JPH06223648A - Bi oxide superconducting wire and manufacture thereof - Google Patents

Bi oxide superconducting wire and manufacture thereof

Info

Publication number
JPH06223648A
JPH06223648A JP5012118A JP1211893A JPH06223648A JP H06223648 A JPH06223648 A JP H06223648A JP 5012118 A JP5012118 A JP 5012118A JP 1211893 A JP1211893 A JP 1211893A JP H06223648 A JPH06223648 A JP H06223648A
Authority
JP
Japan
Prior art keywords
tape
wire
superconductor
superconducting wire
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5012118A
Other languages
Japanese (ja)
Inventor
Yu Kitamura
祐 北村
Takayo Hasegawa
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5012118A priority Critical patent/JPH06223648A/en
Publication of JPH06223648A publication Critical patent/JPH06223648A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the electrical anisotropy of a Bi tape-shaped superconducting wire in a magnetic field. CONSTITUTION:Calcined powders consisting of Bi, Pb, Sr, Ca and Cu in a mole ratio of 1.8:0.4:2.0:2.0:3.0 are packed in an Ag pipe, and the Ag pipe is formed into a round wire through drawing process and the wire is rolled at a draft of 30% per one pass to manufacture a 0.3-mm thick tape-shaped wire. A superconducting tape manufactured by subjecting the tape-shaped wire to heat treatments has a superconductor that shows an excellent form at its center portion within the cross section of the tape, and the angle formed by the (c) axis of the superconductor and the direction perpendicular to the broad surface of the tape is periodically varied within a plane perpendicular to the direction of the axis of the tape, so electrical anisotropy is improved and the rate of deterioration of Jc is reduced especially when a magnetic field acts perpendicular to the broad surface of the tape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物系の超電導線およ
びその製造方法に係り、特に金属シース法によるBi系
酸化物超電導線およびその製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide-based superconducting wire and a method for producing the same, and more particularly to improvement of a Bi-based oxide superconducting wire by a metal sheath method and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物系の高温超電導体は、その臨界温
度(Tc)が液体窒素温度(77K)を越えることか
ら、エレクトロニクス、電力輸送、強磁界発生等の分野
での実用化が期待されており、現在ではその臨界電流密
度(Jc)も実用レベルに達しつつある。
2. Description of the Related Art Oxide-based high-temperature superconductors have a critical temperature (Tc) above liquid nitrogen temperature (77K), and are expected to be put to practical use in the fields of electronics, electric power transportation, strong magnetic field generation, and the like. Therefore, the critical current density (Jc) is now reaching the practical level.

【0003】酸化物超電導体の本格的な実用化のために
は、長尺化、即ち、線材化技術を確立することかが不可
欠であり、その有力な方法の一つとして金属シース法
(Agシース法)が知られている。
In order to put oxide superconductors into full-scale practical use, it is indispensable to make them longer, that is, to establish a wire rod technology. One of the influential methods is the metal sheath method (Ag). The sheath method) is known.

【0004】この方法は、酸化物超電導物質の構成元素
を所定のモル比で配合した混合粉末や仮焼粉末を銀バイ
プ中に充填し、これを伸線加工や圧延加工等により線状
に加工した後、熱処理を施すもので、Agを使用するの
は加工性に優れる上、熱処理中に内部の酸化物と反応せ
ず、またAgが実質的に酸素透過機能を有することによ
る。
According to this method, a mixed powder or a calcined powder in which the constituent elements of the oxide superconducting material are mixed in a predetermined molar ratio is filled in a silver vapor, and this is processed into a linear shape by wire drawing or rolling. After that, heat treatment is performed, and the reason why Ag is used is that it has excellent workability, does not react with the internal oxide during heat treatment, and that Ag has a substantially oxygen-permeable function.

【0005】このAgシース法は、特にBi系超電導体
の場合、各結晶粒が板状組織を有することから伸線、圧
延等の機械的な加工により圧縮力を加えることによって
結晶の配向性を高めることができ、その結果Jcを向上
させることができる利点がある。
In the Ag sheath method, particularly in the case of a Bi type superconductor, since each crystal grain has a plate-like structure, the crystal orientation is obtained by applying a compressive force by mechanical processing such as wire drawing or rolling. There is an advantage that it can be increased and, as a result, Jc can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
Bi系超電導体の電気的な特性は、磁場中で異方性を有
し、結晶のc軸に対して平行に磁場が作用した場合、臨
界電流密度が急激に減少することが知られている。
However, the electrical characteristics of the above Bi-based superconductor have anisotropy in a magnetic field, and when the magnetic field acts parallel to the c-axis of the crystal, the critical characteristics are obtained. It is known that the current density sharply decreases.

【0007】上記のAgシース法でテープ状の超電導線
線を製造する場合、前述のように結晶の配向性を高める
ことができるが、テープの幅広面とa−b面が平行とな
り、従ってテープの幅広面に対してc軸が垂直に配向す
ることになるため、テープの幅広面に垂直な磁場が作用
すると特性が著しく低下する。
When a tape-shaped superconducting wire is manufactured by the Ag sheath method described above, the crystal orientation can be enhanced as described above, but the wide surface of the tape and the ab surface are parallel, and therefore the tape Since the c-axis is oriented perpendicularly to the wide surface of the tape, the characteristics remarkably deteriorate when a magnetic field perpendicular to the wide surface of the tape acts.

【0008】従って、このようなテープ状の超電導線を
用いてコイルを形成し磁場を発生させると、自己磁場が
テープの幅広面に対して垂直に加わる部分でその特性が
低下することとなる。
Therefore, when a coil is formed by using such a tape-shaped superconducting wire and a magnetic field is generated, the characteristics are deteriorated in the portion where the self-magnetic field is applied perpendicularly to the wide surface of the tape.

【0009】本発明は上記の問題を解決するためになさ
れたもので、金属シース法による磁場中での電気的な異
方性を改善したテープ状のBi系酸化物超電導線および
その製造方法を提供することをその目的とする。
The present invention has been made in order to solve the above problems, and provides a tape-shaped Bi-based oxide superconducting wire with improved electrical anisotropy in a magnetic field by a metal sheath method and a method for producing the same. Its purpose is to provide.

【0010】[0010]

【課題を解決するための手段】上記の問題を解決するた
めに、本発明のBi系酸化物超電導線は、Bi系の酸化
物超電導体の外側に金属シースを有し、テープ状に成形
された超電導線において、超電導体のc軸とテープの幅
広面に垂直な方向とのなす角がテープの軸方向に垂直な
面内において周期的に変化するように超電導体の結晶を
配向させたものである。
In order to solve the above problems, the Bi type oxide superconducting wire of the present invention has a metal sheath on the outside of the Bi type oxide superconductor and is formed into a tape shape. In a superconducting wire, crystals of the superconductor are oriented such that the angle formed by the c-axis of the superconductor and the direction perpendicular to the wide surface of the tape changes periodically in the plane perpendicular to the axial direction of the tape. Is.

【0011】このような超電導線は、本願第2の発明、
即ち、Bi系の酸化物超電導体を構成する元素を所定の
モル比で含む原料粉末を金属管中に収容し、これに伸線
加工を施した後、1パス当たり20%以上の圧下率で圧
延加工を施してテープ状の線材を形成し、次いで熱処理
を施すことにより製造することができる。
Such a superconducting wire is the second invention of the present application,
That is, the raw material powder containing the elements constituting the Bi-based oxide superconductor in a predetermined molar ratio was housed in a metal tube, and after drawing the wire, a reduction rate of 20% or more per pass was applied. It can be manufactured by rolling to form a tape-shaped wire and then heat treatment.

【0012】上記発明における金属シースまたは金属管
としては、展延性に優れ、かつ超電導体と反応せず、非
酸化性で非磁性の材料で、さらに、500℃以上の温度
で実質的に酸素透過機能を有する例えば、Ag,Ag合
金等が用いられる。
The metal sheath or metal tube in the above invention is a non-oxidizing, non-magnetic material which is excellent in ductility, does not react with a superconductor, and is substantially permeable to oxygen at a temperature of 500 ° C. or higher. For example, Ag or Ag alloy having a function is used.

【0013】また、Bi系の酸化物超電導体の原料粉末
としては、超電導体を構成する元素を含む酸化物、炭酸
塩、硝酸塩等の粉末を所定のモル比で配合した混合粉末
や、この混合粉末を仮焼後粉砕した仮焼粉末が用いられ
る。
As the raw material powder of the Bi-based oxide superconductor, a mixed powder obtained by mixing powders of oxides, carbonates, nitrates and the like containing the elements constituting the superconductor in a predetermined molar ratio, or a mixture thereof. A calcined powder obtained by pulverizing the powder after calcination is used.

【0014】超電導線を製造する場合の圧延加工は、1
パス当たり20%以上の圧下率で施されるが、これは圧
下率が20%未満であると、製造後のテープ状線材の断
面において、超電導体に括れを生ぜず、従ってテープの
幅広面に対してc軸が垂直に配向することになるため、
磁場中での電気的な異方性を改善することができない。
また、圧下率が50%前後になると、圧延中に金属シ
ースの破断を生ずるため、これ以下とする必要がある。
圧下率の好ましい範囲は30〜40%である。
The rolling process for manufacturing a superconducting wire is 1
It is applied with a reduction rate of 20% or more per pass, but when the reduction rate is less than 20%, the superconductor is not constricted in the cross section of the tape-shaped wire rod after production, and thus the wide surface of the tape is On the other hand, since the c-axis is oriented vertically,
The electrical anisotropy in a magnetic field cannot be improved.
Further, when the rolling reduction is around 50%, the metal sheath is broken during rolling, and therefore the rolling reduction needs to be less than this.
The preferable range of the rolling reduction is 30 to 40%.

【0015】[0015]

【作用】上記発明においては、超電導体のc軸とテープ
の幅広面に垂直な方向とのなす角がテープの軸方向に垂
直な面内において周期的に変化するため、結晶の大部分
のc軸がテープの幅広面に垂直に配向されることがなく
なり、磁場中での電気的な異方性が改善される。特にテ
ープの幅広面に垂直な磁場が作用した場合の特性の低下
が防止される。また、このようなテープ状の超電導線
は、金属シース法により1パス当たりの圧下率を規定し
て圧延加工を施すことにより製造することができる。
In the above invention, since the angle formed by the c-axis of the superconductor and the direction perpendicular to the wide surface of the tape changes periodically in the plane perpendicular to the axial direction of the tape, most c of the crystal is formed. The axis is no longer oriented perpendicular to the wide face of the tape, improving the electrical anisotropy in a magnetic field. In particular, it is possible to prevent deterioration of characteristics when a magnetic field perpendicular to the wide surface of the tape acts. In addition, such a tape-shaped superconducting wire can be manufactured by performing a rolling process by defining a rolling reduction per pass by a metal sheath method.

【0016】[0016]

【実施例】以下、本発明の一実施例について説明する。EXAMPLES An example of the present invention will be described below.

【0017】実施例 Bi2 3 ,PbO、SrCO3 ,CaCO3 ,CuO
の各粉末を、Bi:Pb:Sr:Ca:Cu=1.8:
0.4:2.0:2.0:3.0のモル比で配合して湿
式混合法により混合した後、大気中、840℃の温度で
熱処理を施し、これを破砕して仮焼粉末を作製した。
Example Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Each powder of Bi: Pb: Sr: Ca: Cu = 1.8:
After being mixed in a molar ratio of 0.4: 2.0: 2.0: 3.0 and mixed by a wet mixing method, a heat treatment is performed at a temperature of 840 ° C. in the air, and this is crushed to give a calcined powder. Was produced.

【0018】この仮焼粉末を外径φ7.0mm、内径φ
5.0mmのAgパイプ中に充填し、これに伸線加工を施
して外径φ1.0mmの丸線に成形した後、1パス当たり
30%の圧下率で3パスの圧延加工を施して、厚さ0.
3mm、幅2.3mmのテープ状の線材を製造した。
This calcinated powder was made to have an outer diameter of 7.0 mm and an inner diameter of φ.
It was filled in a 5.0 mm Ag pipe, drawn to form a round wire with an outer diameter of φ1.0 mm, and then rolled for 3 passes at a reduction rate of 30% per pass, Thickness 0.
A tape-shaped wire rod having a width of 3 mm and a width of 2.3 mm was manufactured.

【0019】次いで、上記のテープ状の線材に840℃
で100時間の熱処理を施して超電導テープを製造し
た。
Then, the above tape-shaped wire was heated to 840 ° C.
Was heat-treated for 100 hours to produce a superconducting tape.

【0020】このようにして得られた超電導テープの概
略断面を図2aに示す。超電導テープ1は、超電導体2
の外側にAgシース3が配置された構造を有し、超電導
体2はその中央部で括れた形状を示す。同図bに示すよ
うに、超電導体2のc軸とテープ1の幅広面に垂直な方
向zとのなす角αは、テープの軸方向に垂直な面内のテ
ープの幅方向yにおいて周期的に変化する。
A schematic cross section of the superconducting tape thus obtained is shown in FIG. 2a. Superconducting tape 1 is a superconductor 2
Has a structure in which an Ag sheath 3 is arranged outside, and the superconductor 2 has a shape constricted at its central portion. As shown in FIG. 2B, the angle α formed by the c-axis of the superconductor 2 and the direction z perpendicular to the wide surface of the tape 1 is periodic in the width direction y of the tape in the surface perpendicular to the axial direction of the tape. Changes to.

【0021】また、この超電導テープ1の臨界電流密度
Jcを、図3に示すようにテープ1の軸方向xに垂直な
面内において、テープ1の幅広面に平行な方向yと磁場
方向Hとのなす角をθとして、77.3K、500ガウ
スの条件で測定した。測定結果を、Jc(θ)/Jc
(θ=0)の規格化した値で図1に示す。
Further, the critical current density Jc of the superconducting tape 1 is expressed by a direction y parallel to the wide surface of the tape 1 and a magnetic field direction H in a plane perpendicular to the axial direction x of the tape 1 as shown in FIG. The angle formed by is defined as θ, and measurement is performed under the conditions of 77.3 K and 500 Gauss. The measurement result is Jc (θ) / Jc
The normalized value of (θ = 0) is shown in FIG.

【0022】比較例 実施例と同様にして、仮焼粉末を作製後、この仮焼粉末
をAgパイプ中に充填し、これに伸線加工を施して外径
φ1.0mmの丸線に成形した。
Comparative Example After preparing a calcined powder in the same manner as in the example, the calcined powder was filled in an Ag pipe and wire-drawn to form a round wire with an outer diameter of 1.0 mm. .

【0023】次いで、1パス当たり10%の圧下率で圧
延加工を施して、厚さ0.3mm、幅2.3mmのテープ状
の線材を製造した後、実施例と同様の熱処理を施して超
電導テープを製造した。
Next, after rolling at a reduction rate of 10% per pass to manufacture a tape-shaped wire rod having a thickness of 0.3 mm and a width of 2.3 mm, the same heat treatment as in the example is applied to superconductivity. A tape was manufactured.

【0024】このようにして得られた超電導テープの概
略断面を図4aに示す。超電導テープ1´は、超電導体
2´の外側にAgシース3´が配置された構造を有する
が、超電導体2´は同図bに示すように、超電導体2´
のc軸とテープ1´の幅広面に垂直な方向zとが、テー
プの軸方向に垂直な面内のテープの幅方向yにおいて、
その両端部を除いてほぼ同一の方向を有する。
A schematic cross section of the superconducting tape thus obtained is shown in FIG. 4a. The superconducting tape 1'has a structure in which an Ag sheath 3'is arranged outside the superconductor 2 ', but the superconductor 2'is, as shown in FIG.
And the direction z perpendicular to the wide surface of the tape 1'in the tape width direction y in the plane perpendicular to the tape axial direction,
Except for both ends thereof, they have almost the same direction.

【0025】また、この超電導テープ1´の臨界電流密
度Jcを、実施例と同様にして測定した結果を図1に示
した。
Further, the result of measuring the critical current density Jc of this superconducting tape 1'in the same manner as in the example is shown in FIG.

【0026】以上の実施例および比較例から明らかなよ
うに、本発明によるBi系酸化物超電導線によれば磁場
中での電気的な異方性が改善され、特にテープの幅広面
に垂直な磁場が作用した場合のJcの低下を抑制するこ
とができる。
As is clear from the above Examples and Comparative Examples, the Bi-based oxide superconducting wire according to the present invention has improved electrical anisotropy in a magnetic field, and in particular, it is perpendicular to the wide surface of the tape. It is possible to suppress a decrease in Jc when a magnetic field acts.

【0027】[0027]

【発明の効果】以上述べたように、本発明のBi系酸化
物超電導線によれば、磁場中での電気的な異方性が改善
され、テープの幅広面に垂直な磁場が作用した場合の特
性の低下を抑制することができる。また、このようなテ
ープ状の超電導線は、金属シース法により圧下率を規定
して圧延加工を施すことにより容易に製造することがで
きる。
As described above, according to the Bi-based oxide superconducting wire of the present invention, the electrical anisotropy in the magnetic field is improved, and when the magnetic field perpendicular to the wide surface of the tape acts. It is possible to suppress the deterioration of the characteristics. In addition, such a tape-shaped superconducting wire can be easily manufactured by performing a rolling process by defining a reduction rate by a metal sheath method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例および比較例の方法により製
造されたBi系酸化物超電導線の臨界電流密度の磁場方
向に対する依存性を示すグラフ。
FIG. 1 is a graph showing the dependence of the critical current density of a Bi-based oxide superconducting wire manufactured by the method of one example of the present invention and the comparative example on the magnetic field direction.

【図2】(a)は本発明によるBi系酸化物超電導線の
一実施例を示す概略断面図、(b)はそのc軸とテープ
の幅広面に垂直な方向zとのなす角αの分布を示すグラ
フ。
FIG. 2 (a) is a schematic cross-sectional view showing an embodiment of a Bi-based oxide superconducting wire according to the present invention, and FIG. 2 (b) is an angle α formed by the c-axis and a direction z perpendicular to the wide surface of the tape. Graph showing distribution.

【図3】図1における磁場方向Hを説明するための図。FIG. 3 is a diagram for explaining a magnetic field direction H in FIG.

【図4】(a)は比較例の方法によるBi系酸化物超電
導線を示す概略断面図、(b)はそのc軸とテープの幅
広面に垂直な方向zとのなす角αの分布を示すグラフ。
4 (a) is a schematic cross-sectional view showing a Bi-based oxide superconducting wire by the method of the comparative example, and FIG. 4 (b) shows the distribution of the angle α formed by the c-axis and the direction z perpendicular to the wide surface of the tape. The graph that shows.

【符号の説明】[Explanation of symbols]

1、1´…超電導テープ 2、2´…超電導体 3,3´…Agシース 1, 1 '... Superconducting tape 2, 2' ... Superconductor 3, 3 '... Ag sheath

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Bi系の酸化物超電導体の外側に金属シ
ースを有し、テープ状に成形された超電導線において、
前記超電導体のc軸と前記テープの幅広面に垂直な方向
とのなす角が前記テープの軸方向に垂直な面内において
周期的に変化するように前記超電導体の結晶を配向させ
たことを特徴とするBi系酸化物超電導線。
1. A tape-shaped superconducting wire having a metal sheath on the outside of a Bi-based oxide superconductor,
Orienting the crystals of the superconductor such that the angle between the c-axis of the superconductor and the direction perpendicular to the wide surface of the tape changes periodically in the plane perpendicular to the axial direction of the tape. Characteristic Bi-based oxide superconducting wire.
【請求項2】 Bi系の酸化物超電導体を構成する元素
を所定のモル比で含む原料粉末を金属管中に収容し、こ
れに伸線加工を施した後、1パス当たり20%以上の圧
下率で圧延加工を施してテープ状の線材を形成し、次い
で熱処理を施すことを特徴とするBi系酸化物超電導線
の製造方法。
2. A raw material powder containing an element constituting a Bi-based oxide superconductor in a predetermined molar ratio is housed in a metal tube, which is subjected to wire drawing, and then 20% or more per pass. A method for producing a Bi-based oxide superconducting wire, which comprises rolling at a reduction ratio to form a tape-shaped wire, and then heat-treating.
JP5012118A 1993-01-28 1993-01-28 Bi oxide superconducting wire and manufacture thereof Withdrawn JPH06223648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5012118A JPH06223648A (en) 1993-01-28 1993-01-28 Bi oxide superconducting wire and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5012118A JPH06223648A (en) 1993-01-28 1993-01-28 Bi oxide superconducting wire and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06223648A true JPH06223648A (en) 1994-08-12

Family

ID=11796645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5012118A Withdrawn JPH06223648A (en) 1993-01-28 1993-01-28 Bi oxide superconducting wire and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06223648A (en)

Similar Documents

Publication Publication Date Title
EP0472333B1 (en) Elongate superconductor elements comprising oxide superconductors and superconducting coils
JP3340152B2 (en) Superconducting magnet
US6205345B1 (en) Oxide superconducting wire, method of preparing the same, and method of handling the same
JPH06223648A (en) Bi oxide superconducting wire and manufacture thereof
JP4011131B2 (en) Tape-shaped oxide superconducting wire, superconducting magnet and current lead using the same
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JP3218947B2 (en) Manufacturing method of oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH02207420A (en) Manufacture of superconducting wire rod
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP2644245B2 (en) Oxide superconducting wire
JP2653462B2 (en) Superconductor
JPH05334921A (en) Ceramic superconductor
JPH07118014A (en) Oxide superconductor and its production
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH0315116A (en) Oxide superconductor wire and its manufacture
KR0174386B1 (en) Method for manufacturing high temperature superconducting multicore wire
JPH061616A (en) Production of bi based oxide superconductor
JPH06223649A (en) Manufacture of bi oxide superconducting wire
JPH06251929A (en) Manufacture of oxide superconducting coil
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH01123405A (en) Manufacture of superconducting power lead
JPH03199124A (en) Bi-based oxide superconductor powder and production of wire thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404