JPH01105409A - Oxide superconductive wire and manufacture thereof - Google Patents

Oxide superconductive wire and manufacture thereof

Info

Publication number
JPH01105409A
JPH01105409A JP63154744A JP15474488A JPH01105409A JP H01105409 A JPH01105409 A JP H01105409A JP 63154744 A JP63154744 A JP 63154744A JP 15474488 A JP15474488 A JP 15474488A JP H01105409 A JPH01105409 A JP H01105409A
Authority
JP
Japan
Prior art keywords
oxide superconducting
oxide
superconducting wire
powder
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63154744A
Other languages
Japanese (ja)
Other versions
JP2678619B2 (en
Inventor
Atsuko Soeda
添田 厚子
Takaaki Suzuki
孝明 鈴木
Kunihiro Maeda
邦裕 前田
Takeo Yamazaki
山崎 武夫
Ken Takahashi
研 高橋
Tadahiko Mitsuyoshi
忠彦 三吉
Choshiro Kitazawa
北沢 長四郎
Masatoshi Nakazawa
中沢 正年
Yukio Takeda
竹田 幸男
Takae Nakamura
中村 貴枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63154744A priority Critical patent/JP2678619B2/en
Publication of JPH01105409A publication Critical patent/JPH01105409A/en
Application granted granted Critical
Publication of JP2678619B2 publication Critical patent/JP2678619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make a superconductive wire with a high critical current density obtainable by making an oxide superconductive material contain plate-formed particles and have a dominant orientation arranged toward the longitudinal direction of the superconductive wire. CONSTITUTION:A superconductive wire has a longitudinally extended metal tube 1 and an oxide superconductive material 2 consisting of superconductive oxide particles 21 which are filled up into the tube 1 and connected each other. The superconductive oxide particles 21 contain 50vol.% or more plate-formed particles which have the dimension in C-surface direction being larger than that in C-axis direction. The superconductive material 2 has a dominant orientation in which C-surfaces of the oxide particles are arranged longitudinally. Here, the plate-formed particle has the perovskite crystal structure in which the dimension in C-surface direction is larger than that in C-axis direction. Thereby, the oxide superconductive wire which has an increased critical current density can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導線及びその製造方法に係り、特に臨界
電流密度を向上させた超電導線及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting wire and a method for manufacturing the same, and particularly to a superconducting wire with improved critical current density and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、超電導材料としてはNb5SnやNbaGe等の
金属間化合物が知られており、実用化されている。これ
らの金属間化合物は超電導状態が得られる臨界温度(T
c)は最も高いNbBGe でも230にであり、冷却
には液体ヘリウムを用いることが必要であった。
Conventionally, intermetallic compounds such as Nb5Sn and NbaGe have been known as superconducting materials and have been put into practical use. These intermetallic compounds have a critical temperature (T
c) was only 230 even for the highest NbBGe, and it was necessary to use liquid helium for cooling.

ところが、1987年になって、YBa2Cug07−
δ系酸化物はTcが約900にと従来の金属間化合物に
比べ飛躍的に高いことが発見された。このTcの温度は
液体窒素の沸点である77°K を大きく上まわってお
り、上記酸化物超電導体は極めて高価な液体ヘリウムを
用いなくても安価な液体窒素を用いて冷却し、超電導状
態を得ることができる。
However, in 1987, YBa2Cug07-
It has been discovered that δ-based oxides have a Tc of approximately 900, which is dramatically higher than that of conventional intermetallic compounds. The temperature of this Tc is much higher than 77°K, which is the boiling point of liquid nitrogen, so the oxide superconductor can be cooled with inexpensive liquid nitrogen without using extremely expensive liquid helium, and the superconducting state can be achieved. Obtainable.

従来の超電導材は金属であるため線引きなど線材化は比
較的容易であったが、該酸化物超電導材はセラミックス
であるため延性に乏しく、線材化は非常に困難である。
Since conventional superconducting materials are metals, it is relatively easy to draw them into wire rods, but since the oxide superconducting materials are ceramics, they have poor ductility and are extremely difficult to turn into wire rods.

そのため、該酸化物超電導粉末をパイプにつめて引っば
り、その後熱処理をすることにより線材化する方法が報
告されている(1987年MRS  Spring M
eeting、 P 219〜221)。
Therefore, a method has been reported in which the oxide superconducting powder is packed into a pipe, stretched, and then heat-treated to form a wire (1987 MRS Spring M
eeting, P 219-221).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は、粉末をつめて線材化している
ため、超電導粉末間の接触面積が小さく、高い臨界電流
密度(Jc)が得られないという問題点がある。さらに
該酸化物超電導材は層状ペロブスカイト型構造をとり、
電流の流れる方向に異方性がある。しかし、従来法では
この異方性をなんら考慮していないため粒子間の結合の
方位によっては粒子間の電流が流れにくくなり、高Jc
化の妨げとなっている。
However, the above-mentioned conventional technology has the problem that since the powder is packed into a wire, the contact area between the superconducting powders is small and a high critical current density (Jc) cannot be obtained. Furthermore, the oxide superconducting material has a layered perovskite structure,
There is anisotropy in the direction of current flow. However, in the conventional method, this anisotropy is not considered at all, so depending on the direction of the bonds between particles, it becomes difficult for current to flow between particles, resulting in high Jc.
This is hindering the development of

本発明の目的は、臨界電流密度が増大した酸化物超電導
線を得ることである。
An object of the present invention is to obtain an oxide superconducting wire with increased critical current density.

本発明の別の目的は、臨界電流密度の高い酸化物超電導
線を製造する方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing an oxide superconducting wire with a high critical current density.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、線材を作製する際に用いる酸化物超電導材
にC面を成長させた板状粒子を用いることにより、達成
される。
The above object is achieved by using plate-like particles in which C-planes are grown in the oxide superconducting material used when producing the wire.

本発明の酸化物超電導線は、長手方向に延在する金属製
の管と、該管内に充填され且つ互いに結合しているペロ
ブスカイト型結晶構造を有する超電導酸化物粒子から成
る酸化物超電導材とを有し、超電導酸化物粒子は、C面
方向の寸法がC軸方向の寸法よりも大きな板状粒子を5
0voQ%より大きな割合で有し、超電導材は、酸化物
粒のC面が長手方向に向かって配列した優先方位を有す
る。
The oxide superconducting wire of the present invention includes a metal tube extending in the longitudinal direction, and an oxide superconducting material made of superconducting oxide particles having a perovskite crystal structure filled in the tube and bonded to each other. The superconducting oxide particles include plate-like particles whose dimensions in the C-plane direction are larger than those in the C-axis direction.
The superconducting material has a preferential orientation in which the C-planes of the oxide grains are aligned in the longitudinal direction.

板状粒子とは、ペロブスカイト型結晶構造においてC面
方向の寸法がC軸方向の寸法より大きい粒子を意味する
A plate-shaped particle means a particle in which the dimension in the C-plane direction is larger than the dimension in the C-axis direction in a perovskite crystal structure.

本発明の酸化物超電導線製造方法は、長手方向に延在す
る金属製の管を準備する段階と、ペロブスカイト型結晶
構造の超電導粉末間を含み、該粒のC面方向の寸法がC
軸方向の寸法よりも大きい板状粒子を50voQ%より
大きい割合で含む酸化物超電導材を準備する段階と、該
酸化物超電導材を該管に充填した複合導体を長手方向に
伸線加工and/or圧延加工して線材としそれにより
酸化物超電導材粉末の粒子のC面が長手方向に向った優
先方位を酸化物超電導材が有するようにする段階と、加
工された複合導体を熱処理し酸化物超電導材を焼結する
段階とを有する。
The method for manufacturing an oxide superconducting wire of the present invention includes the step of preparing a metal tube extending in the longitudinal direction and the step of forming a superconducting powder having a perovskite crystal structure, wherein the size of the grains in the C-plane direction is C.
a step of preparing an oxide superconducting material containing plate-like particles larger than the axial dimension in a proportion greater than 50 voQ%, and longitudinally wire-drawing a composite conductor in which the tube is filled with the oxide superconducting material. or rolling to form a wire so that the oxide superconducting material has a preferential orientation in which the C-plane of the particles of the oxide superconducting material powder faces in the longitudinal direction, and heat-treating the processed composite conductor to form an oxide sintering the superconducting material.

複合導体を形成するには、板状粒子からなる酸化物超電
導材を管状金属材の内部に充てんする方法と、管状金属
材の内部に原料粉を充てんした後熱処理して化合物超電
導材の板状粒子を生成する方法がある。特に後者の場合
には、熱処理によって酸化物超電導材の板状粒子を生成
しながら、複合導体を伸線加工及び/又は圧延加工で細
線化して板状粒子を配向させてもよい。板状粒子焼結時
に酸素の供給を充分とするため金属製管の壁に多数の貫
通孔を設けてもよい。
To form a composite conductor, there are two methods: filling the inside of a tubular metal material with an oxide superconducting material consisting of plate-shaped particles, and a method of filling the inside of the tubular metal material with raw material powder and then heat-treating it to form a plate-shaped compound superconducting material. There are ways to generate particles. Particularly in the latter case, while producing plate-like particles of the oxide superconducting material through heat treatment, the composite conductor may be thinned by wire drawing and/or rolling to orient the plate-like particles. A large number of through holes may be provided in the wall of the metal tube to ensure a sufficient supply of oxygen during sintering of the plate-shaped particles.

酸化物超電導体はYとBaとCuとOから成る組成物で
ある。酸化物超電導体はY + B a g Cu t
Ol及び希土類元素とアルカリ金属とビスマスとタリウ
ムとから成る群から選択された少なくとも一種から成る
組成物であってもよい。超電導線の酸化物超電導材は、
C軸方向に対するC面方向の長さが2倍以上あるC面を
有する板状粒子が線材の長手方向軸線に向って配向し、
該板状粒子が酸化物超電導材の60von%以上である
のが好ましい。
The oxide superconductor is a composition consisting of Y, Ba, Cu, and O. Oxide superconductor is Y + B a g Cut
The composition may be composed of at least one selected from the group consisting of Ol, rare earth elements, alkali metals, bismuth, and thallium. The oxide superconducting material for superconducting wire is
plate-like particles having a C-plane whose length in the C-plane direction is at least twice as long as the C-axis direction are oriented toward the longitudinal axis of the wire;
It is preferable that the plate-like particles account for 60 von % or more of the oxide superconducting material.

バリウム、イツトリウム、銅の複合酸化物のような酸化
物高温超電導材料は、ペロブスカイト型をもとにした層
状の結晶構造をもち、結晶内ではその層に沿って、電子
が流れやすくなっている。
Oxide high-temperature superconducting materials, such as composite oxides of barium, yttrium, and copper, have a layered crystal structure based on a perovskite type, and electrons can easily flow along the layers within the crystal.

また結晶構造が層状であるため、結晶粒子は生成時の熱
処理条件とその後の粉砕時間を適切に選択することで板
状になり、板状粒子のC面に垂直な方向であるC軸方向
にくらべてC面方向には電子が流れやすい。従って、こ
のような材料を線材化する際に、線材の長手方向に向か
って板状粒子の0面が配向するようにさせることにより
、超電導線の臨界電流密度が高くなる。管状金属の内部
に板状粒子を充てんした状態、あるいは原料粉を充てん
した後熱処理して板状粒子を生成した状態では、板状粒
子は特に配向性を持たず、任意の方向を向いている。こ
の複合導体を伸線加工する過程で、内部の粒子にも線材
の長手方向に引っ張り、それに垂直な方向に圧縮する力
が加わるため、板状粒子がその0面が長手方向に向かう
ように配向する。
In addition, since the crystal structure is layered, the crystal particles can become plate-shaped by appropriately selecting the heat treatment conditions during generation and the subsequent grinding time, and the crystal particles can be formed into plate-shaped particles in the C-axis direction, which is perpendicular to the C-plane of the plate-shaped particles. In comparison, electrons flow more easily in the C-plane direction. Therefore, when forming such a material into a wire, the critical current density of the superconducting wire is increased by orienting the zero plane of the plate-like particles toward the longitudinal direction of the wire. When the inside of a tubular metal is filled with plate-shaped particles, or when plate-shaped particles are generated by heat treatment after being filled with raw material powder, the plate-shaped particles have no particular orientation and are oriented in any direction. . In the process of wire drawing this composite conductor, the internal particles are also pulled in the longitudinal direction of the wire and compressed in a direction perpendicular to it, so the plate-like particles are oriented with their 0 faces facing the longitudinal direction. do.

0面を成長させた板状粒を含む酸化物超電導塊状物は、
焼成温度及び時間と粉砕処理の時間(粉砕の程度)を適
切に選ぶことにより作製される。
An oxide superconducting lump containing plate-like grains grown on the 0-plane is
It is produced by appropriately selecting the firing temperature and time and the grinding time (degree of grinding).

従来の線材化に用いている粉末は、これらの条件に対す
る考慮がされていなかったため、80voQ%以上が、
C軸方向の長さに対する0面の長さの比が2倍より小さ
い粒子から成っていた。そのため先述したように、線材
内での超電導粉末間の接触面積が小さく、粒子間の結合
の方位もランダムで、高いJcが得られなかった。本発
明では、C軸方向の長さに対する0面の長さが2倍以上
である0面を成長させた粒から成る粉末を線材化に用い
ることにより高Jc化を達成した。該粉末は焼成条件を
適切に選ぶことにより得られる。焼成温度は900℃以
上1050℃以下、好ましくは970℃以上1025℃
以下である。焼成時間は温度とのかねあいで、温度が高
い場合は短い時間でよいが、温度が低い場合は長い時間
が必要となる。
Conventional powders used for making wire rods did not take these conditions into account, so 80voQ% or more
It consisted of particles in which the ratio of the length of the zero plane to the length in the C-axis direction was less than twice. Therefore, as mentioned above, the contact area between the superconducting powders within the wire is small, and the bonding direction between the particles is random, making it impossible to obtain a high Jc. In the present invention, a high Jc is achieved by using powder made of grains grown on the 0-face, in which the length of the 0-face is at least twice the length in the C-axis direction, to form a wire rod. The powder can be obtained by appropriately selecting firing conditions. Firing temperature is 900°C or higher and 1050°C or lower, preferably 970°C or higher and 1025°C
It is as follows. The firing time depends on the temperature; if the temperature is high, a short time is sufficient, but if the temperature is low, a long time is required.

焼成温度は900℃より低い温度では0面が成長しにく
く、1050℃より高い温度では該酸化物超電導相が他
の生成物に変化してしまう。
If the firing temperature is lower than 900°C, it is difficult for the 0-plane to grow, and if the firing temperature is higher than 1050°C, the oxide superconducting phase changes into other products.

第9図は酸化物超電導体のペロブスカイト型結晶構造を
示す。結晶におけるC軸と0面との関係は図の関係にあ
る。粉末において0面は臂開面に相当し、C軸はその面
に垂直な方向である。
FIG. 9 shows a perovskite crystal structure of an oxide superconductor. The relationship between the C axis and the 0 plane in the crystal is as shown in the figure. In the powder, the 0 plane corresponds to the arm opening plane, and the C axis is perpendicular to that plane.

〔作用〕[Effect]

0面を成長させた板状の酸化物超電導粒子は、線を得る
ための加工によって線の長手方向に0面が方向ずけられ
た優先方位を有するように配列すると共に、加工後も加
工前の板状粒子の形状とこの特定形状の板状粒子の割合
を保持する。これは酸化物超電導材がほとんど延性を有
さす且つC面方向の寸法が0面と直角なC軸方向の寸法
より大きい形状を板状粒子が有し更に板状粒子の寸法が
10〜60μmと小さいことによると考えられる。
The plate-shaped oxide superconducting particles grown with the 0-plane are arranged so that they have a preferential orientation in which the 0-plane is oriented in the longitudinal direction of the wire by processing to obtain a wire, and the 0-plane is oriented in the longitudinal direction of the wire. The shape of the plate-like particles and the proportion of the plate-like particles with this specific shape are maintained. This is because the oxide superconducting material is almost ductile, and the plate-like particles have a shape in which the dimension in the C-plane direction is larger than the dimension in the C-axis direction perpendicular to the 0-plane, and the size of the plate-shaped particles is 10 to 60 μm. This is probably due to the small size.

該超電導材は結晶系の異方性からほとんどC面方向にの
み電流が流れる。従来の粉末を用いて作製した線材に比
べて高い臨界電流密度Jcが得られるのは、電流の流れ
る方向にこの電導面の0面が配向し、粒とおしのつなが
りが電流が流れやすい方位で結合しやすいためと考えら
れる。
In this superconducting material, current flows almost only in the C-plane direction due to the anisotropy of the crystal system. The reason why a higher critical current density Jc can be obtained compared to wire rods made using conventional powder is that the 0 plane of this conductive plane is oriented in the direction of current flow, and the connections between grains and holes are bonded in a direction that facilitates current flow. This is probably because it is easy to do.

〔実施例〕〔Example〕

実施例1 第1図に、本実施例による超電導線の構成図を示す。図
において、細線化された銅管1の内部に超電導材2が埋
設されている。また超電導材2は、板状粒子21の0面
が線の長手方向に向って配向している。
Example 1 FIG. 1 shows a configuration diagram of a superconducting wire according to this example. In the figure, a superconducting material 2 is embedded inside a thinned copper tube 1. Further, in the superconducting material 2, the zero plane of the plate-like particles 21 is oriented in the longitudinal direction of the wire.

このような超電導線を、以下の様にして作製した。第2
図に示すように、外径30mm、内径2゜IIIfll
の銅管11の内部に、超電導材の粉末22を充てんした
。超電導材の粉末22は、酸化バリウム(Bad)、酸
化イツトリウム(YzO,+)、酸化銅(CaO)をY
とBaとCuのモル比が1:2:3となるように混合し
た後、950’Cで5時間熱処理して得られたBaz、
aYz、2Cus07−δ の粉末である。粉末の粒形
状を光学顕微鏡で観察した結果、大部分が径30〜60
μm、厚さ10〜30μmの板状粒子から成ることがわ
かった。次いで超電導材22を充てんした銅管11から
成る複合導体を押出加工により径が1mmの細線に加工
した後、Ar中で950℃で5時間保持して超電導線(
A)を作製した。
Such a superconducting wire was produced as follows. Second
As shown in the figure, outer diameter 30mm, inner diameter 2゜IIIfl
The inside of the copper tube 11 was filled with superconducting material powder 22. The superconducting material powder 22 contains barium oxide (Bad), yttrium oxide (YzO, +), and copper oxide (CaO).
Baz obtained by mixing Ba and Cu in a molar ratio of 1:2:3 and then heat-treating at 950'C for 5 hours,
aYz, 2Cus07-δ powder. As a result of observing the particle shape of the powder with an optical microscope, most of the particles had a diameter of 30 to 60.
It was found that the particles were composed of plate-like particles with a thickness of 10 to 30 μm. Next, the composite conductor consisting of the copper tube 11 filled with the superconducting material 22 was processed into a thin wire with a diameter of 1 mm by extrusion processing, and then held at 950° C. for 5 hours in Ar to form a superconducting wire (
A) was produced.

得られた超電導線(A)の抵抗値を測定した結果、臨界
温度は91にであった。また臨界電流密度は95A/d
であった。
As a result of measuring the resistance value of the obtained superconducting wire (A), the critical temperature was found to be 91. Also, the critical current density is 95A/d
Met.

一方、これと比較するために、別に原料粉末を所定量混
合して外径30mm、内径20mmの銅管の内部に充て
んし、鋼管を押出し、伸線加工により径が1mmの細線
に加工した後、Ar中で950℃、5時間の仮焼成及び
Ar中で950℃、5時間の本焼成を行った。得られた
超電導線(B)の臨界温度は91にで、超電導線(A)
と同様であったが、臨界電流密度は50A/dと小さか
った。超電導線(B)内の超電導材をX線回折により解
析した結果、上記同様Ba1.sYt、zCua07−
δ の結晶粒の集まりであることがわかった。結晶粒は
大部分が径が30〜60μm、厚さが10〜30μmの
板状であった。
On the other hand, in order to compare with this, a predetermined amount of raw material powder was mixed and filled inside a copper tube with an outer diameter of 30 mm and an inner diameter of 20 mm, and the steel tube was extruded and processed into a thin wire with a diameter of 1 mm by wire drawing. Preliminary firing was performed at 950° C. for 5 hours in Ar, and main firing was performed at 950° C. for 5 hours in Ar. The critical temperature of the superconducting wire (B) obtained was 91, and the critical temperature of the superconducting wire (A) was 91.
However, the critical current density was as small as 50 A/d. As a result of analyzing the superconducting material in the superconducting wire (B) by X-ray diffraction, Ba1. sYt,zCua07-
It turned out to be a collection of δ crystal grains. Most of the crystal grains were plate-shaped with a diameter of 30 to 60 μm and a thickness of 10 to 30 μm.

結晶粒の配向性を調べるために、それぞれの超電導線の
長手方向に平行な断面を観察し、画像解析装置を用いて
結晶粒の方位分布を測定した。ここで結晶粒の方位は、
結晶粒の周上の距離が最大である2点を結ぶ軸線(長軸
線)が、超電導線の長手方向となす角度で表わした。第
3図に測定結果を示す。図において、曲線aは本実施例
で最初に述べた板状粒子から成る超電導材を銅管に充て
んした後に細線化して作製した超電導線(A)の場合で
あり、曲線すは比較のために後から述べた細線化した後
に熱処理して作製した超電導線(B)の場合である。図
により明らかなように、曲線すの場合は粒子が特別な配
向性を持たないのに対し、曲線aは粒子の方位が超電導
線の長手方向に偏りを持っている。板状粒子を充てんし
た後に細線化する過程で粒子の配向が起こり、これが臨
界電流密度を大きくする原因となった芦考えられる。
In order to examine the orientation of crystal grains, a cross section parallel to the longitudinal direction of each superconducting wire was observed, and the orientation distribution of crystal grains was measured using an image analysis device. Here, the orientation of the crystal grains is
It is expressed as the angle between the longitudinal direction of the superconducting wire and the axis (long axis) connecting the two points at the maximum distance on the circumference of the crystal grain. Figure 3 shows the measurement results. In the figure, curve a is for a superconducting wire (A) prepared by filling a copper tube with the superconducting material made of plate-like particles described first in this example and then thinning the wire, and curve a is for comparison. This is the case of the superconducting wire (B) produced by thinning and then heat treatment, which will be described later. As is clear from the figure, in the case of the curved line, the particles have no particular orientation, whereas in the case of the curved line, the particle orientation is biased in the longitudinal direction of the superconducting wire. It is thought that orientation of the particles occurs during the thinning process after filling the plate-like particles, and this is the cause of the increase in critical current density.

実施例2 酸化バリウム(BaO)、酸化イツトリウム(Y2O8
)、酸化銅(CuO)を実施例1と同じ条件で混合して
外径30mm、内径20mmの鋼管の内部に充てんした
。この管をAr中で950℃で熱処理しながら徐々に伸
線加工し、径が1mmの細線に加工して複合導体を形成
した後、さらにAr中で950℃、5時間の熱処理を行
って超電導線(C)を作製した。また同様に原料粉を充
てんした鋼管を押出加工により細線化した後に、Ar中
で950℃、5時間の熱処理を2度行い、超電導線(D
)を作製した。
Example 2 Barium oxide (BaO), yttrium oxide (Y2O8
) and copper oxide (CuO) were mixed under the same conditions as in Example 1 and filled into a steel pipe with an outer diameter of 30 mm and an inner diameter of 20 mm. This tube was gradually wire-drawn while being heat-treated at 950°C in Ar, processed into a fine wire with a diameter of 1 mm to form a composite conductor, and then further heat-treated at 950°C in Ar for 5 hours to make it superconducting. Line (C) was produced. Similarly, a steel pipe filled with raw material powder was thinned by extrusion processing, and then heat treated twice for 5 hours at 950°C in Ar, and superconducting wire (D
) was created.

得られた超電導線の臨界温度は、(C)、(D)とも9
30にであった。臨界電流密度は(C)が105A/(
1#、(D)が58A/cJ1’、(C)(7)方が大
きかった。超電導線内の超電導材をX線回折により解析
した結果+  (C)、(D)ともBazYCus07
−δの結晶粒の集まりであることがわかった。結晶粒の
大きさは、長軸が30〜60μm短軸が10〜30μm
であった。画像解析装置を用いて結晶粒の方位分布を測
定したところ、超電導線(D)については第3図の曲線
すと同様に粒子の配向性が認められなかったが、超電導
線(C)については曲線aと同様に線の長手方向に粒子
が配向している傾向が認められた。
The critical temperature of the obtained superconducting wire is 9 for both (C) and (D).
It was at 30. The critical current density (C) is 105A/(
1#, (D) was larger than 58A/cJ1', (C) (7). Results of analyzing the superconducting material in the superconducting wire by X-ray diffraction + (C) and (D) both BazYCus07
It turned out to be a collection of -δ crystal grains. The size of the crystal grains is 30-60 μm for the long axis and 10-30 μm for the short axis.
Met. When the orientation distribution of crystal grains was measured using an image analysis device, no grain orientation was observed for the superconducting wire (D), similar to the curve shown in Figure 3, but for the superconducting wire (C), no grain orientation was observed. Similar to curve a, it was observed that the particles tended to be oriented in the longitudinal direction of the line.

以上説明したように1本発明の方法によれば板状粒子の
電子が流れやすい方向が線の長手方向に配向した超電導
線を作製することができるので、臨界電流密度を配向の
ない場合に比べて2倍近く大きくできる効果がある。
As explained above, according to the method of the present invention, it is possible to fabricate a superconducting wire in which the direction in which the electrons of the plate-like particles tend to flow is oriented in the longitudinal direction of the wire, so that the critical current density can be lowered compared to a case without orientation. It has the effect of nearly doubling the size.

なおこの効果は、実施例に限らず面内に電流が流れやす
い板状粒子から成る他の超電導材料や、他の金属管を用
いた場合にも得られることは明らかである。
It is clear that this effect can be obtained not only in the embodiment but also when other superconducting materials made of plate-shaped particles through which current flows easily in the plane or other metal tubes are used.

更に本発明の超電導材線材によれば、酸化物超電導材の
線材の臨界電流密度を向上できるという効果がある。
Furthermore, the superconducting wire of the present invention has the effect of improving the critical current density of the oxide superconducting wire.

実施例3 市販の粉末であるY2O5,BaC0a、CuOを、こ
れらの材料のYとBaとCuのモル比がそれぞれ1:2
:3となるように全体で20g秤量し、メノウ製のライ
カイ機で1時間混合した。Y2O3粉末の粒径は2〜3
μm、B a COx粉末の粒径は2〜5μm、CuO
は1〜3μmであった。該粉末混合物を02中で950
℃の温度で5時間予備焼成し次にこの予備焼成で生じた
塊状物を粉砕する操作を2回繰返し、酸化物超電導材の
粉末を得た。この粉末を油圧プレスにて30mm直径で
1、Omm厚さのペレットに成形し、このペレットを9
75℃×20時間、02中で焼成し十分に0面を成長さ
せたところ、C軸方向の長さに対するC面方向の長さが
3倍以上である粒が80vOQ%以上含まれる塊状物を
得た。この塊状物をメノウ製のライカイ機で30分間粉
砕し、C軸方向の長さに対するC面方向の長さが2倍以
上ある、0面が成長した板状粒子からなる200メツシ
以下の超電導粉末を得た。該粉末のSEM像を観察した
結果、該粉末は、粒径10〜60μmの板状粒子から成
ることが判明した。画像解析装置を用いて板状粒子の割
合を調べた結果、C面方向の長さがC軸方向の長さの2
倍以上であるこの板状粒子の割合は該粉末の約70vo
l%であった。該粉末の粉末X線回折の結果を第4図に
示した。第4図から(o o n)面(但しnは整数)
が強調され、板状粒子はその0面が成長した粒であるこ
とが確認された。次に該粉末を内径10mmのAg製管
に約2.7g/cJの割合で充填して複合導体を作り、
この複合導体を直径3mmまではQ、1mmずつ径が減
少するように押出加工し直径3mm以下では0.05m
mずつ径が減少するように押出し加工し、外径1.2m
mAg材の厚さ約0.1mmの細線とした。
Example 3 Commercially available powders of Y2O5, BaC0a, and CuO were prepared in such a manner that the molar ratio of Y, Ba, and Cu of these materials was 1:2, respectively.
A total of 20 g was weighed so as to give a ratio of :3, and mixed for 1 hour using an agate laikai machine. The particle size of Y2O3 powder is 2-3
μm, B a COx powder particle size is 2-5 μm, CuO
was 1 to 3 μm. The powder mixture was heated to 950 °C in 02
The procedure of pre-calcining at a temperature of 50° C. for 5 hours and then pulverizing the lumps produced by this pre-calcining was repeated twice to obtain a powder of oxide superconducting material. This powder was molded into pellets with a diameter of 30 mm and a thickness of 1.0 mm using a hydraulic press.
After firing in 02 for 20 hours at 75°C to fully grow the 0-plane, a lump containing 80vOQ% or more of grains whose length in the C-plane direction is 3 times or more the length in the C-axis direction was obtained. Obtained. This lump is crushed for 30 minutes using an agate grinder to produce a superconducting powder of 200 mesh or less, consisting of plate-shaped particles with 0-sided growth and a length in the C-plane direction that is at least twice the length in the C-axis direction. I got it. As a result of observing a SEM image of the powder, it was found that the powder consisted of plate-like particles with a particle size of 10 to 60 μm. As a result of examining the proportion of plate-like particles using an image analysis device, the length in the C-plane direction was 2 times the length in the C-axis direction.
The proportion of plate-like particles, which is more than twice as large as that of the powder, is approximately 70 vol.
It was 1%. The results of powder X-ray diffraction of the powder are shown in FIG. From Figure 4, (o o n) plane (where n is an integer)
was emphasized, and it was confirmed that the plate-like grains were grains in which the 0 side had grown. Next, the powder was filled into an Ag tube with an inner diameter of 10 mm at a rate of about 2.7 g/cJ to make a composite conductor.
This composite conductor is extruded so that the diameter decreases by Q up to 3mm in diameter and 1mm increments, and 0.05m when the diameter is less than 3mm.
Extruded so that the diameter decreases by m increments, and the outer diameter is 1.2 m.
The thin wire was made of mAg material and had a thickness of about 0.1 mm.

この細線を更に冷間圧延し厚さ0 、1 mmのテープ
状線材を得た。該テープ状線材を酸素雰囲気中で910
℃の温度で5時間焼成した後に室温まで徐冷して、超電
導線を得た。この超電導線の臨界電流密度(Jc)を7
7にの温度で且つ外部磁界を付与していない状態で測定
した結果、Jcは4200A/dであった。
This thin wire was further cold rolled to obtain a tape-shaped wire rod with a thickness of 0.1 mm. The tape-shaped wire rod was heated at 910° C. in an oxygen atmosphere.
After firing for 5 hours at a temperature of .degree. C., the wire was slowly cooled to room temperature to obtain a superconducting wire. The critical current density (Jc) of this superconducting wire is 7
As a result of measurement at a temperature of 7°C and without applying an external magnetic field, Jc was 4200 A/d.

次にこの超電導線のAg管を除去し、超電導線の内部に
ある酸化物超電導材の圧延方向の面の方位をX線回折に
より調べた結果、第5図に示すように(o o n)面
が強調され、超電導線の長手方向に粒の0面が配列して
いる(即ち優先方向を有する)ことが判明した。これは
酸化物超電導材として板状粒子を多く含む材料を使用し
たことにより伸線加工及び圧延加工の過程で0面が線の
長手方向に方向づけられたためと考えられる。
Next, the Ag tube of this superconducting wire was removed, and the orientation of the plane in the rolling direction of the oxide superconducting material inside the superconducting wire was examined by X-ray diffraction, as shown in Figure 5 (o on). It was found that the planes were emphasized and the zero planes of the grains were arranged in the longitudinal direction of the superconducting wire (that is, they had a preferred direction). This is considered to be because the zero plane was oriented in the longitudinal direction of the wire during the wire drawing and rolling processes due to the use of a material containing many plate-like particles as the oxide superconducting material.

実施例1の場合と比較して実施例3の場合のJCが著し
く大きくなった理由は、C軸方向の長さに対するC開方
面の長さが2倍以上ある板状粒子が約70vofi%含
まれる超電導粉末を使用していること、及びこの板状粒
子は延性が著しく小さく且つ10〜60μmの小さな寸
法であることに起因して線材に加工された後も加工前の
板状粒子の形状及び割合が保持されていること、更にこ
の特別な形状の板状粒子の0面が線の長手方向に向って
配列していること並びに酸素雰囲気中で焼結しているこ
とによると考えられる。
The reason why JC was significantly larger in Example 3 than in Example 1 is that about 70 vofi of plate-like particles whose length in the C-opening direction is twice or more than the length in the C-axis direction are contained. Because superconducting powder is used, and the plate-like particles have extremely low ductility and small dimensions of 10 to 60 μm, the shape of the plate-like particles before processing remains unchanged even after being processed into a wire rod. This is thought to be due to the fact that the ratio is maintained, that the 0 faces of the specially shaped plate-like particles are aligned in the longitudinal direction of the wire, and that the particles are sintered in an oxygen atmosphere.

本発明の上記実施例3と比較するため、実施例3と同一
の原料混合物を、予備焼成温度を910℃とした以外は
同じ条件で酸化物超電導材の粉末を得た。該粉末を実施
例5と同様な操作でペレットに成形した。このペレット
を910℃×5時間、02中で焼成した後、メノウ製う
イカイ機で1時間粉砕し超電導粉末を得た。該粉末のS
EM像の写真を観察した結果、該粉末は粒径2〜20μ
m程度の粒からなり実施例3に示した粉末と比較して粒
径と形状が著しく相違していたのが判明した。
For comparison with Example 3 of the present invention, an oxide superconducting material powder was obtained from the same raw material mixture as in Example 3 under the same conditions except that the preliminary firing temperature was 910°C. The powder was formed into pellets in the same manner as in Example 5. The pellets were fired at 910°C for 5 hours in 02, and then ground in an agate mill for 1 hour to obtain superconducting powder. S of the powder
As a result of observing the EM image, the particle size of the powder was 2 to 20μ.
It was found that the powder consisted of particles of approximately 1.0 m in diameter, and was significantly different in particle size and shape compared to the powder shown in Example 3.

該粉末の粉末X線回折の結果は第6図に示すとおりであ
り、この第6図の結果は第4図の場合と異なり(Oon
)面が強調されていなかった。
The results of powder X-ray diffraction of the powder are shown in Figure 6, and the results in Figure 6 are different from those in Figure 4 (Oon
) aspects were not emphasized.

次に該粉末を用いて実施例3の場合と同じ操作により厚
さO、i mmのテープ状超電導線を得た。
Next, using the powder, a tape-shaped superconducting wire with a thickness of O, i mm was obtained by the same operation as in Example 3.

この超電導線のJcを77にの温度で且つ外部磁界を付
与していない状態で測定した結果、Jcは400A/a
#であった。次にこの比較材の超電導線のAg管を除去
し、酸化物超電導材の圧延方向の面の方位をX線回折に
より調べた。その結果を第7図に示した。
As a result of measuring the Jc of this superconducting wire at a temperature of 77°C and without applying an external magnetic field, the Jc was 400A/a.
#Met. Next, the Ag tube of the superconducting wire of this comparative material was removed, and the orientation of the surface of the oxide superconducting material in the rolling direction was examined by X-ray diffraction. The results are shown in FIG.

第7図のX線回折結果は、実施例3の場合の第5図に示
されているX線回折結果と異なっていた。
The X-ray diffraction results in FIG. 7 were different from the X-ray diffraction results shown in FIG. 5 for Example 3.

実施例4 実施例3の場合と同じ原料混合物を使用し、実施例3と
同じ操作により、C軸方向の長さに対するC面方向の長
さが3倍以上の粒が80vol%以上含まれる塊状物を
得た。次にこの塊状物の粉砕時間を変化させて、板状粒
子の存在割合を変動させた多数の粉末を得た。この粉末
を用いて実施例3と同じ製造条件によりテープ状超電導
線を作った。この超電導線のJcを温度77にで外部磁
界を付与していない状態で測定し第8図に示す結果が得
られた。
Example 4 Using the same raw material mixture as in Example 3 and performing the same operations as in Example 3, a lump containing 80 vol% or more of grains whose length in the C-plane direction is three times or more than the length in the C-axis direction was produced. I got something. Next, by changing the grinding time of this lump, a large number of powders with varying proportions of plate-like particles were obtained. A tape-shaped superconducting wire was produced using this powder under the same manufacturing conditions as in Example 3. The Jc of this superconducting wire was measured at a temperature of 77 and without applying an external magnetic field, and the results shown in FIG. 8 were obtained.

第8図から、超電導線のJcは、板状粒子の存在割合が
50vo(1%を越えた場合に、好ましくは60vol
%以上で、著しく向上することが判明した。この板状粒
子の存在割合は酸化物超電導材の上記粉末のSEM像か
ら画像解析装置を用いて求めた。
From FIG. 8, Jc of the superconducting wire is preferably 60 vol when the proportion of plate-like particles exceeds 50 vol (1%).
% or more, it was found that there was a significant improvement. The abundance ratio of the plate-like particles was determined from an SEM image of the powder of the oxide superconducting material using an image analysis device.

実施例5 Y(NOa)s・2Hzoを30.6 gと13a(N
Oa)2を41.8 g  とCu(NOa)2 ・3
 H2Oを58.0 gを2flの水溶液とし、これに
蓚酸100gとトリエチルアミン120gをIQの水溶
液として、前者水溶液に1127w1nの速度で後者水
溶液をマイクロチューブポンプで滴下攪拌した。得られ
たスラリーを固液分離し固形物を回収した。得られた固
形物を120℃で乾燥したあと、400℃で3時間加熱
分解した。得られた固形物を微細に粉砕して、これを磁
性アルミナのルツボにとり、800℃で3時間焼成した
。得られた固形物を微細に粉砕し900℃で3時間焼成
する工程を3回くり返し超電導粉末を得た。該粉末を油
圧プレスにて直径30mm、厚さ1.5mmの形状のペ
レットに成形し、このペレットを950℃×15時間、
02中で焼成し十分に0面を成長させたところ、C面方
向の長さがC軸方向の長さよりも4倍以上である板状粒
が60voQ%以上含まれる塊状物を得た。該塊状物を
メノウ製のライカイ機で30分間粉砕し、200メツシ
ュ以下の粒度の板状粒子から成る酸化物超電導粉末を作
った。該粉末を次に、外径15mmで壁に0.1mm直
径の貫通穴を多数有する長さ300mmで肉厚0.5m
mのAg製メツシュ管に2.7g/a#の割合で充填し
複合導体を作り、この複合導体に各押出工程で直径が約
0 、1 mm減少する加工を施し外部1mmの細線と
した。この細線を冷間圧延により厚さ0.2mmのテー
プ状線材に成形した。次に該テープ状線材を酸素雰囲気
中で910℃の温度で10時間焼成し、その後室温まで
徐冷し酸化物超電導線を得た。該超電導線のJcを液体
窒素(77K)温度で且つ外部磁界を付与していない状
態で測定したところJc値は6600A/cJであった
Example 5 30.6 g of Y(NOa)s・2Hz and 13a(N
41.8 g of Oa)2 and Cu(NOa)2.3
58.0 g of H2O was used as an aqueous solution of 2 fl, and 100 g of oxalic acid and 120 g of triethylamine were used as an aqueous solution of IQ, and the latter aqueous solution was added dropwise to the former aqueous solution at a rate of 1127 w1n and stirred using a microtube pump. The resulting slurry was subjected to solid-liquid separation to collect solid matter. The obtained solid was dried at 120°C and then thermally decomposed at 400°C for 3 hours. The obtained solid was finely ground, placed in a magnetic alumina crucible, and fired at 800°C for 3 hours. The process of finely pulverizing the obtained solid material and firing it at 900° C. for 3 hours was repeated three times to obtain a superconducting powder. The powder was molded into pellets with a diameter of 30 mm and a thickness of 1.5 mm using a hydraulic press, and the pellets were heated at 950°C for 15 hours.
By firing in 0.02 to fully grow the 0-plane, a lump containing 60 voQ% or more of plate-like grains whose length in the C-plane direction was 4 times or more longer than the length in the C-axis direction was obtained. The agglomerate was pulverized for 30 minutes using an agate machine to produce an oxide superconducting powder consisting of plate-like particles with a particle size of 200 mesh or less. The powder was then molded into a tube having a length of 300 mm and a wall thickness of 0.5 m with an outer diameter of 15 mm and a number of through holes of 0.1 mm diameter in the wall.
A composite conductor was prepared by filling an Ag mesh tube with a diameter of 2.7 g/a#, and the composite conductor was processed to reduce its diameter by approximately 0.1 mm in each extrusion process to obtain a thin wire with an external diameter of 1 mm. This thin wire was formed into a tape-shaped wire rod with a thickness of 0.2 mm by cold rolling. Next, the tape-shaped wire was fired at a temperature of 910° C. for 10 hours in an oxygen atmosphere, and then slowly cooled to room temperature to obtain an oxide superconducting wire. When the Jc of the superconducting wire was measured at liquid nitrogen (77K) temperature and without applying an external magnetic field, the Jc value was 6600 A/cJ.

実施例6 市販のB 120s、S rcOs、CaC0a及びC
u0irBi、Sr、Ca及びCuのモル比が1:1:
1:2になるように秤取した。最初にS r COs、
 Ca COa及びCuO粉末をメノウ製のライカイ機
で1時間混合して粉末混合物を得た。
Example 6 Commercially available B 120s, S rcOs, CaC0a and C
The molar ratio of u0irBi, Sr, Ca and Cu is 1:1:
It was weighed so that the ratio was 1:2. First S r COs,
Ca COa and CuO powders were mixed in an agate Laikai machine for 1 hour to obtain a powder mixture.

この粉末混合物をアルミナルツボに入れ大気中で950
℃の温度で42時間予備焼成した後、秤取したBit’
3粉末をこの予備焼成物に加えライカル機で1時間混合
して粉末を得た。該粉末を大気中で820℃の温度で1
2時間予備焼成しその後これを粉砕する操作を2回繰返
して粉末を得た。
This powder mixture was placed in an aluminum crucible and heated to 950°C in the atmosphere.
After pre-calcining for 42 hours at a temperature of °C, Bit' was weighed.
3 powder was added to this pre-calcined product and mixed for 1 hour using a Lycal machine to obtain a powder. The powder was heated in air at a temperature of 820°C for 1
The operation of pre-calcining for 2 hours and then pulverizing this was repeated twice to obtain a powder.

この粉末を直径30mmで厚さ1.0mmのペレットに
成形し、このペレットを大気中で880℃の温度で48
時間焼成し十分に0面を成長させることにより、C軸方
向の長さに対するC面方向の長さが5倍以上の板状粒が
80voQ%以上含まれる酸化物超電導塊状物を得た。
This powder was molded into pellets with a diameter of 30 mm and a thickness of 1.0 mm, and the pellets were heated at a temperature of 880°C in the atmosphere for 48 hours.
By firing for a long time and sufficiently growing the 0-plane, an oxide superconducting lump containing 80 voQ% or more of plate-like grains whose length in the C-plane direction is 5 times or more the length in the C-axis direction was obtained.

該塊状物をメノウ製のライカイ機で30分間粉砕し、C
軸方向の長さに対するC面方向の長さが3倍以上ある、
0面が成長した板状粒子からなる超電導粉末を得た。該
粉末を内径6IIIIllのAg製管に充填して複合導
体を得た。この複合導体を線引し外径1.2mmの細線
とした。次にこの細線を冷間圧延して厚さ0 、1 m
mのテープ状線材とした。該テープ状線材を酸素雰囲気
中で910℃の温度で10時間焼成し、その後室温まで
炉冷して超電導線を得た。この超電導線のJcを77に
で且つ外部磁界が付与されていない状態で測定した結果
、JcO値は38.00A/dであった。
The lumps were crushed for 30 minutes using an agate-made Laikai machine, and then
The length in the C-plane direction is more than three times the length in the axial direction,
A superconducting powder consisting of plate-like particles with the 0-face grown was obtained. The powder was filled into an Ag tube having an inner diameter of 6IIIll to obtain a composite conductor. This composite conductor was drawn into a thin wire with an outer diameter of 1.2 mm. Next, this thin wire is cold rolled to a thickness of 0.1 m.
It was made into a tape-shaped wire rod of m. The tape-shaped wire rod was fired in an oxygen atmosphere at a temperature of 910° C. for 10 hours, and then cooled in a furnace to room temperature to obtain a superconducting wire. The JcO value of this superconducting wire was measured at 77 with no external magnetic field being applied, and the JcO value was 38.00 A/d.

実施例7 実施例3と同様の市販(7)YzOs、 B a CO
a。
Example 7 Commercially available (7) YzOs, B a CO similar to Example 3
a.

CuOをY、Ba及びCuのモル比が1:2:3になる
ように秤取し、水を加えてボールミル処理により均一な
粉末混合物を得た。該粉末混合物は150℃に加熱し、
水分を蒸発、除去した。該粉末混合物を975℃X10
h、02中で焼成し、十分に0面を成長させたところ、
C軸方向の長さに対するC面方向の長さが3倍以上の粒
が7゜vOΩ%以上含まれる酸化物超電導材塊状物を得
た。
CuO was weighed out so that the molar ratio of Y, Ba and Cu was 1:2:3, water was added, and a uniform powder mixture was obtained by ball milling. The powder mixture is heated to 150°C;
The water was evaporated and removed. The powder mixture was heated at 975°C x 10
h. After firing in 02 and sufficiently growing the 0 side,
A lump of oxide superconducting material was obtained which contained 7°vOΩ% or more of grains whose length in the C-plane direction was three times or more the length in the C-axis direction.

該塊状物を200メツシュ以下の粉末とし、実施例3と
同じ条件で内径20mm以上のAg管に封入。
This lump was made into a powder of 200 mesh or less, and sealed in an Ag tube with an inner diameter of 20 mm or more under the same conditions as in Example 3.

押出加工を行った。加工後、さらに、900℃×5h、
02中で焼成した試料について、臨界電流密度の測定を
行った所、77にの温度で且つ外部磁界を付与していな
い条件下でJ c = 3800 Aldであった。
Extrusion processing was performed. After processing, further 900℃×5h,
The critical current density of the sample fired in 0.02 was measured and found to be J c = 3800 Ald at a temperature of 77° C. and under conditions where no external magnetic field was applied.

実施例7と比較するため、比較材として実施例7と同様
の原料及び同様の方法で、0面を成長させた塊状物を生
成した後、該塊状物を粉砕して比較材粉末を得た。粉砕
処理の時間を長くし粉砕後の粉末の’70voQ%以上
がC軸方向の長さに対するC面方向の長さが1.5 倍
以下の粒子とした。
In order to compare with Example 7, a lump with the zero side grown was produced using the same raw materials and the same method as in Example 7, and then the lump was crushed to obtain a comparative powder. . The time of the pulverization treatment was lengthened, and more than '70voQ% of the powder after pulverization was made into particles whose length in the C-plane direction was 1.5 times or less than the length in the C-axis direction.

該粉末をAg管に封入し、線引を行った。線引後、さら
に900℃X5h、Ox中で焼成した試料について臨界
電流密度の測定を行ったところ、77に、OTの条件下
でJc=1200A/aj?であった。
The powder was sealed in an Ag tube and drawn. After drawing, critical current density was measured for the sample which was further fired at 900°C for 5 hours in Ox, and it was found that Jc=1200A/aj?77 under OT conditions. Met.

実施例8 Y (N 0x)a ・2 HzO、B a (N 0
3)2及びCu (N 08)z・3 H2Oを出発原
料に、実施例5と同じ方法を用いて微粒で均一な粉末混
合物を得た。
Example 8 Y (N 0x)a ・2 HzO, B a (N 0
3) A fine and uniform powder mixture was obtained using the same method as in Example 5 using 2 and Cu(N 08)z·3 H2O as starting materials.

該粉末混合物を乾燥した後、900℃X15h。After drying the powder mixture, it was heated at 900°C for 15 hours.

02中で焼成し、十分に0面を成長させたところ、C面
方向の長さが4倍以上の粒が60vol%以上含まれる
塊状物を得た。該塊状物は200メツシュ以下の粉末と
し、内径15mmのAl管に封入し、実施例5と同じく
押出加工を行い実施例5と同じ超電導線を得た。これを
さらに930℃×5h。
By firing in 02 and sufficiently growing the 0 plane, a lump containing 60 vol % or more of grains whose length in the C-plane direction was 4 times or more was obtained. The lump was made into a powder of 200 mesh or less, sealed in an Al tube with an inner diameter of 15 mm, and extruded in the same manner as in Example 5 to obtain the same superconducting wire as in Example 5. This was further heated at 930°C for 5 hours.

02中で熱処理した試料は、臨界温度88K。The sample heat-treated in 02 had a critical temperature of 88K.

77Kにおける臨界電流密度3500 A/a#であっ
た。
The critical current density at 77K was 3500 A/a#.

実施例9 第10図は実施例3と同様の方法で多芯線に製造した超
電導線の断面図である。(a)は外径2.7mmの銀マ
トリックス1に約50μmの超電導線エレメント2が2
71本埋込まれたもの、(b)は外径2 、1 mmの
銀マトリックス1に約40μmの超電導線エレメント2
が397本埋込まれたものである。これらの多芯超電導
線は実施例3の約0 、1 mmの細線にしたものを前
述の超電導線に見合う本数になるまで所定本数束ねて細
線化するやり方を何回か繰返して得ることができる。
Example 9 FIG. 10 is a cross-sectional view of a superconducting wire manufactured into a multifilamentary wire by the same method as in Example 3. (a) shows two superconducting wire elements 2 of approximately 50 μm in a silver matrix 1 with an outer diameter of 2.7 mm.
(b) is a superconducting wire element 2 with a diameter of about 40 μm in a silver matrix 1 with an outer diameter of 2 and 1 mm.
It has 397 embedded lines. These multicore superconducting wires can be obtained by repeating the method of Example 3, in which a predetermined number of thin wires of about 0.1 mm are bundled and thinned until the number corresponds to the above-mentioned superconducting wire. .

前述の所定の本数と直径になったところで実施例3と同
様に最終の熱処理が行なわれる。このように極細多芯線
により電磁気的安定性が得られる。
When the aforementioned predetermined number and diameter are reached, final heat treatment is performed in the same manner as in Example 3. In this way, electromagnetic stability can be obtained by using the ultra-fine multifilamentary wire.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば酸化物超電導線を
構成する酸化物超電導材が板状粒子を含み且つ超電導線
の長手方向に向かって配列した優先方位を有することに
より、臨界電流密度の高い超電導線を得ることができた
As explained above, according to the present invention, the oxide superconducting material constituting the oxide superconducting wire contains plate-like particles and has a preferential orientation oriented toward the longitudinal direction of the superconducting wire, thereby increasing the critical current density. We were able to obtain high-performance superconducting wire.

なおこの効果は、実施例に限らず面内に電流が流れやす
い板状粒子から成る他の超電導材料や。
Note that this effect is applicable not only to the embodiments but also to other superconducting materials made of plate-shaped particles in which current easily flows in the plane.

他の金属管を用いた場合にも得られることは明らかであ
る。
It is clear that the results can also be obtained using other metal tubes.

本発明に係る超電導線は回転機のロータ及びステータ用
コイル、エネルギー貯蔵用コイル、核融合装置磁石用コ
イル、送配電用ケーブル、変圧器用コイル、粒子加速器
用コイル、MHI及びNMRの磁石用コイル、電子顕微
鏡用コイル、原子吸光分析装置の磁石用コイル、電車、
自動車、エレベータ、エスカレータの電動機のロータ、
ステータ用コイル、リニアモータカーの磁石用コイルと
して用いることができる。
The superconducting wire according to the present invention includes coils for rotors and stators of rotating machines, coils for energy storage, coils for nuclear fusion device magnets, cables for power transmission and distribution, coils for transformers, coils for particle accelerators, coils for MHI and NMR magnets, Coils for electron microscopes, magnet coils for atomic absorption spectrometers, trains,
Rotors of electric motors for automobiles, elevators, and escalators,
It can be used as a stator coil or a magnet coil for linear motor cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超電導線の構成を示す構成
図、第2図は同じ〈実施例の超電導線を製造する工程に
おいて細線化前の複合導体を示す斜視図、第3図は作製
した超電導線内の結晶粒子の方位分布を示すグラフ、第
4図は該粉末の方位をX線回折で調べた結果を示すグラ
フであり、第5図は該粉末をAg製管に充填し線引きし
て得られた超電導線の長手方向に平行な断面をX線回折
することにより板状粒子の方位を調べた結果を示すグラ
フであり、第6図は該比較材の酸化物超電導材の粉末の
方位をX線回折で調べた結果を示すグラフであり、第7
図は該比較材の粉末をAgH管に充填し第5図の場合と
同じ条件で線引きして得られた超電導線の長手方向に平
行な断面についてX線回折することにより板状粒子の方
位を調べた結果を示すグラフであり、第8図は超電導線
を作る原料である酸化物超電導材の粉末中に存在する板
状粒子の割合と該粉末から作られた超電導線の臨界電流
密度(Jc)との関係を示すグラフであり、第9図はペ
ロブスカイト型結晶構造の酸化物超電導粒子の0面とC
軸とを示す模型図、第10図は多芯超電導線の断面図で
ある。 1・・・金属管、2・・・超電導材、11・・・細線化
前の鋼管、21・・・板状粒子、22・・・配向してい
ない超電ノ (久) ′o (5 (b)
Fig. 1 is a block diagram showing the structure of a superconducting wire according to an embodiment of the present invention, Fig. 2 is a perspective view showing the composite conductor before thinning in the process of manufacturing the superconducting wire of the same embodiment, and Fig. 3 4 is a graph showing the orientation distribution of crystal grains in the superconducting wire that was produced, FIG. 4 is a graph showing the results of examining the orientation of the powder by X-ray diffraction, and FIG. 6 is a graph showing the results of examining the orientation of plate-like particles by X-ray diffraction of a cross section parallel to the longitudinal direction of a superconducting wire obtained by drawing, and FIG. 7 is a graph showing the results of examining the orientation of the powder by X-ray diffraction.
The figure shows the orientation of plate-like particles by X-ray diffraction on a cross section parallel to the longitudinal direction of a superconducting wire obtained by filling an AgH tube with powder of the comparative material and drawing it under the same conditions as in Figure 5. This is a graph showing the results of the investigation, and Figure 8 shows the ratio of plate-shaped particles present in the powder of oxide superconducting material, which is the raw material for making superconducting wire, and the critical current density (Jc) of superconducting wire made from the powder. ), and FIG. 9 is a graph showing the relationship between the 0 face and C
FIG. 10 is a cross-sectional view of a multicore superconducting wire. DESCRIPTION OF SYMBOLS 1...Metal tube, 2...Superconducting material, 11...Steel pipe before thinning, 21...Plate-shaped particles, 22...Unoriented superconductor (ku)'o (5 (b)

Claims (17)

【特許請求の範囲】[Claims] 1.酸化物超電導線であつて、 長手方向に延在する金属製の管と、 該管内に充填され且つ互いに結合しているペロブスカイ
ト型結晶構造の超電導酸化物粒から成る酸化物超電導材
とを有し、 超電導酸化物粒は、C面方向の寸法がC軸方向の寸法よ
りも大きな板状粒子を50vol%より大きな割合で有
し、 超電導材は、酸化物粒のC面が長手方向に向かつて配列
した優先方位を有する、酸化物超電導線。
1. An oxide superconducting wire comprising a metal tube extending in the longitudinal direction, and an oxide superconducting material made of superconducting oxide grains with a perovskite crystal structure filled in the tube and bonded to each other. , the superconducting oxide grains have a proportion of plate-like particles whose dimensions in the C-plane direction are larger than those in the C-axis direction in a proportion greater than 50 vol%, and the superconducting material has a structure in which the C-planes of the oxide grains are oriented in the longitudinal direction. Oxide superconducting wire with aligned preferred orientations.
2.特許請求の範囲第1項において、酸化物超電導材は
、Y,Ba,Cu及びOから成る酸化物であることを特
徴とする酸化物超電導線。
2. An oxide superconducting wire according to claim 1, wherein the oxide superconducting material is an oxide consisting of Y, Ba, Cu, and O.
3.特許請求の範囲第1項において、酸化物超電導材は
、Y,Ba,Cu,O、及び希土類とアルカリ金属とビ
スマスとタリウムとから成る群から選択された少なくと
も一種から成る酸化物である超電導線。
3. In claim 1, the oxide superconducting material is a superconducting wire that is an oxide consisting of Y, Ba, Cu, O, and at least one selected from the group consisting of rare earths, alkali metals, bismuth, and thallium. .
4.特許請求の範囲第1項〜第3項のいずれかにおいて
、 C面方向の寸法がC軸方向の寸法より2倍以上大きい板
状粒子が酸化物超電導材の50vol%よりも大きい割
合で存在する酸化物超電導線。
4. In any one of claims 1 to 3, plate-like particles whose dimension in the C-plane direction is twice or more larger than the dimension in the C-axis direction are present in a proportion greater than 50 vol% of the oxide superconducting material. Oxide superconducting wire.
5.特許請求の範囲第4項において、C面方向の寸法が
C軸方向の寸法より2倍以上大きい板状粒子が酸化物超
電導材の60vol%よりも大きい割合で存在する酸化
物超電導線。
5. Claim 4: The oxide superconducting wire according to claim 4, wherein plate-like particles whose dimension in the C-plane direction is twice or more larger than the dimension in the C-axis direction are present in a proportion greater than 60 vol% of the oxide superconducting material.
6.臨界温度における臨界電流密度が90A/cm^2
以上である特許請求の範囲第1項〜第5項のいずれかに
記載の酸化物超電導線。
6. Critical current density at critical temperature is 90A/cm^2
The oxide superconducting wire according to any one of claims 1 to 5 above.
7.液体窒素の沸点である77°Kにおいて臨界電流密
度が3500〜6600A/cm^2である特許請求の
範囲第1項〜第6項のいずれかに記載の酸化物超電導線
7. The oxide superconducting wire according to any one of claims 1 to 6, which has a critical current density of 3500 to 6600 A/cm^2 at 77°K, which is the boiling point of liquid nitrogen.
8.酸化物超電導線の製造方法であつて、 長手方向に延在する金属製の管を準備する段階と、 ペロブスカイト型結晶構造の超電導酸化粒を含み、該粒
子のC面方向の寸法がC軸方向の方法よりも大きい板状
粒子を50vol%より大きい割合で含む酸化物超電導
材を準備する段階と、該酸化物超電導材を該管に充填し
た複合導体を長手方向に伸線加工and/or圧延加工
して線材としそれにより酸化物超電導材粉末の粒のC面
が長手方向に向つた優先方位を酸化物超電導材が有する
ようにする段階と、 加工された複合導体を熱処理し酸化物超電導材を焼結す
る段階とを有する、酸化物超電導線の製造方法。
8. A method for producing an oxide superconducting wire, the method comprising: preparing a metal tube extending in the longitudinal direction; and superconducting oxide grains having a perovskite crystal structure, the dimensions of which in the C-plane direction are in the C-axis direction. A step of preparing an oxide superconducting material containing plate-like particles larger than 50 vol% in a proportion larger than the method described above, and longitudinally drawing and/or rolling a composite conductor in which the tube is filled with the oxide superconducting material. A step of processing the oxide superconducting material into a wire so that the oxide superconducting material has a preferential orientation in which the C-plane of the grains of the oxide superconducting material powder faces in the longitudinal direction; and heat-treating the processed composite conductor to form the oxide superconducting material. A method for manufacturing an oxide superconducting wire, comprising the step of sintering.
9.特許請求の範囲第8項において、酸化物超電導材は
、Y,Ba,Cu及びOから成る酸化物であることを特
徴とする酸化物超電導線の製造方法。
9. The method for producing an oxide superconducting wire according to claim 8, wherein the oxide superconducting material is an oxide consisting of Y, Ba, Cu, and O.
10.特許請求の範囲第8項において、酸化物超電導材
は、Y,Ba,Cu,O,及び希土類とアルカリ金属と
ビスマスとタリウムとから成る群から選択された少なく
とも一種から成る酸化物である超電導線の製造方法。
10. In claim 8, the oxide superconducting material is a superconducting wire that is an oxide consisting of Y, Ba, Cu, O, and at least one selected from the group consisting of rare earths, alkali metals, bismuth, and thallium. manufacturing method.
11.特許請求の範囲第8項〜第10項のいずれかにお
いて、該粉末は、C面方向の寸法がC軸方向の寸法より
2倍以上大きい板状粒子が酸化物超電導材粉末の50v
ol%よりも大きい割合で存在する粉末である、酸化物
超電導線の製造方法。
11. In any one of claims 8 to 10, the powder has plate-like particles whose dimension in the C-plane direction is twice or more larger than the dimension in the C-axis direction, which is 50V of oxide superconducting material powder.
A method for producing an oxide superconducting wire, the powder being present in a proportion greater than ol%.
12.特許請求の範囲第8項〜第11項のいずれかにお
いて、該粉末は、C面方向の寸法がC軸方向の寸法より
2倍以上大きい板状粒子が酸化物超電導材粉末の60v
ol%よりも大きい割合で存在する粉末である、酸化物
超電導線の製造方法。
12. In any one of claims 8 to 11, the powder has plate-like particles whose dimension in the C-plane direction is twice or more larger than the dimension in the C-axis direction, which is 60V of oxide superconducting material powder.
A method for producing an oxide superconducting wire, the powder being present in a proportion greater than ol%.
13.金属製の管は、該管の壁に多数の貫通孔を有する
管である特許請求の範囲第8項〜第12項のいずれかに
記載の酸化物超電導線の製造方法。
13. 13. The method for manufacturing an oxide superconducting wire according to any one of claims 8 to 12, wherein the metal tube has a large number of through holes in its wall.
14.加工された複合導体の熱処理は、酸素雰囲気中で
おこなう特許請求の範囲第8項〜第13項のいずれかに
記載の酸化物超電導線の製造方法。
14. The method for manufacturing an oxide superconducting wire according to any one of claims 8 to 13, wherein the processed composite conductor is heat-treated in an oxygen atmosphere.
15.酸化物超電導材粉末は200メッシュ以下の粒度
を有する特許請求の範囲第8項〜第15項のいずれかに
記載の酸化物超電導線の製造方法。
15. The method for manufacturing an oxide superconducting wire according to any one of claims 8 to 15, wherein the oxide superconducting material powder has a particle size of 200 mesh or less.
16.酸化物超電導材粉末に含まれる板状粒子の所望形
状及び割合は、酸化物超電導材を作るための焼成の温度
を900〜1050℃から選択し焼成の時間及び/また
は得られた酸化物超電導材を粉砕する程度を制御するこ
とにより、得られる特許請求の範囲第8項〜第16項の
いずれかに記載の酸化物超電導線の製造方法。
16. The desired shape and ratio of the plate-like particles contained in the oxide superconducting material powder can be determined by selecting the firing temperature for producing the oxide superconducting material from 900 to 1050°C, the firing time and/or the obtained oxide superconducting material. The method for producing an oxide superconducting wire according to any one of claims 8 to 16, which is obtained by controlling the degree of pulverization of the oxide superconducting wire.
17.回転機のロータ及びステータ用コイル、エネルギ
ー貯蔵用コイル、核融合装置のプラズマ容器用コイル、
送配電用ケーブル、変圧器用コイル、粒子加速器用コイ
ル、MRIの磁石用コイル、NMRの磁石用コイル、電
子顕微鏡用コイル、原子吸光分析装置の磁石用コイル、
リニアモータカーの磁石用コイル、各種交通機関の電動
機のロータ及びステータ用コイルが特許請求の範囲第1
項〜第17項のいずれかに記載の前記酸化物超電導線を
有することを特徴とする各種装置。
17. Rotor and stator coils for rotating machines, energy storage coils, plasma vessel coils for nuclear fusion devices,
Power transmission and distribution cables, transformer coils, particle accelerator coils, MRI magnet coils, NMR magnet coils, electron microscope coils, atomic absorption spectrometer magnet coils,
The first claim is a magnet coil for a linear motor car, and a rotor and stator coil for electric motors of various transportation facilities.
Various devices comprising the oxide superconducting wire according to any one of items 1 to 17.
JP63154744A 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method Expired - Fee Related JP2678619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154744A JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP15769187 1987-06-26
JP62-157691 1987-06-26
JP17101587 1987-07-10
JP62-171015 1987-07-10
JP63154744A JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01105409A true JPH01105409A (en) 1989-04-21
JP2678619B2 JP2678619B2 (en) 1997-11-17

Family

ID=27320718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154744A Expired - Fee Related JP2678619B2 (en) 1987-06-26 1988-06-24 Oxide superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2678619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246173A (en) * 1988-03-28 1989-10-02 Kyocera Corp Oxide superconductor and production thereof
US9722565B2 (en) 2013-02-11 2017-08-01 Epcos Ag Filter component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279514A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor wire rod, its manufacture and superconductive coil
JPS63279513A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor wire rod and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279514A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor wire rod, its manufacture and superconductive coil
JPS63279513A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor wire rod and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246173A (en) * 1988-03-28 1989-10-02 Kyocera Corp Oxide superconductor and production thereof
US9722565B2 (en) 2013-02-11 2017-08-01 Epcos Ag Filter component

Also Published As

Publication number Publication date
JP2678619B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JPH01242421A (en) Apparatus and system approaching novel superconductor material
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JP2842537B2 (en) Oxide superconducting wire and its manufacturing method
JPH01105409A (en) Oxide superconductive wire and manufacture thereof
US5100869A (en) Process for producing metal oxide-type superconductive material
JPH06219736A (en) Superconductor
JPH0917249A (en) Oxide superconducting wire and its manufacture
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP3758455B2 (en) Method for producing oxide superconducting wire
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JP3257000B2 (en) Copper oxide superconductor and method of manufacturing the same
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
JPH08264045A (en) Oxide superconducting wire and manufacture thereof
JPH03237094A (en) High temperature oxide superconductor, superconducting wire, coil using the wire and production of them
Liu et al. Preliminary study on forming preferential orientation in Tl-1223 bulk superconductor
US6080703A (en) Method of making TIBiBaCaCuO based superconductors
JPH01224261A (en) Production of superconducting material and superconductor
JPH06223649A (en) Manufacture of bi oxide superconducting wire
JPS63304528A (en) Manufacture of superconductive wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH1059718A (en) Production of thallium-based superconductor
JPH0447611A (en) Manufacture of oxide superconducting wire
JPH10212123A (en) Oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees