JPH01123405A - Manufacture of superconducting power lead - Google Patents
Manufacture of superconducting power leadInfo
- Publication number
- JPH01123405A JPH01123405A JP62281630A JP28163087A JPH01123405A JP H01123405 A JPH01123405 A JP H01123405A JP 62281630 A JP62281630 A JP 62281630A JP 28163087 A JP28163087 A JP 28163087A JP H01123405 A JPH01123405 A JP H01123405A
- Authority
- JP
- Japan
- Prior art keywords
- power lead
- heat
- oxide superconductor
- superconducting power
- resistance metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000002887 superconductor Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001301 oxygen Substances 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000011810 insulating material Substances 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004332 silver Substances 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 235000011911 Echinocactus horizonthalonius horizonthalonius Nutrition 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 235000011499 Ferocactus hamatacanthus Nutrition 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 244000231499 Turks head Species 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、液化ガス等で冷却した¥4電導線材と外部機
器とを電気的に接続するために用いるリード線の製造方
法に係り、特に酸化物超電導体を用いた超電導パワーリ
ードの製造方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to the manufacture of lead wires used for electrically connecting a ¥4 conductive wire cooled with liquefied gas or the like to an external device. The present invention relates to a method for manufacturing a superconducting power lead using an oxide superconductor.
(従来の技術)
従来から、MHIや加速器等で実用化されている合金系
あるいは金属間化合物系の超電導線材は、液体ヘリウム
中に浸漬されて臨界温度以下にまで冷却されて使用され
、また、液体ヘリウムは真空槽や各種、の断熱材により
外部環境がら熱遮蔽されている。一方、s’を導線材と
外部機器とは、上記真空槽や断熱材を貫通して配設され
た銅等の常電導金属からなるパワーリードにより電気的
に接続されている。(Prior Art) Conventionally, alloy-based or intermetallic compound-based superconducting wires, which have been put into practical use in MHI, accelerators, etc., are used after being immersed in liquid helium and cooled to below a critical temperature. Liquid helium is thermally shielded from the external environment by a vacuum chamber and various types of insulation materials. On the other hand, the conductive wire s' and the external device are electrically connected by a power lead made of a normally conductive metal such as copper, which is disposed through the vacuum chamber and the heat insulating material.
このように従来の超電導線材においては、全体が真空層
や断熱材により熱遮蔽されてはいるが、超電導線材が常
電導金属からなるパワーリードにより外部機器と接続さ
れているため、このパワーリードを通じて外部の熱や、
パワーリードへの通電に基くジュール熱が侵入し、これ
によって冷媒である液体ヘリウムの蒸発が促進されてし
まうという問題があった。In this way, in conventional superconducting wires, the entire structure is thermally shielded by a vacuum layer and heat insulating material, but since the superconducting wires are connected to external equipment by power leads made of normal conducting metal, external heat,
There has been a problem in that Joule heat due to energization of the power leads enters, thereby accelerating the evaporation of liquid helium, which is a refrigerant.
(発明が解決しようとする問題点)
このように、液体ヘリウムで冷却した超電導線材と外部
機器とを電気的に接続するためのパワーリードには、従
来、常電導金属が用いられていたため、通電に伴い発生
するジュール熱や、パワーリードを通じての外部からの
熱侵入により冷媒の蒸発が促進されるという問題があっ
た。(Problem to be solved by the invention) As described above, power leads for electrically connecting superconducting wires cooled with liquid helium and external equipment have conventionally been made of normally conductive metals, There has been a problem in that evaporation of the refrigerant is accelerated due to Joule heat generated due to this and heat intrusion from the outside through the power lead.
本発明はこのような従来の難点を解決すべくなされたも
ので、通電に伴うジュール熱の発生およびパワーリード
を通じての熱侵入を低減させることができる超電導パワ
ーリードの製造方法を提供することを目的とする。The present invention was made to solve these conventional difficulties, and an object of the present invention is to provide a method for manufacturing a superconducting power lead that can reduce the generation of Joule heat due to energization and the heat penetration through the power lead. shall be.
[発明の構成]
(問題点を解決するための手段)
すなわち、本発明の超電導パワーリードの製造方法は、
低抵抗金属管内に酸化物超電導体粉末またはその出発原
料粉末を高密度に充填し熱処理する工程と、前記低抵抗
金属管内
を除去して得られた棒状体を酸素含有雰囲気中で熱処理
する工程と、前記熱処理の前または後に前記棒状体の両
端に低抵抗金属により端子を形成する工程と、前記熱処
理の施された棒状体の外周に前記端子間に跨って高抵抗
物質または絶縁物質の被覆を形成する工程とを有するこ
とを特徴としている。[Structure of the Invention] (Means for Solving the Problems) That is, the method for manufacturing a superconducting power lead of the present invention includes:
A step of filling a low-resistance metal tube with oxide superconductor powder or its starting material powder at high density and heat-treating the same; and a step of heat-treating the rod-shaped body obtained by removing the inside of the low-resistance metal tube in an oxygen-containing atmosphere. , a step of forming terminals with a low-resistance metal at both ends of the rod-shaped body before or after the heat treatment, and a coating of a high-resistance material or an insulating material on the outer periphery of the rod-shaped body subjected to the heat treatment, spanning between the terminals. The method is characterized in that it has a step of forming.
本発明には各種Φ酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。Although various Φ oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly great practical effect.
上記の希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、LnBa Cu O系2 3 7−δ
(δは酸素欠陥を表し通常1以下の数、Lnは、Y、L
a、 Sc、 Nd、 Sn+、Eu、 Gd、 Dy
、No、 Er、Tn、YbおよびLuから選ばれた少
なくとも 1種の元素、Baの一部はsr等で置換可能
)等の酸素欠陥を有する欠陥へロブスカイト型、5r−
La−Cu−0系等の層状へロブスカイト型等の広義に
ペロブスカイト型を有する酸化物が例示される。また希
土類元素も広義の定義とし、Sc、 YおよびEu系
を含むものとする。The above-mentioned oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, and may be an LnBa Cu O-based 2 3 7-δ (δ represents an oxygen defect and is usually a number of 1 or less). , Ln is Y, L
a, Sc, Nd, Sn+, Eu, Gd, Dy
, No, Er, Tn, Yb, and Lu, a part of Ba can be replaced with sr, etc.);
Examples include oxides having a perovskite type in a broad sense, such as a layered herovskite type such as La-Cu-0 type. Rare earth elements are also broadly defined to include Sc, Y, and Eu-based elements.
代表的な系としてY−Ba−Cu−0系のほかに、Vを
Eu、ay、■0、[「、工1、Yわ、[U等の希土類
で置換した系、5c−Ba−Cu−0系、5r−La−
Cu−0系、さらにS「をBa、 Caで置換した系等
が挙げられる。In addition to the Y-Ba-Cu-0 system, representative systems include systems in which V is replaced with rare earth elements such as Eu, ay, -0 series, 5r-La-
Examples include Cu-0 series and systems in which S' is replaced with Ba or Ca.
本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができ・る。The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.
まず、Y、 Ba、 Cu等のペロブスカイト型酸化物
超電導体の構成元素を充分混合する。混合の際には、Y
O、CuO等の酸化物を原料として用いることができる
、また、これらの酸化物のほかに、焼成後酸化物に転化
する炭酸塩、硝酸塩、水酸化物等の化合物を用いてもよ
い、さらには、共沈法等で得たシュウ酸塩等を用いても
よい、ペロブスカイト型酸化物B電導体を構成する元素
は、基本的に化学量論比の組成となるように混合するが
、多少製造条件等との関係でずれていても差支えない、
たとえば、Y−Ba−Cu−0系ではY 1 lotに
対しBa 2 n+ol、Cu 3 nolがf5準組
成であるが、実用上はY 1 molに対して、Ha
Z±0.6 not、Cu 3±0.2 lol程度の
ずれは問題ない。First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. When mixing, Y
Oxides such as O and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted to oxides after firing may also be used. The elements constituting the perovskite oxide B conductor may be mixed in a stoichiometric composition, but may be mixed to some extent. There is no problem even if there is a deviation due to manufacturing conditions, etc.
For example, in the Y-Ba-Cu-0 system, Ba 2 n + ol and Cu 3 nol are f5 quasi-compositions for Y 1 lot, but in practice, Ha
A deviation of about Z±0.6 not, Cu 3±0.2 lol is not a problem.
前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を付与する。上記熱処理は、通常600℃以
下で徐冷しながら行うようにする。After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually performed at 600° C. or lower while slowly cooling.
このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa
Cu O(δは通常1以下))となる。The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa
Cu O (δ is usually 1 or less)).
(δ
なお、BaをS「、Caの少なくとも1種で置換するこ
ともでき、さらにCuの一部をTi、 V、 Cr、
Hn、 Fe、C01N1、ln等で置換することも
できる。(δ Note that Ba can also be replaced with at least one of S, Ca, and a part of Cu can be replaced with Ti, V, Cr,
It can also be replaced with Hn, Fe, C01N1, ln, etc.
この置換量は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80IIo l %以下、さ
らに実用上は20IIo1%以下程度までとする。The amount of this substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be set at 80 II o l % or less, and moreover, in practical terms, it should be about 20 II o 1 % or less. .
また、本発明に用いる低抵抗金属は、銀または金である
ことが好ましく、高抵抗物質または絶縁物質は、エポキ
シ樹脂等の合成樹脂あるいは無機繊維材料で補強した合
成樹脂等、の高抵抗物質または絶縁物質であることが好
ましい。Further, the low resistance metal used in the present invention is preferably silver or gold, and the high resistance material or insulating material is a high resistance material such as a synthetic resin such as an epoxy resin or a synthetic resin reinforced with an inorganic fiber material. Preferably, it is an insulating material.
本発明による超電導パワーリードの製造は、上述の酸化
物超電導体、低抵抗金属および高抵抗物質または絶縁物
質を用いて、たとえば次のようにして行われる。The superconducting power lead according to the present invention is manufactured using the above-described oxide superconductor, low-resistance metal, and high-resistance material or insulating material, for example, as follows.
まず、出発原料を焼成して得た酸化物超電導体、もしく
は出発原料そのままを、ボールミル等の公知の手段によ
り粉砕する。First, an oxide superconductor obtained by firing a starting material or the starting material itself is pulverized by a known means such as a ball mill.
次いで、この酸化物超電導体粉末もしくはその原料粉末
を、銀や金のような低抵抗金属管に充填し、ダイス、タ
ークスヘッド等を用いて減面加工を施した後850〜9
80℃で熱処理して複合材とする。得られた複合材の低
抵抗金属層のうち両端の端子となる部分以外をエツチン
グ、切削加工等により除去し、酸素含有雰囲気中で85
0〜980℃で酸化物超電導体粉末もしくはその原料粉
末を焼成し、600℃以下を1℃/分程度の冷却速度で
徐冷して酸化物超電導体の詰晶楕遺中の酸素空席に酸素
を導入し、超電導特性を向上させる。Next, this oxide superconductor powder or its raw material powder is filled into a low resistance metal tube such as silver or gold, and after surface reduction processing is performed using a die, Turk's head, etc.
A composite material is obtained by heat treatment at 80°C. The parts of the low-resistance metal layer of the obtained composite material other than the parts that will become the terminals at both ends were removed by etching, cutting, etc., and
The oxide superconductor powder or its raw material powder is fired at 0 to 980°C, and then slowly cooled to below 600°C at a cooling rate of about 1°C/min to add oxygen to the oxygen vacancies in the packed crystal ellipse of the oxide superconductor. will be introduced to improve superconducting properties.
しかる後、金属層を除去した部分の露出した酸化物超電
導体の外周にエポキシ樹脂等の合成樹脂あるいは無機v
s維材料で補強した合成樹脂等の高抵抗物質もしくは絶
縁物質を被覆して超電導パワーリードが得られる。After that, synthetic resin such as epoxy resin or inorganic resin is applied to the outer periphery of the exposed oxide superconductor where the metal layer has been removed.
A superconducting power lead can be obtained by coating with a high resistance material such as a synthetic resin or an insulating material reinforced with S fiber material.
なお、低抵抗金属として銀および金以外の低抵抗金属を
用いることも可能であるが、この場合は、低抵抗金属を
全て除去してから2度めの熱処理を行い、熱処理後、両
端の端子とすべき部分をめっき法1.蒸着法等を用いて
低抵抗金属で被覆することが好ましい。これは、銀およ
び金以外の低抵抗金属を用いた場合には、熱処理時にお
いて酸化物超電導体中の酸素と反応して超電導特性を劣
化させるおそれがあるためである。Note that it is also possible to use low resistance metals other than silver and gold as the low resistance metal, but in this case, a second heat treatment is performed after all the low resistance metals are removed, and after the heat treatment, the terminals at both ends are Plating method 1. It is preferable to coat with a low resistance metal using a vapor deposition method or the like. This is because when a low resistance metal other than silver or gold is used, it may react with oxygen in the oxide superconductor during heat treatment and deteriorate the superconducting properties.
また、必要に応じて、端子に銅、アルミニウムなどから
なる端子金具を半田付は法、圧着法、冷しぼめ法等によ
り取付けてもよい、さらに、着脱式パワーリードとして
用いる場合には、必要に応じて、端子にインジウム等の
低融点の軟金属をめっきするようにしてもよい。In addition, if necessary, terminal fittings made of copper, aluminum, etc. may be attached to the terminals by soldering, crimping, cold compression, etc. Furthermore, when used as a removable power lead, terminal fittings made of copper, aluminum, etc. may be attached to the terminals. Depending on the requirements, the terminals may be plated with a low melting point soft metal such as indium.
(作 用)
本発明の超電導パワーリードの製造方法では、パワーリ
ード本体と11.て酸化物超電導体を用いるため、通電
に伴うジュール熱の発生は画電極においてのみであり、
ジュール熱の発生量を低減させることができる。また、
端子には低抵抗金属を用いているため、接続部での接触
抵抗による発熱も小さい。(Function) In the method for manufacturing a superconducting power lead of the present invention, a power lead body and 11. Since an oxide superconductor is used in this process, Joule heat is generated only at the picture electrode when electricity is applied.
The amount of Joule heat generated can be reduced. Also,
Since the terminals are made of low-resistance metal, there is little heat generation due to contact resistance at the connection.
さらには、酸化物超電導体の熱伝導率は、組成および密
度にもよるが、v−ea−cu−、o系で7〜10Wn
’に−1(90K)であり、銅の熱伝導率483Wn−
’ X −’ (100K)に比べて小さく、特にこれ
を粉末にして円筒状管内に充填したものではさらに熱伝
導率が小さくなるため、パワーリードを通じてのジュー
ル熱や外部からの熱侵入を低減させることができる。Furthermore, although it depends on the composition and density, the thermal conductivity of oxide superconductors is 7 to 10 Wn in the v-ea-cu-, o system.
-1 (90K), and the thermal conductivity of copper is 483Wn-
' be able to.
(実施例) 以下、本発明の実施例について図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
実施例
酸化物超電導体の原料として、BaCO3粉末2mo1
%、Y2O3粉末0.57IO1%、CuO粉末3io
1%を用い、これらを充分混合して大気中900℃で8
時間焼成した後ボールミルを用いて粉砕して、酸化物超
電導体粉末を得、第1図に示すように、この酸化物超電
導体粉末1を、外径80111、内径70mm、長さ2
00mmの一端を銀材2により封止した鋼管3に充填し
た後銀材4により栓をした0次いで、第2図に示すよう
に、ダイス5を用いて外径がsnnになるまで減面加工
を施し、950℃で5時間熱処理した後長さiooma
に切断し、端面をスパッタリング法により銀で被覆した
後、第3図に示すように、両端から201111の銀層
を端子6として残して、他の銀層をバイト7を用いて除
去して棒状体8を得た。この棒状体8を酸素含有雰囲気
中で950℃で10時間熱処理した後、600℃以下を
1℃/分で徐冷して酸化物超電導体の結晶#I遣中の酸
素空席に酸素を導入し、超電導特性を向上させた。しか
る後、第4図に示すように、銀層の除去部分をエポキシ
樹脂で被覆して絶縁物層9を設け、超電導パワーリード
10を得た。Example 2 mol of BaCO3 powder was used as a raw material for the oxide superconductor.
%, Y2O3 powder 0.57IO1%, CuO powder 3io
1%, mix them thoroughly and heat them at 900℃ in the atmosphere for 8 hours.
After firing for an hour, the oxide superconductor powder was crushed using a ball mill to obtain an oxide superconductor powder.As shown in FIG.
One end of 00 mm was filled into a steel pipe 3 sealed with a silver material 2, and then plugged with a silver material 4. Then, as shown in FIG. 2, the area was reduced using a die 5 until the outer diameter became snn. After heat treatment at 950℃ for 5 hours, the length iooma
After coating the end faces with silver by sputtering, as shown in Fig. 3, a silver layer of 201111 is left as a terminal 6 from both ends, and the other silver layer is removed using a cutting tool 7 to form a bar shape. Obtained body 8. This rod-shaped body 8 was heat-treated at 950°C for 10 hours in an oxygen-containing atmosphere, and then slowly cooled to 600°C or less at a rate of 1°C/min to introduce oxygen into the oxygen vacancies in the crystal #I of the oxide superconductor. , improved superconducting properties. Thereafter, as shown in FIG. 4, the removed portion of the silver layer was covered with epoxy resin to provide an insulator layer 9, thereby obtaining a superconducting power lead 10.
この超電導パワーリードの90Kにおける臨界電流密度
は260^/−1熱伝導率は11Wl−I K −1,
50Aの通電時における総発熱量は0.31mWであっ
た。The critical current density of this superconducting power lead at 90K is 260^/-1, and the thermal conductivity is 11Wl-I K-1,
The total amount of heat generated when a current of 50 A was applied was 0.31 mW.
なお、この実施例の超電導パワーリードに、第5図に示
すように、端子6に銅、アルミニウムなどからなる端子
金具11を半田付は法、圧着法、冷しぼめ法等により取
付けたり、端子の外側にインジウム等の低融点の軟金属
層を設けた場合にもほぼ同様の特性が得られた。In the superconducting power lead of this embodiment, as shown in FIG. Almost the same characteristics were obtained when a layer of a soft metal with a low melting point such as indium was provided on the outside.
第1図ないし第5図において、共通する部材については
、同一の符号を付しである。In FIGS. 1 to 5, common members are designated by the same reference numerals.
[発明の効果]
以上説明したように、本発明による得られる超電導パワ
ーリードは、通電に伴うジュール熱の発生量が少ない、
また、熱伝導率も小さいため、液体ヘリウム等の冷媒を
用いて使用する超電導線材と外部機器との接続に用いた
場合でも、外部からの熱侵入を低減させることができる
。[Effects of the Invention] As explained above, the superconducting power lead obtained according to the present invention generates less Joule heat when energized.
Furthermore, since the thermal conductivity is low, even when used to connect a superconducting wire using a coolant such as liquid helium to an external device, heat intrusion from the outside can be reduced.
第1図ないし第4図は本発明による超電導パワーリード
の製造手順を示す断面図、第5図は本発明により得た超
電導パワーリードの端子に端子金具を設けた状態を示す
断面図である。
1・・・・・・・・・酸化物超電導体
2・・・・・・・・・鋼管
6・・・・・・・・・端子
8・・・・・・・・・棒状体
9・・・・・・・・・絶縁物層
10・・・・・・・・・超電導パワーリード出願人
株式会社 東芝
代理人弁理士 須 山 佐 −
第1図
第2図
第3図1 to 4 are cross-sectional views showing the manufacturing procedure of the superconducting power lead according to the present invention, and FIG. 5 is a cross-sectional view showing the superconducting power lead obtained according to the present invention with terminal fittings provided on the terminals. 1... Oxide superconductor 2... Steel pipe 6... Terminal 8... Rod-shaped body 9. ......Insulator layer 10...Superconducting power lead applicant
Toshiba Corporation Patent Attorney Sasa Suyama - Figure 1 Figure 2 Figure 3
Claims (5)
出発原料粉末を高密度に充填し熱処理する工程と、前記
低抵抗金属管の一部または全部を除去して得られた棒状
体を酸素含有雰囲気中で熱処理する工程と、前記熱処理
の前または後に前記棒状体の両端に低抵抗金属により端
子を形成する工程と、前記熱処理の施された棒状体の外
周に前記端子間に跨って高抵抗物質または絶縁物質の被
覆を形成する工程とを有することを特徴とする超電導パ
ワーリードの製造方法。(1) A process of filling a low-resistance metal tube with oxide superconductor powder or its starting material powder at high density and heat-treating the same, and removing a part or all of the low-resistance metal tube to oxygenate the rod-shaped body obtained. a step of heat-treating in a containing atmosphere; a step of forming terminals with a low-resistance metal at both ends of the rod-shaped body before or after the heat treatment; 1. A method for manufacturing a superconducting power lead, comprising the step of forming a coating of a resistive material or an insulating material.
る特許請求の範囲第1項記載の超電導パワーリードの製
造方法。(2) The method for manufacturing a superconducting power lead according to claim 1, wherein the low resistance metal is silver or gold.
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項または第2項記載の超電導パワーリ
ードの製造方法。(3) The method for manufacturing a superconducting power lead according to claim 1 or 2, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項記載の超電導パワーリードの製造方法。(4) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The method for manufacturing a superconducting power lead according to any one of claims 1 to 3, characterized in that the superconducting power lead contains u in an atomic ratio of substantially 1:2:3.
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項記載の超
電導パワーリードの製造方法。(5) The oxide superconductor is LnBa_2Cu_3O_7
A method for manufacturing a superconducting power lead according to any one of claims 1 to 4, which has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect). .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62281630A JP2509642B2 (en) | 1987-11-06 | 1987-11-06 | Superconducting power lead manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62281630A JP2509642B2 (en) | 1987-11-06 | 1987-11-06 | Superconducting power lead manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01123405A true JPH01123405A (en) | 1989-05-16 |
JP2509642B2 JP2509642B2 (en) | 1996-06-26 |
Family
ID=17641790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62281630A Expired - Fee Related JP2509642B2 (en) | 1987-11-06 | 1987-11-06 | Superconducting power lead manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2509642B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316202A (en) * | 1989-06-14 | 1991-01-24 | Furukawa Electric Co Ltd:The | Conductor for current lead |
JPH0319206A (en) * | 1989-06-15 | 1991-01-28 | Furukawa Electric Co Ltd:The | Conductor for current lead |
-
1987
- 1987-11-06 JP JP62281630A patent/JP2509642B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316202A (en) * | 1989-06-14 | 1991-01-24 | Furukawa Electric Co Ltd:The | Conductor for current lead |
JPH0319206A (en) * | 1989-06-15 | 1991-01-28 | Furukawa Electric Co Ltd:The | Conductor for current lead |
Also Published As
Publication number | Publication date |
---|---|
JP2509642B2 (en) | 1996-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2754564B2 (en) | Method for producing superconducting composite | |
JP2636049B2 (en) | Method for producing oxide superconductor and method for producing oxide superconducting wire | |
US7722918B2 (en) | Process for the preparation of high temperature superconducting bulk current leads with improved properties and superconducting bulk current leads made thereby | |
US6074991A (en) | Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process | |
US5882536A (en) | Method and etchant to join ag-clad BSSCO superconducting tape | |
JPH01123405A (en) | Manufacture of superconducting power lead | |
EP0409150B1 (en) | Superconducting wire | |
WO1993002460A1 (en) | Method for manufacturing superconductive wire material of bismuth based oxide | |
CA1338460C (en) | Method for making superconductive electric wire | |
JPS63236218A (en) | Superconductive wire | |
JP2558695B2 (en) | Method for manufacturing oxide superconducting wire | |
JP2563391B2 (en) | Superconducting power lead | |
JPH06275146A (en) | Composite superconducting wire | |
JP2563564B2 (en) | Superconducting oxide wire | |
JPS63291311A (en) | Superconducting wire | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
JPS63299012A (en) | Superconductive fiber and its manufacture | |
JPH10330117A (en) | Oxide superconductor, its production and current lead using the same | |
JP3088833B2 (en) | Oxide superconductor for current leads | |
JPH04292814A (en) | Manufacture of bismuth-based oxide superconductive wire | |
JPH06187848A (en) | Oxide superconducting wire and manufacture thereof | |
JPH01162310A (en) | Manufacture of oxide superconducting power lead wire | |
JPH01151169A (en) | Oxide superconducting member | |
CA1338753C (en) | Method of producing oxide superconducting wire and oxide superconducting wire produced by this method | |
JPH01134809A (en) | Superconductive wire material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |