JPH06223649A - Manufacture of bi oxide superconducting wire - Google Patents

Manufacture of bi oxide superconducting wire

Info

Publication number
JPH06223649A
JPH06223649A JP5012119A JP1211993A JPH06223649A JP H06223649 A JPH06223649 A JP H06223649A JP 5012119 A JP5012119 A JP 5012119A JP 1211993 A JP1211993 A JP 1211993A JP H06223649 A JPH06223649 A JP H06223649A
Authority
JP
Japan
Prior art keywords
wire
heat treatment
superconducting
magnetic field
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5012119A
Other languages
Japanese (ja)
Inventor
Yu Kitamura
祐 北村
Takayo Hasegawa
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5012119A priority Critical patent/JPH06223649A/en
Publication of JPH06223649A publication Critical patent/JPH06223649A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture a superconducting wire which does not exhibit electrical anisotropy in a magnetic field, without requiring rolling process. CONSTITUTION:Calcined powders of Bi, Pb, Sr, Ca and Cu blended together in a predetermined mole ratio are subjected to CIP process and then subjected to heat treatments to achieve growth of a superconducting phase by 60% or higher. The critical current density (Jc) of a superconducting wire, manufactured by inserting the molding of the powders into an Ag rod, disposing an Ag pipe outside it and drawing the molding into a round wire which is then heat treated, has a value of 15000A/cm<2> at 77.3K and at 0T and does not show dependency on electrical anisotropy in a magnetic field, i.e., the direction H of the magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導線の製造方法に係
り、特に金属シース法によるBi系の酸化物超電導線の
製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a superconducting wire, and more particularly to improvement of a method of manufacturing a Bi-based oxide superconducting wire by a metal sheath method.

【0002】[0002]

【従来の技術】Bi系の酸化物超電導体は、80〜11
0Kの臨界温度(Tc)を有し、Tcが液体窒素温度
(77K)を越えることから、エレクトロニクス、電力
輸送、強磁界発生等の分野での実用化が期待されてお
り、現在ではその臨界電流密度(Jc)も実用レベルに
達しつつある。
2. Description of the Related Art Bi-based oxide superconductors are 80 to 11
Since it has a critical temperature (Tc) of 0K and Tc exceeds the liquid nitrogen temperature (77K), it is expected to be put to practical use in fields such as electronics, power transportation, and strong magnetic field generation. The density (Jc) is reaching the practical level.

【0003】酸化物超電導体の本格的な実用化のために
は、線材化技術を確立することが不可欠であり、長尺で
Jcの高い線材を製造し得る有力な方法の一つとして金
属シース法(Agシース法)が知られている。
In order to put oxide superconductors into full-scale practical use, it is indispensable to establish a wire rod forming technology, and a metal sheath is one of the promising methods for producing long wire rods having a high Jc. The method (Ag sheath method) is known.

【0004】この方法は、酸化物超電導体の構成元素を
所定のモル比で配合した混合粉末や仮焼粉末を銀パイプ
中に充填し、これを伸線加工や圧延加工等により線状に
加工した後、熱処理を施すもので、Agを使用するのは
加工性に優れる上、熱処理中に内部の酸化物と反応せ
ず、またAgが実質的に酸素透過機能を有することによ
る。
According to this method, a silver pipe is filled with a mixed powder or a calcined powder in which the constituent elements of the oxide superconductor are mixed in a predetermined molar ratio, and this is processed into a linear shape by wire drawing or rolling. After that, heat treatment is performed, and the reason why Ag is used is that it has excellent workability, does not react with the internal oxide during heat treatment, and that Ag has a substantially oxygen-permeable function.

【0005】このAgシース法は、特にBi系の酸化物
超電導体の場合、各結晶粒が板状組織を有することを利
用して、伸線後に圧延加工を施して圧縮力を加えること
により、熱処理時に結晶のc軸が板面に垂直に配向する
ため、結晶の配向性を高めることができ、その結果Jc
を向上させることができる利点がある。
This Ag sheath method utilizes the fact that each crystal grain has a plate-like structure, particularly in the case of a Bi-based oxide superconductor, by applying a compressive force by rolling after drawing. During the heat treatment, the c-axis of the crystal is oriented perpendicular to the plate surface, so that the crystal orientation can be enhanced, resulting in Jc
There is an advantage that can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
Agシース法においては、緻密で結晶の配向性の高い組
織を得るために最終的な形状がテープ状となり、このた
め以下の問題が生ずる。即ち、コイルを形成する場合、
線材がテープ状を有するためにパンケーキ状にしか巻け
ず、またこのような形状の線材は磁場中で電気的な異方
性を有するため、磁場が結晶のc軸に平行に加わった場
合にそのJc等が著しく低下するという欠点がある。従
って、製作し得るコイル形状が限定される。
However, in the above Ag sheath method, the final shape is a tape shape in order to obtain a dense and highly oriented crystal structure, which causes the following problems. That is, when forming a coil,
Since the wire has a tape shape, it can be wound only in a pancake shape, and since the wire having such a shape has electrical anisotropy in a magnetic field, when the magnetic field is applied parallel to the c-axis of the crystal, There is a drawback that the Jc and the like are significantly reduced. Therefore, the coil shapes that can be manufactured are limited.

【0007】本発明は以上の難点を解決するためになさ
れたもので、圧延加工により圧縮力を加えることを必要
とせずに、伸線加工後の状態で高いJcを有するBi系
の酸化物超電導線を製造する方法を提供することをその
目的とする。
The present invention has been made to solve the above-mentioned problems, and it is a Bi-based oxide superconducting material having a high Jc after wire drawing without requiring the application of compressive force by rolling. It is an object to provide a method of manufacturing a wire.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のBi系酸化物超電導線の製造方法は、
(イ)Bi系の酸化物超電導体を構成する元素を所定の
比率で含む原料粉末を成型して円筒状の成型体を製造す
る工程と、(ロ)この円筒状の成型体に熱処理を施し
て、超電導相を60%以上成長させる工程と、(ハ)こ
の熱処理後の成型体中に金属ロッドを挿入するととも
に、その外側にこの金属ロッドと同質の材料からなる金
属管を配置して複合体を形成する工程と、(ニ)この複
合体に伸線加工を施した後、熱処理を施す工程とを順次
行うようにしたものである。
In order to achieve the above object, the method for producing a Bi-based oxide superconducting wire of the present invention comprises:
(A) a step of molding a raw material powder containing elements constituting a Bi-based oxide superconductor in a predetermined ratio to produce a cylindrical molded body, and (b) a heat treatment of the cylindrical molded body. The step of growing the superconducting phase by 60% or more, and (c) inserting a metal rod into the molded body after this heat treatment, and arranging a metal tube made of the same material as this metal rod on the outside thereof to form a composite. The step of forming a body and the step (d) of subjecting the composite to wire drawing and then heat treatment are sequentially performed.

【0009】上記発明における原料粉末は、酸化物超電
導体を構成する元素を所定の比率で含むものであるが、
この原料粉末としては、これ等の元素をそれぞれ含む酸
化物、炭酸塩、硝酸塩等の粉末を所定のモル比で配合し
た混合粉末や、この混合粉末を仮焼後粉砕した仮焼粉末
が用いられる。
The raw material powder in the above invention contains the elements constituting the oxide superconductor in a predetermined ratio.
As the raw material powder, a mixed powder in which powders of oxides, carbonates, nitrates and the like containing these elements are mixed at a predetermined molar ratio, and a calcined powder obtained by calcination and grinding of the mixed powder are used. .

【0010】原料粉末の成型方法は、均一な密度の成型
体が得られる方法が好ましく、このような方法としてC
IP(冷間静圧プレス)、HIP(熱間静圧プレス)の
他、冷間プレス等が用いられる。
As a method of molding the raw material powder, it is preferable to obtain a molded body having a uniform density.
In addition to IP (cold static pressure press) and HIP (hot static pressure press), cold press and the like are used.

【0011】また、成型後の円筒体の超電導相を成長さ
せるために熱処理が施されるが、この温度範囲は840
〜870℃が好ましい。この温度範囲外では不純物相の
生成量が増大する。この熱処理により、以後の圧延工程
を不要とするために超電導相を60%以上の比率に成長
させるが、より好ましくは70〜80%の範囲で、その
かさ密度を3.0g/cm3 以上とする。この理由は、超
電導相の成長比率が60%未満であると、伸線加工後の
熱処理時に、膨脹反応である超電導相の生成により内部
に多数の空隙が生成してJcが低下し、またその比率が
80%を越えると、伸線加工によって破壊された結晶が
以後の熱処理によっても回復せず、同様にJcが低下す
ることによる。一方、かさ密度が3.0g/cm3 未満に
なると、加工時にシースとコアとの界面の乱れが大きく
なって特性が低下する。
Further, heat treatment is performed to grow the superconducting phase of the molded cylindrical body, and this temperature range is 840.
It is preferably 870 ° C. Outside this temperature range, the amount of impurity phase produced increases. By this heat treatment, the superconducting phase is grown to a ratio of 60% or more in order to make the subsequent rolling process unnecessary, and more preferably in the range of 70 to 80%, the bulk density is 3.0 g / cm 3 or more. To do. The reason for this is that if the growth rate of the superconducting phase is less than 60%, a large number of voids are formed inside due to the generation of the superconducting phase which is an expansion reaction during the heat treatment after the wire drawing, and the Jc is lowered. When the ratio exceeds 80%, the crystal destroyed by the wire drawing process cannot be recovered by the subsequent heat treatment, and the Jc similarly decreases. On the other hand, if the bulk density is less than 3.0 g / cm 3 , the disturbance of the interface between the sheath and the core becomes large during processing, and the characteristics deteriorate.

【0012】この熱処理後後の成型体に挿入される金属
ロッドおよび外側に配置される金属管としては、展延性
に優れ、かつ熱処理温度範囲で超電導体と反応せず、非
酸化性で非磁性の材料が用いられる。例えばAg、A
u、Ptまたはこれらの合金が採用される。
The metal rod inserted into the molded body after the heat treatment and the metal tube arranged on the outside have excellent malleability, do not react with the superconductor in the heat treatment temperature range, and are non-oxidizing and non-magnetic. Materials are used. For example, Ag, A
u, Pt or alloys thereof are adopted.

【0013】複合体に施される伸線加工の減面率は80
%以上とすることが好ましい。減面率がこれ未満である
と十分に緻密な組織を得ることができなくなる。
The area reduction rate of wire drawing applied to the composite is 80.
% Or more is preferable. If the area reduction rate is less than this, a sufficiently dense structure cannot be obtained.

【0014】[0014]

【作用】上記発明においては、原料粉末を成型した円筒
状の成型体に熱処理を施して、超電導相を60%以上に
成長させた後、この成型体の内外に金属材料が配置され
た状態で伸線加工を施すことにより、伸線加工によって
破壊された結晶が以後の熱処理によって回復するととも
に超電導相の生成分率が向上する。その結果、結晶配向
が向上して高いJcの超電導線が得られる。即ち、圧延
加工により原料粉末中の核となる超電導相のc軸を配向
させて、これを熱処理により成長させるプロセスが必要
でなくなる。
In the above-mentioned invention, the cylindrical compact formed by molding the raw material powder is heat-treated to grow the superconducting phase to 60% or more, and then the metallic material is placed inside and outside the compact. By performing the wire drawing work, the crystal destroyed by the wire drawing work is recovered by the subsequent heat treatment and the production fraction of the superconducting phase is improved. As a result, the crystal orientation is improved and a high Jc superconducting wire can be obtained. That is, there is no need for a process of orienting the c-axis of the superconducting phase which becomes the nucleus in the raw material powder by rolling and growing it by heat treatment.

【0015】[0015]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0016】実施例 Bi2 3 、PbO、SrCO3 、CaCO3 、CuO
の粉末を、Bi:Pb:Sr:Ca:Cu=1.80:
0.40:2.00:2.00:3.00のモル比で配
合して湿式混合法により混合した後、大気中、840℃
の温度で熱処理を施し、これを破砕して仮焼粉末を作製
した。
Example Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Powder of Bi: Pb: Sr: Ca: Cu = 1.80:
After being mixed in a molar ratio of 0.40: 2.00: 2.00: 3.00 and mixed by a wet mixing method, in the air, at 840 ° C.
Heat treatment was performed at the temperature of, and this was crushed to produce a calcined powder.

【0017】この仮焼粉末にCIP加工を施して外径φ
4.5mm、内径φ2.5mmの円筒状の成型体を作成した
後、大気中で850℃×100時間の熱処理を施し超電
導相を成長させた。このときの超電導相の比率をXRD
(X線回折)チャート上のピーク強度より求めた結果7
5%であった。
The calcined powder is subjected to CIP processing to obtain an outer diameter φ.
After forming a cylindrical molded body having a diameter of 4.5 mm and an inner diameter of 2.5 mm, heat treatment was performed in the atmosphere at 850 ° C. for 100 hours to grow a superconducting phase. The ratio of the superconducting phase at this time is XRD
(X-ray diffraction) Results obtained from peak intensity on chart 7
It was 5%.

【0018】次いで、この熱処理後の成型体中に外径φ
2.0mmのAg棒を挿入し、これらをさらに外径φ7.
0mm、内径φ5.0mmのAgパイプ中に収容した後、伸
線加工を施して外径φ1.04mmに成形した。この伸線
加工の減面率は98%であった。
Then, the outer diameter φ
Insert a 2.0 mm Ag rod, and then add an outer diameter of φ7.
After being housed in an Ag pipe having a diameter of 0 mm and an inner diameter of 5.0 mm, wire drawing was performed to form an outer diameter of 1.04 mm. The area reduction rate of this wire drawing was 98%.

【0019】この線材に大気中で840℃×50時間の
熱処理を施して製造した超電導線のJcは77.3K、
0Tで15000A/cm2 であった。
The superconducting wire produced by subjecting this wire to a heat treatment at 840 ° C. for 50 hours in the air has a Jc of 77.3 K,
It was 15000 A / cm 2 at 0T.

【0020】上記の実施例により製造した超線導線につ
いて、図2(a)に示す超線導線1の軸方向xに垂直な
断面内で磁場中での電気的な異方性、即ち、Jcの磁場
方向Hに対する依存性を77.3K、磁場の強さ800
ガウスの条件で測定した結果を図1に示す。測定結果は
Jc(θ)/Jc(θ=0)の規格化した値で示した。
比較例 上記の実施例と同様にして作成した仮焼粉末を、外径φ
7.0mm、内径φ5.0mmのAgパイプ中に収容した
後、伸線加工を施して外径φ1.04mmに成形した。
Regarding the superconducting wire manufactured according to the above-mentioned embodiment, electric anisotropy in a magnetic field, ie, Jc, in a cross section perpendicular to the axial direction x of the superconducting wire 1 shown in FIG. 2 (a). Of magnetic field direction H of 77.3K, magnetic field strength of 800
The results measured under Gaussian conditions are shown in FIG. The measurement results are shown as normalized values of Jc (θ) / Jc (θ = 0).
Comparative Example A calcined powder prepared in the same manner as in the above example had an outer diameter φ
After being housed in an Ag pipe having a diameter of 7.0 mm and an inner diameter of 5.0 mm, wire drawing was performed to form an outer diameter of 1.04 mm.

【0021】この線材に圧延加工を施して厚さ0.17
mmのテープに成形した後、大気中で840℃×100時
間の熱処理を施した。このときの超電導相の比率をXR
D(X線回折)チャート上のピーク強度より求めた結果
70%であった。
This wire is rolled to a thickness of 0.17
After being formed into a tape having a size of mm, it was heat-treated at 840 ° C. for 100 hours in the air. The ratio of the superconducting phase at this time is XR
The result was 70% as determined from the peak intensity on the D (X-ray diffraction) chart.

【0022】次いで、上記のテープにさらに中間圧延加
工を施して厚さ0.15mmに成形した後、大気中で84
0℃×50時間の熱処理を施し製造した超電導線のJc
は77.3K、0Tで10000A/cm2 であった。
Next, the above tape was further subjected to intermediate rolling to form a thickness of 0.15 mm, and then 84 in air.
Jc of superconducting wire manufactured by heat treatment at 0 ℃ x 50 hours
Was 77.3K and 10000A / cm 2 at 0T.

【0023】上記の比較例により製造した超線導テープ
2について、第2図bに示すテープの軸方向xに垂直な
断面内でJcの磁場方向Hに対する依存性を実施例と同
様にして測定した結果を図1に同時に示した。
For the superconducting tape 2 produced by the above comparative example, the dependence of Jc on the magnetic field direction H was measured in the cross section perpendicular to the axial direction x of the tape shown in FIG. The results obtained are also shown in FIG.

【0024】[0024]

【発明の効果】以上述べたように、本発明のBi系酸化
物超電導線の製造方法によれば、以下の利点が得られ
る。
As described above, according to the method for producing a Bi-based oxide superconducting wire of the present invention, the following advantages can be obtained.

【0025】(a)中心部に金属ロッドを配置したこと
により、成型体に均一な圧力を付加することができるた
め、結晶の配向性および緻密化が向上する。
(A) By arranging the metal rod at the center, uniform pressure can be applied to the molded body, so that the crystal orientation and densification are improved.

【0026】(b)圧延加工を省略することができ、工
程が簡略化される。
(B) The rolling process can be omitted and the process is simplified.

【0027】(c)磁場中での電気的な異方性を示さな
いため、製作し得るコイル形状が限定されない。
(C) Since it does not exhibit electrical anisotropy in a magnetic field, the shape of the coil that can be manufactured is not limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の方法により製造された超電
導線および比較例の方法により製造された超電導テープ
の軸方向xに垂直な断面内で、Jcの磁場方向Hに対す
る依存性を示すグラフ。
FIG. 1 shows the dependence of Jc on a magnetic field direction H in a cross section perpendicular to an axial direction x of a superconducting wire manufactured by a method of an example of the present invention and a superconducting tape manufactured by a method of a comparative example. Graph.

【図2】(a)は図1に示す超電導線の軸方向xと磁場
方向Hとの位置関係を示す図、(b)は図1に示す超電
導テープの軸方向xと磁場方向Hとの位置関係を示す
図。
2A is a diagram showing the positional relationship between the axial direction x and the magnetic field direction H of the superconducting wire shown in FIG. 1, and FIG. 2B is a diagram showing the axial direction x and the magnetic field direction H of the superconducting tape shown in FIG. The figure which shows a positional relationship.

【符号の説明】[Explanation of symbols]

1…超線導線 2…超線導テープ H…磁場方向 1 ... Superconducting wire 2 ... Superconducting tape H ... Magnetic field direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (イ)Bi系の酸化物超電導体を構成す
る元素を所定の比率で含む原料粉末を成型して円筒状の
成型体を製造する工程と、 (ロ)前記円筒状の成型体に熱処理を施して、超電導相
を60%以上成長させる工程と、 (ハ)この熱処理後の成型体中に金属ロッドを挿入する
とともに、その外側に前記金属ロッドと同質の材料から
なる金属管を配置して複合体を形成する工程と、
(ニ)この複合体に伸線加工を施した後、熱処理を施す
工程とからなることを特徴とするBi系酸化物超電導線
の製造方法。
1. A step of: (a) molding a raw material powder containing elements constituting a Bi-based oxide superconductor in a predetermined ratio to produce a cylindrical molded body; and (b) the cylindrical molding. A step of subjecting the body to heat treatment to grow a superconducting phase by 60% or more, and (c) a metal rod made of the same material as the metal rod outside the metal rod while inserting the metal rod into the molded body after the heat treatment. Arranging to form a complex,
(D) A method for producing a Bi-based oxide superconducting wire, which comprises a step of subjecting the composite to a wire drawing process and then a heat treatment.
【請求項2】 伸線加工は減面率80%以上で施される
請求項1記載のBi系酸化物超電導線の製造方法。
2. The method for producing a Bi-based oxide superconducting wire according to claim 1, wherein the wire drawing is performed with a surface reduction rate of 80% or more.
JP5012119A 1993-01-28 1993-01-28 Manufacture of bi oxide superconducting wire Withdrawn JPH06223649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5012119A JPH06223649A (en) 1993-01-28 1993-01-28 Manufacture of bi oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5012119A JPH06223649A (en) 1993-01-28 1993-01-28 Manufacture of bi oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH06223649A true JPH06223649A (en) 1994-08-12

Family

ID=11796670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5012119A Withdrawn JPH06223649A (en) 1993-01-28 1993-01-28 Manufacture of bi oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH06223649A (en)

Similar Documents

Publication Publication Date Title
EP0356969B1 (en) Method of producing oxide superconductor
EP0431643B1 (en) Method of manufacturing oxide superconducting wire
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP3253440B2 (en) Oxide superconducting wires and coils
EP0404966B1 (en) Method of producing ceramic-type superconductive wire
JPH06223649A (en) Manufacture of bi oxide superconducting wire
JPH02207420A (en) Manufacture of superconducting wire rod
JPH06223650A (en) Manufacture of bi oxide superconducting wire
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP3109077B2 (en) Manufacturing method of oxide superconducting wire
JPS63279523A (en) Manufacture of compound superconductive wire
KR100232296B1 (en) Superconductive wire
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH01105409A (en) Oxide superconductive wire and manufacture thereof
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH0447611A (en) Manufacture of oxide superconducting wire
JPH06223648A (en) Bi oxide superconducting wire and manufacture thereof
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH05334928A (en) Manufacture of oxide superconductive wire
JPH05274933A (en) Manufacture of oxide superconducting wire material
JPH1059718A (en) Production of thallium-based superconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404