogen (77 K) temperature and without applying an external magnetic field.
It was.

実施例6 市販のBi2O3,SrCO3,CaCO3及びCuOをBi,Sr,Ca及びCuの
モル比が1:1:1:2になるように秤取した。最初にSrCO3,C
aCO3及びCuO粉末をメノウ製のライカイ機で1時間混合
して粉末混合物を得た。この粉末混合物をアルミナルツ
ボに入れ大気中で950℃の温度で42時間予備焼成した
後、秤取したBi2O3粉末をこの予備焼成物に加えライカ
ル機で1時間混合して粉末を得た。該粉末を大気中で82
0℃の温度で12時間予備焼成しその後これを粉砕する操
作を2回繰返して粉末を得た。この粉末を直径30mmで厚
さ1.0mmのペレツトに成形し、このペレツトを大気中で8
80℃の温度で48時間焼成し十分にC面を成長させること
により、C軸方向の長さに対するC面方向の長さが5倍
以上の板状粒が80vol%以上含まれる酸化物超電導塊状
物を得た。該塊状物をメノウ製のライカイ機で30分間粉
砕し、C軸方向の長さに対するC面方向の長さが3倍以
上ある。C面が成長した板状粒子からなる超電導粉末を
得た。該粉末を内径6mmのAg製管に充てんして複合導体
を得た。この複合導体を線引し外径1.2mmの細線とし
た。次にこの細線を冷間圧延して厚さ0.1mmのテープ状
線材とした。該テープ状線材を酸素雰囲気中で910℃の
温度で10時間焼成し、その後室温まで炉冷して超電導線
を得た。この超電導線のJcを77Kで且つ外部磁界が付与
されていない状態で測定した結果、Jcの値は3800A/cm2
であつた。
Example 6 Commercially available Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO were weighed out so that the molar ratio of Bi, Sr, Ca and Cu was 1: 1: 1: 2. First SrCO 3 , C
The aCO 3 and CuO powders were mixed for 1 hour with an agate raikai machine to obtain a powder mixture. This powder mixture was placed in an alumina crucible and pre-calcined at a temperature of 950 ° C. for 42 hours in the air, and then the weighed Bi 2 O 3 powder was added to this pre-calcined material and mixed for 1 hour with a Lycal machine to obtain a powder. . 82 in air
The operation of pre-calcining at a temperature of 0 ° C. for 12 hours and then pulverizing this was repeated twice to obtain a powder. This powder was molded into a pellet with a diameter of 30 mm and a thickness of 1.0 mm, and
By firing for 48 hours at a temperature of 80 ° C and growing the C-plane sufficiently, oxide superconducting lumps containing 80 vol% or more of plate-like grains whose length in the C-plane direction is 5 times or more the length in the C-axis direction I got a thing. The agglomerate is crushed for 30 minutes by using an agate raikai machine, and the length in the C-plane direction is 3 times or more the length in the C-axis direction. A superconducting powder composed of plate-like particles having a grown C-plane was obtained. The powder was filled in an Ag tube having an inner diameter of 6 mm to obtain a composite conductor. This composite conductor was drawn into a thin wire with an outer diameter of 1.2 mm. Next, this thin wire was cold-rolled into a tape-shaped wire having a thickness of 0.1 mm. The tape-shaped wire was fired in an oxygen atmosphere at a temperature of 910 ° C. for 10 hours and then furnace-cooled to room temperature to obtain a superconducting wire. As a result of measuring Jc of this superconducting wire at 77K in a state where an external magnetic field is not applied, the value of Jc is 3800A / cm 2
It was.

実施例7 実施例3と同様の市販のY2O3,BaCO3,CuOをY,Ba及びCu
のモル比が1:2:3になるように秤取し、水を加えてボー
ルミル処理により均一な粉末混合物を得た。該粉末混合
物は150℃に加熱し、水分を蒸発,除去した。該粉末混
合物を975℃×10h,O2中で焼成し、十分にC面を成長さ
せたところ、C軸方向の長さに対するC面方向の長さが
3倍以上の粒が70vol%以上含まれる酸化物超電導材塊
状物を得た。該塊状物を200メツシユ以下の粉末とし、
実施例3と同じ条件で内径20mm以上のAg管に封入,押出
加工を行つた。加工後、さらに、900℃×5h,O2中で焼成
した試料について、臨界電流密度の測定を行つた所、77
Kの温度で且つ外部磁界を付与していない条件下でJc=3
800A/cm2であつた。
Example 7 The same commercially available Y 2 O 3 , BaCO 3 , CuO as in Example 3 was added to Y, Ba and Cu.
Were weighed so that the molar ratio was 1: 2: 3, water was added and ball milling was performed to obtain a uniform powder mixture. The powder mixture was heated to 150 ° C. to evaporate and remove water. When the powder mixture was fired in O 2 at 975 ° C. for 10 hours to grow the C-plane sufficiently, 70 vol% or more of grains having a length in the C-plane direction that is 3 times or more the length in the C-axis direction were included. A lump of oxide superconducting material was obtained. The lump is made into a powder of 200 mesh or less,
Under the same conditions as in Example 3, an Ag tube having an inner diameter of 20 mm or more was sealed and extruded. After processing, the critical current density was measured for the sample further baked at 900 ° C for 5h in O 2.
Jc = 3 under the condition of K temperature and no external magnetic field applied
It was 800 A / cm 2 .

実施例7と比較するため、比較材として実施例7と同
様の原料及び同様の方法で、C面を成長させた塊状物を
生成した後、該塊状物を粉砕して比較材粉末を得た。粉
砕処理の時間を長くし粉砕後の粉末の70vol%以上がC
軸方向の長さに対するC面方向の長さが1.5倍以下の粒
子とした。該粉末をAg管に封入し、線引を行つた。線引
後、さらに900℃×5h,O2中で焼成した試料について臨界
電流密度の測定を行つたところ、77K,0Tの条件下でJc=
1200A/cm2であつた。
For comparison with Example 7, as a comparative material, the same raw material and the same method as in Example 7 were used to generate a lump having a C-plane grown, and then the lump was crushed to obtain a comparative material powder. . The pulverization time is extended and 70 vol% or more of the pulverized powder is C
The particles were 1.5 times or less the length in the C-plane direction with respect to the axial length. The powder was enclosed in an Ag tube and drawn. After drawing, the critical current density was measured for the sample further baked in 900 ° C x 5h in O 2 ; Jc = 77K, 0T
It was 1200 A / cm 2 .

実施例8 Y(NO3・2H2O,Ba(NO3及びCu(NO3・3H
2Oを出発原料に、実施例5と同じ方法を用いて微粒で均
一な粉末混合物を得た。該粉末混合物を乾燥した後、90
0℃×15h,O2中で焼成し、十分にC面を成長させたとこ
ろ、C面方向の長さが4倍以上の粒が60vol%以上含ま
れる塊状物を得た。該塊状物は200メツシユ以下の粉末
とし、内径15mmのAg管に封入し、実施例5と同じく押出
加工を行い実施例5と同じ超電導線を得た。これをさら
に930℃×5h,O2中で熱処理した試料は、臨界温度88K,77
Kにおける臨界電流密度3500A/cm2であつた。
Example 8 Y (NO 3) 3 · 2H 2 O, Ba (NO 3) 2 and Cu (NO 3) 2 · 3H
Using 2 O as a starting material and using the same method as in Example 5, a fine and uniform powder mixture was obtained. After drying the powder mixture, 90
When it was baked in O 2 at 0 ° C. for 15 hours to grow the C-plane sufficiently, a lump containing 60 vol% or more of grains having a length in the C-plane direction of 4 times or more was obtained. The agglomerate was made into a powder of 200 mesh or less, enclosed in an Ag tube having an inner diameter of 15 mm, and extruded in the same manner as in Example 5 to obtain the same superconducting wire as in Example 5. The sample that was further heat-treated in 930 ℃ × 5h, O 2 had a critical temperature of 88K and 77K.
The critical current density at K was 3500 A / cm 2 .

実施例9 第10図は実施例3と同様の方法で多芯線に製造した超
電導線の断面図である。(a)は外径2.7mmの銀マトリ
ツクス1に約50μmの超電導線エレメント2が271本埋
込まれたもの、(b)は外径2.1mmの銀マトリツクス1
に約40μmの超電導線エレメント2が397本埋込まれた
ものである。これらの多芯超電導線は実施例3の約0.1m
mの細線にしたものを前述の超電導線に見合う本数にな
るまで所定本数束ねて細線化するやり方を何回か繰返し
て得ることができる。前述の所定の本数と直径になつた
ところで実施例3と同様に最終の熱処理が行なわれる。
このように極細多芯線により電磁気的安定性が得られ
る。
Example 9 FIG. 10 is a sectional view of a superconducting wire manufactured as a multifilamentary wire by the same method as in Example 3. (A) is a silver matrix 1 having an outer diameter of 2.7 mm and 271 superconducting wire elements 2 of about 50 μm are embedded therein, and (b) is a silver matrix 1 having an outer diameter of 2.1 mm.
397 of the superconducting wire elements 2 of about 40 μm are embedded therein. These multi-core superconducting wires are about 0.1 m of the third embodiment.
It is possible to repeatedly obtain a method in which a predetermined number of thin wires of m are bundled until the number of wires corresponds to the number of superconducting wires described above and the wires are thinned. When the above-mentioned predetermined number and diameter have been reached, the final heat treatment is performed in the same manner as in the third embodiment.
Thus, electromagnetic stability can be obtained by the extra fine multi-core wire.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば酸化物超電導線
を構成する酸化物超電導材が板状粒子を含み且つ超電導
線の長手方向に向かつて配列した優先方位を有すること
により、臨界電流密度の高い超電導線を得ることができ
た。
As described above, according to the present invention, the oxide superconducting material forming the oxide superconducting wire has a preferred orientation that includes plate-like particles and is arranged in the longitudinal direction of the superconducting wire. It was possible to obtain a high superconducting wire.

なおこの効果は、実施例に限らず面内に電流が流れや
すい板状粒子から成る他の超電導材料や、他の金属管を
用いた場合にも得られることは明らかである。
It is obvious that this effect can be obtained not only in the example but also in the case of using another superconducting material composed of plate-like particles through which an electric current easily flows, or another metal tube.

本発明に係る超電導線は回転機のロータ及びステータ
用コイル,エネルギー貯蔵用コイル,核融合装置磁石用
コイル,送配電用ケーブル,変圧器用コイル,粒子加速
器用コイル,MRI及びNMRの磁石用コイル,電子顕微鏡用
コイル,原子吸光分析装置の磁石用コイル、電車,自動
車,エレベータ,エスカレータの電動機のロータ,ステ
ータ用コイル,リニアモータカーの磁石用コイルとして
用いることができる。
The superconducting wire according to the present invention is a rotor and stator coil of a rotating machine, an energy storage coil, a fusion device magnet coil, a power transmission and distribution cable, a transformer coil, a particle accelerator coil, an MRI and NMR magnet coil, It can be used as a coil for an electron microscope, a coil for a magnet of an atomic absorption spectrometer, a rotor for a motor of a train, an automobile, an elevator, an escalator, a coil for a stator, and a coil for a magnet of a linear motor car.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の超電導線の構成を示す構成
図、第2図は同じく実施例の超電導線を製造する工程に
おいて細線化前の複合導体を示す斜視図、第3図は作製
した超電導線内の結晶粒子の方位分布を示すグラフ、第
4図は該粉末の方位をX線回折で調べた結果を示すグラ
フであり、第5図は該粉末をAg製管に充てんし線引きし
て得られた超電導線の長手方向に平行な断面をX線回折
することにより板状粒子の方位を調べた結果を示すグラ
フであり、第6図は該比較材の酸化物超電導材の粉末の
方位をX線回折で調べた結果を示すグラフであり、第7
図は該比較材の粉末をAg製管に充てんし第5図の場合と
同じ条件で線引きして得られた超電導線の長手方向に平
行な断面についてX線回折することにより板状粒子の方
位を調べた結果を示すグラフであり、第8図は超電導線
を作る原料である酸化物超電導材の粉末中に存在する板
状粒子の割合と該粉末から作られた超電導線の臨界電流
密度(Jc)との関係を示すグラフであり、第9図はペロ
ブスカイト型結晶構造の酸化物超電導粒子のC面とC軸
とを示す模型図、第10図は多芯超電導線の断面図であ
る。 1……金属管、2……超電導材、11……細線化前の銅
管、21……板状粒子、22……配向していない超電導材。
FIG. 1 is a configuration diagram showing a configuration of a superconducting wire of an embodiment of the present invention, FIG. 2 is a perspective view showing a composite conductor before thinning in a process of manufacturing the superconducting wire of the embodiment, and FIG. A graph showing the orientation distribution of the crystal particles in the produced superconducting wire, FIG. 4 is a graph showing the results of examining the orientation of the powder by X-ray diffraction, and FIG. 5 is a graph showing the powder filled in an Ag pipe. FIG. 6 is a graph showing the results of examining the orientation of plate-like particles by X-ray diffraction of a cross section parallel to the longitudinal direction of the superconducting wire obtained by drawing, and FIG. 6 is a graph of the oxide superconducting material of the comparative material. It is a graph which shows the result of having investigated the direction of powder by X-ray diffraction.
The figure shows the orientation of the plate-like particles by X-ray diffraction of a cross section parallel to the longitudinal direction of the superconducting wire obtained by filling the tube made of Ag with the powder of the comparative material under the same conditions as in FIG. Fig. 8 is a graph showing the results of the investigation of Fig. 8 shows the proportion of plate-like particles present in the powder of the oxide superconducting material, which is a raw material for forming the superconducting wire, and the critical current density of the superconducting wire made from the powder ( Fig. 9 is a graph showing the relationship with Jc), Fig. 9 is a model view showing the C plane and C axis of oxide superconducting particles having a perovskite type crystal structure, and Fig. 10 is a cross-sectional view of a multicore superconducting wire. 1 ... Metal tube, 2 ... Superconducting material, 11 ... Copper tube before thinning, 21 ... Plate-shaped particles, 22 ... Non-oriented superconducting material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 武夫 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 高橋 研 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 三吉 忠彦 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 北沢 長四郎 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 中沢 正年 茨城県勝田市堀口832番地の2 株式会 社日立製作所勝田工場内 (72)発明者 竹田 幸男 神奈川県秦野市堀山下1番地 株式会社 日立製作所神奈川工場内 (72)発明者 中村 貴枝 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭63−279513(JP,A) 特開 昭63−279514(JP,A) 特開 平1−261230(JP,A) 特開 平1−258832(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Yamazaki 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research Laboratory (72) Ken Takahashi 4026 Kuji Town, Hitachi City, Hitachi, Ltd. Hitachi Research Co., Ltd. In-house (72) Inventor Tadahiko Miyoshi 4026 Kuji-machi, Hitachi, Hitachi, Ibaraki 4026 Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Nagashiro Kitazawa 4026, Kuji-cho, Hitachi, Ibaraki Hitachi, Ltd. (72) Inventor, Hitachi Nakasawa New Year 2 Stock company, 832, Horiguchi, Katsuta, Ibaraki, Hitachi Ltd., Katsuta Plant, Hitachi (72) Inventor, Yukio Takeda, 1 Horiyamashita, Hadano, Kanagawa, Ltd., Kanagawa Plant, Hitachi, Ltd. (72) Inventor, Takae Nakamura, Ibaraki 4026 Kuji-machi, Hitachi, Ltd. Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-A-63-279513 (JP, A) JP-A-63-279514 (JP, A) JP-A 1-261230 (JP, A) JP-A 1-258832 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長手方向に延在する金属製の管と、該管内
に充てんされ且つ互いに結合しているペロブスカイト型
結晶構造の超電導酸化物粒から成る酸化物超電導材とを
有し、前記超電導酸化物粒は、C面方向の寸法がC軸方
向の寸法よりも大きな板状粒子を有し、前記酸化物超電
導材は、Y,Ba,Cu,O、希土類及びアルカリ金属のうち少
なくとも1つを含み、且つ前記超電導酸化物粒の前記C
面が前記長手方向に向かって配列した優先方位を有する
酸化物超電導線において、前記超電導酸化物粒は前記板
状粒子を50vol%より大きな割合で有し、前記酸化物超
電導材は、ビスマス及びタリウムのうち少なくとも1つ
を含むことを特徴とする酸化物超電導線。
1. A superconducting material comprising: a metal tube extending in a longitudinal direction; and an oxide superconducting material, which is filled in the tube and is composed of superconducting oxide particles having a perovskite type crystal structure and bonded to each other. The oxide particles have plate-like particles having a dimension in the C-plane direction larger than the dimension in the C-axis direction, and the oxide superconducting material is at least one of Y, Ba, Cu, O, rare earths and alkali metals. And C of the superconducting oxide particles.
In the oxide superconducting wire whose surface has a preferred orientation oriented in the longitudinal direction, the superconducting oxide particles have the plate-like particles in a proportion of greater than 50 vol%, and the oxide superconducting material is bismuth and thallium. An oxide superconducting wire comprising at least one of the above.
【請求項2】請求項1に記載の酸化物超電導線におい
て、前記板状粒子のC面方向の寸法がC軸方向の寸法よ
りも2倍以上大きい酸化物超電導線。
2. The oxide superconducting wire according to claim 1, wherein the dimension of the plate-like particles in the C-plane direction is twice or more the dimension in the C-axis direction.
【請求項3】酸化物超電導線の製造方法であつて、長手
方向に延在する金属製の管の準備する段階と、ペロブス
カイト型結晶構造の超電導酸化物粒を含み、該粒子のC
面方向の寸法がC軸方向の寸法よりも2倍以上大きい板
状粒子が酸化物超電導材粉末の50vol%より大きい割合
で含む酸化物超電導材であり、且つY,Ba,Cu,O、及び希
土類とアルカリ金属とビスマスとタリウムとから成る群
から選択された少なくとも一種を含む酸化物超電導材を
準備する段階と、該酸化物超電導材を該管に充てんした
複合導体を長手方向に伸線加工及び/又は圧延加工して
線材としそれにより酸化物超電導材粉末の粒のC面が長
手方向に向かつた優先方位を酸化物超電導材が有するよ
うにする段階と、加工された複合導体を熱処理し酸化物
超電導材を焼結する段階とを有することを特徴とする酸
化物超電導線の製造方法。
3. A method of manufacturing an oxide superconducting wire, comprising the steps of preparing a metal tube extending in a longitudinal direction, and including superconducting oxide particles having a perovskite type crystal structure, wherein C
It is an oxide superconducting material that contains plate-like particles having a dimension in the plane direction that is at least twice as large as the dimension in the C-axis direction at a ratio of greater than 50 vol% of the oxide superconducting material powder, and Y, Ba, Cu, O, and Preparing an oxide superconducting material containing at least one selected from the group consisting of rare earths, alkali metals, bismuth and thallium, and drawing a composite conductor in which the oxide superconducting material is filled in the tube in the longitudinal direction. And / or rolling into a wire, whereby the oxide superconducting material has a preferred orientation in which the C-plane of the particles of the oxide superconducting material powder is oriented in the longitudinal direction, and the processed composite conductor is heat treated. And a step of sintering the oxide superconducting material.
【請求項4】請求項3に記載の酸化物超電導線の製造方
法において、金属製の管は、該管の壁に多数の貫通孔を
有する管である酸化物超電導線の製造方法。
4. The method for producing an oxide superconducting wire according to claim 3, wherein the metal tube is a tube having a large number of through holes in the wall of the tube.
【請求項5】請求項3に記載の酸化物超電導線の製造方
法において、200メッシュ以下の粒度を有する酸化物超
電導材粉末を用いる酸化物超電導線の製造方法。
5. The method for producing an oxide superconducting wire according to claim 3, wherein the oxide superconducting wire has a particle size of 200 mesh or less.
JP63154744A 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method Expired - Fee Related JP2678619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154744A JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP62-157691 1987-06-26
JP15769187 1987-06-26
JP17101587 1987-07-10
JP62-171015 1987-07-10
JP63154744A JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01105409A JPH01105409A (en) 1989-04-21
JP2678619B2 true JP2678619B2 (en) 1997-11-17

Family

ID=27320718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154744A Expired - Fee Related JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2678619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246173A (en) * 1988-03-28 1989-10-02 Kyocera Corp Oxide superconductor and production thereof
DE102013101323B4 (en) 2013-02-11 2015-12-24 Epcos Ag filter device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656253B2 (en) * 1987-05-11 1997-09-24 株式会社東芝 Superconductor wire and manufacturing method thereof
JPS63279514A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor wire rod, its manufacture and superconductive coil

Also Published As

Publication number Publication date
JPH01105409A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
JP2859602B2 (en) Manufacturing method of products made of superconducting material
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
EP0356969B1 (en) Method of producing oxide superconductor
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP2842537B2 (en) Oxide superconducting wire and its manufacturing method
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JP2678619B2 (en) Oxide superconducting wire and its manufacturing method
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPH075284B2 (en) Method for producing metal oxide superconducting material
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP3257000B2 (en) Copper oxide superconductor and method of manufacturing the same
JP2554658B2 (en) How to connect complex oxide superconductors
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP3149429B2 (en) Superconductor manufacturing method
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH056716A (en) Oxide high temperature superconductor
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH01224261A (en) Production of superconducting material and superconductor
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH1059718A (en) Production of thallium-based superconductor
JPH0238311A (en) Oxide superconductor and production thereof
JPH0554735A (en) Manufacture of ceramic superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees