JP2590157B2 - Manufacturing method of superconductor wire - Google Patents

Manufacturing method of superconductor wire

Info

Publication number
JP2590157B2
JP2590157B2 JP62312891A JP31289187A JP2590157B2 JP 2590157 B2 JP2590157 B2 JP 2590157B2 JP 62312891 A JP62312891 A JP 62312891A JP 31289187 A JP31289187 A JP 31289187A JP 2590157 B2 JP2590157 B2 JP 2590157B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
wire
oxygen
metal tube
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62312891A
Other languages
Japanese (ja)
Other versions
JPH01154409A (en
Inventor
健 安藤
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62312891A priority Critical patent/JP2590157B2/en
Publication of JPH01154409A publication Critical patent/JPH01154409A/en
Application granted granted Critical
Publication of JP2590157B2 publication Critical patent/JP2590157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を使用した超電導体線材の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a superconductor wire using an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて以来、各所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter64,189−193(1986))。
その中でもY−Ba−Cu−O系で代表される酸素欠陥を有
する欠陥ペロブスカイト型((LnBa2Cu3O7−δ型)
(δは酸素欠陥を表し通常1以下、Lnは、Y、La、Sc、
Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbおよびLuから選ば
れた少なくとも1種の元素、Baの一部はSrなどで置換可
能))の酸化物超電導体は、臨界温度が90K以上と液体
窒素の沸点以上の高い温度を示すため非常に有望な材料
として注目されている(Phys.Rev.Lett.Vol.58No.9,908
−910)。
(Prior Art) In recent years, since it was announced that a Ba-La-Cu-O-based layered perovskite-type oxide may have a high critical temperature, research on oxide superconductors has been carried out in various places. (Z. Phys. B Condensed Matter 64, 189-193 (1986)).
Among them, a defect perovskite type having an oxygen defect represented by a Y-Ba-Cu-O system ((LnBa 2 Cu 3 O 7-δ type)
(Δ represents an oxygen vacancy, usually 1 or less, and Ln is Y, La, Sc,
At least one element selected from Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, and part of Ba can be replaced with Sr, etc.)) Has been attracting attention as a very promising material because of its high temperature of 90K or higher, which is higher than the boiling point of liquid nitrogen (Phys. Rev. Lett. Vol. 58 No. 9, 908)
−910).

ところで、このような酸化物超電導体は、結晶性の酸
化物の焼結体あるいはその粉末として得られるため、こ
れらをたとえば線材として利用する場合、金属管に酸化
物超電導体粉末を充填した後、線引きするなどして長尺
化して使用することが試みられている。
By the way, since such an oxide superconductor is obtained as a sintered body of a crystalline oxide or a powder thereof, when these are used as a wire, for example, after filling the metal tube with the oxide superconductor powder, Attempts have been made to lengthen and use it by drawing.

このような超電導体線材の製造方法についてさらに具
体的に述べると、まず銀などからなる金属管に酸化物超
電導体粉末を充填し、これを冷間で所要の線径まで伸線
加工して長尺な線材にする。そして、この後酸素を充分
に供給することが可能な雰囲気中で熱処理を行い、超電
導特性を向上させ超電導体線材を製造している。
More specifically, such a method for manufacturing a superconductor wire is described below. First, a metal tube made of silver or the like is filled with an oxide superconductor powder, which is cold-drawn to a required wire diameter and lengthened. Make a long wire. Thereafter, heat treatment is performed in an atmosphere in which oxygen can be sufficiently supplied to improve superconductivity and manufacture a superconductor wire.

(発明が解決しようとする問題点) しかしながら、上述した超電導体線材の製造方法で
は、圧縮粉体をそのまま加工しているので加工性が悪
く、また伸線加工時に粉体の密集率が低下し、この後に
熱処理を施して緻密化しても充分緻密質なものが得られ
ず、充分実用的な臨界電流密度が得られないという問題
がある。また、熱処理時に酸化物超電導体粉末の焼結に
よって、酸化物超電導体の金属管内における体積が減少
し、酸化物超電導体中にクラックが発生したり、金属管
と酸化物超電導体間に空隙が生じて機械的強度が低下す
るという問題がある。このような機械的強度の低下は、
外部からの曲げや引張りなどの応力によって生じる歪量
の増大を招いてしまう。ここで、前述したペロブスカイ
ト構造を有する酸化物超電導体は、歪量の増大に伴って
臨界温度や臨界電流密度などの超電導特性が低下するた
め、空隙の発生によって生じる歪量の増加は、超電導特
性の低下を招くこととなる。
(Problems to be Solved by the Invention) However, in the above-described method for manufacturing a superconductor wire, the compacted powder is processed as it is, so that the processability is poor, and the density of the powder decreases during wire drawing. However, there is a problem that a sufficiently dense material cannot be obtained even if heat treatment is performed thereafter to densify, and a sufficiently practical critical current density cannot be obtained. In addition, due to sintering of the oxide superconductor powder during heat treatment, the volume of the oxide superconductor in the metal tube is reduced, cracks are generated in the oxide superconductor, and voids are formed between the metal tube and the oxide superconductor. This causes a problem that the mechanical strength is reduced. Such a decrease in mechanical strength
This leads to an increase in the amount of strain caused by stress such as bending or pulling from the outside. Here, in the oxide superconductor having a perovskite structure described above, the superconducting properties such as critical temperature and critical current density decrease as the strain increases, so that the increase in strain caused by the generation of voids is caused by the superconductivity. Will be reduced.

また、上述した酸化物超電導体は、結晶のc面方向に
超電導電流が流れるという性質を有しており、単に長尺
化しただけでは結晶の配列方向がランダムとなり、これ
によっても超電導特性が不十分なものになってしまう。
In addition, the above-described oxide superconductor has a property that a superconducting current flows in the c-plane direction of the crystal. If the length of the oxide superconductor is simply increased, the arrangement direction of the crystal becomes random. It will be enough.

本発明はこのような従来の問題点を解決するためにな
されたもので、酸化物超電導体を充填した金属管の加工
性を向上させて緻密性を向上させるとともに、酸化物超
電導体の結晶を一定方向に配向させることによって超電
導特性を向上させた超電導体線材の製造方法を提供する
ことを目的とする。
The present invention has been made in order to solve such a conventional problem, and improves the workability of a metal tube filled with an oxide superconductor, thereby improving the denseness, and improving the crystal of the oxide superconductor. It is an object of the present invention to provide a method for manufacturing a superconductor wire having superconductivity improved by orienting in a certain direction.

[発明の構成] (問題点を解決するための手段) 第1の超電導体線材の製造方法は、酸化物超電導体粉
末あるいは焼結体を、銀を主成分とする金属管内に充填
し、この金属管をそのまま、あるいは一旦熱処理を施し
た後に、500℃〜900℃の温度条件による熱間で伸線加工
し、さらに酸素含有雰囲気中で300℃〜700℃の温度域で
数時間保持することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In a first method for manufacturing a superconductor wire, an oxide superconductor powder or a sintered body is filled in a metal tube containing silver as a main component. After drawing the metal tube as it is or after once applying heat treatment, draw it hot under a temperature condition of 500 ° C to 900 ° C, and hold it in an oxygen-containing atmosphere at a temperature range of 300 ° C to 700 ° C for several hours. It is characterized by.

また、第2の超電導体線材の製造方法は、酸化物超電
導体粉末あるいは焼結体を、銀を主成分とする金属管内
に充填し、この金属管をそのまま、あるいは一旦熱処理
を施した後に、500℃〜900℃の温度条件による熱間で伸
線加工し、さらに酸素含有雰囲気中で300℃まで徐冷す
ることを特徴としている。
Further, the second method for producing a superconducting wire is to fill an oxide superconductor powder or a sintered body into a metal tube containing silver as a main component and leave the metal tube as it is or after once performing a heat treatment. It is characterized in that wire drawing is performed at a temperature of 500 ° C. to 900 ° C. and then gradually cooled to 300 ° C. in an oxygen-containing atmosphere.

酸化物超電導体としては、多数のものが知られている
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体の使用が実用的効果が高い。ここで
いう希土類元素を含有しペロブスカイト型構造を有する
酸化物超電導体は、超電導状態を実現できるものであれ
ばよく、たとえばLnBa2Cu3O7−δ系(δは酸素欠陥を
表し通常1以下の数、Lnは、Y、La、Nd、Sm、Eu、Gd、
Dy、Ho、Er、Tm、Yb、Luなどの希土類元素から選ばれた
少なくとも1種の元素を表す;Baの一部はCaなどで置換
可能。)などの酸素欠陥を有する欠陥ペロブスカイト
型、Sr−La−Cu−O系などの層状ペロブスカイト型など
の広義にペロブスカイト型を有する酸化物が例示され
る。また、希土類元素は広義の定義とし、YおよびLa系
を含むものとする。代表的な系としてY−Ba−Cu−O系
のほかに、YをEu、Dy、Ho、Er、Tm、Yb、Luなどの希土
類で置換した系、Sr−La−Cu−O系、さらにSrをBa、Ca
で置換した系などが挙げられる。
Although many oxide superconductors are known, the use of a rare earth element-containing perovskite-type oxide superconductor having a high critical temperature has a high practical effect. The oxide superconductor containing a rare earth element and having a perovskite structure may be any material capable of realizing a superconducting state. For example, an LnBa 2 Cu 3 O 7-δ system (δ is an oxygen defect and usually 1 or less) , Ln is Y, La, Nd, Sm, Eu, Gd,
Represents at least one element selected from rare earth elements such as Dy, Ho, Er, Tm, Yb, and Lu; a part of Ba can be replaced with Ca or the like. ) And oxides having a perovskite type in a broad sense, such as a defect perovskite type having an oxygen defect, a layered perovskite type such as an Sr—La—Cu—O system, and the like. Rare earth elements are defined in a broad sense, and include Y and La-based elements. As typical systems, in addition to Y-Ba-Cu-O systems, systems in which Y is substituted with rare earth elements such as Eu, Dy, Ho, Er, Tm, Yb, and Lu; Sr-La-Cu-O systems; Sr to Ba, Ca
And the like.

本発明に使用される酸化物超電導体粉末は、たとえば
以下のようにして製造される。
The oxide superconductor powder used in the present invention is produced, for example, as follows.

まず、Y、Ba、Cuなどのペロブスカイト型酸化物超電
導体の構成元素を十分混合する。混合の際には、Y2O3
BaCO3、CuOなどの酸化物や炭酸塩を原料として用いるこ
とができるほか、焼成後酸化物に転化する硝酸塩、水酸
化物などの化合物を用いてもよい。さらには共沈法など
で得たシュウ酸塩などを用いてもよい。ペロブスカイト
型酸化物超電導体を構成する元素は、基本的に化学量論
比の組成となるように混合するが、多少製造条件などと
の関係でずれていても差支えない。たとえば、Y−Ba−
Cu−O系ではY 1molに対しBa 2mol、Cu 3molが標準組成
であるが、実用上はY 1molに対して、Ba 2±0.6mol、Cu
3±0.4mol程度のずれは問題ない。
First, the constituent elements of the perovskite-type oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. When mixing, Y 2 O 3 ,
Oxides and carbonates such as BaCO 3 and CuO can be used as raw materials, and compounds such as nitrates and hydroxides that are converted into oxides after firing may be used. Further, an oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a composition with a stoichiometric ratio, but may be slightly shifted depending on the production conditions and the like. For example, Y-Ba-
In a Cu-O system, the standard composition is 2 mol of Ba and 3 mol of Cu with respect to 1 mol of Y.
A deviation of about 3 ± 0.4 mol is not a problem.

そして、前述の原料を十分に混合した後、850〜980℃
程度の温度で焼成する。次いで、必要に応じて酸素含有
雰囲気中、好ましくは酸素雰囲気中で熱処理するか、ま
たは同様な雰囲気中で300℃程度まで徐冷することによ
り、酸素欠陥δに酸素を導入し超電導特性を向上させる
ことができる。この熱処理は、通常300〜700℃程度で行
う。
Then, after thoroughly mixing the above-mentioned raw materials, 850-980 ° C
Bake at a temperature of about. Then, if necessary, heat treatment is performed in an oxygen-containing atmosphere, preferably in an oxygen atmosphere, or by gradually cooling to about 300 ° C. in a similar atmosphere to introduce oxygen into oxygen defects δ and improve superconductivity. be able to. This heat treatment is usually performed at about 300 to 700 ° C.

次に、この焼成物をボールミル、サンドグラインダ、
その他公知の手段により粉砕する。このとき、ペロブス
カイト型の酸化物超電導体は、へき開面から分割されて
微粉末となる。この粉砕は、平均粒径が0.1〜5μmと
なるように行うことが好ましい。
Next, the fired product is ball mill, sand grinder,
Grind by other known means. At this time, the perovskite-type oxide superconductor is divided from the cleavage plane into a fine powder. This pulverization is preferably performed so that the average particle size is 0.1 to 5 μm.

このようにして得られた酸化物超電導体粉末は、酸素
欠陥δを有する酸素欠陥型ペロブスカイト構造(LnBa2C
u3O7−δ(δは通常1以下の数))となる。なお、Ba
をSrやCaなどで置換することも可能であり、さらにCuの
一部をTi、V、Cr、Mn、Fe、Co、Ni、Znなどで置換する
こともできる。この置換量は、超電導特性を低下させな
い程度の範囲で適宜設定可能であるが、あまり多量の置
換は超電導特性を低下させてしまうので80mol%以下と
する。
The oxide superconductor powder obtained in this manner has an oxygen-defective perovskite structure (LnBa 2 C
u 3 O 7−δ (δ is usually 1 or less)). In addition, Ba
Can be replaced by Sr, Ca, or the like, and a part of Cu can be replaced by Ti, V, Cr, Mn, Fe, Co, Ni, Zn, or the like. The amount of substitution can be appropriately set within a range that does not deteriorate the superconducting characteristics, but is set to 80 mol% or less because excessively large amount of substitution deteriorates the superconducting characteristics.

本発明の超電導体線材の製造方法についてさらに詳述
すると、まず上述したような方法により作製した酸化物
超電導体粉末、あるいは上記粉末をプレス成形後、900
℃〜950℃程度の温度で焼結させた焼結体を銀を主成分
とする金属管内に充填し、スウェージングマシンなどに
より管材外から粉末をつき固めた後、500℃〜900℃の温
度条件により熱間で、たとえばローラダイスや通常のダ
イスによって伸線加工を施し長尺化して所要形状の条材
に加工する。この伸線加工は、酸化物超電導体粉末を充
填した状態で行ってもよいし、あるいはこの酸化物超電
導体粉末の充填された金属管に、予め850℃〜980℃程度
の温度条件による熱処理を施し、酸化物超電導体を緻密
化した後に行ってもよい。
The method of manufacturing the superconductor wire of the present invention will be described in further detail. First, the oxide superconductor powder prepared by the above-described method, or after pressing the powder, 900
A sintered body sintered at a temperature of about ℃ to 950 ° C is filled in a metal tube containing silver as a main component, and a powder is hardened from the outside of the tube material by a swaging machine or the like. Depending on the conditions, the wire is drawn by a hot process, for example, using a roller die or a normal die, lengthened, and processed into a strip having a required shape. This wire drawing may be performed in a state where the oxide superconductor powder is filled, or a metal tube filled with the oxide superconductor powder is subjected to a heat treatment in advance at a temperature of about 850 ° C to 980 ° C. And after densifying the oxide superconductor.

また、本発明に使用する銀を主成分とする金属管は、
高温においても酸化されず、酸素供給能力および形状維
持能力に優れるものである。
Further, the metal tube containing silver as a main component used in the present invention,
It is not oxidized even at a high temperature, and has excellent oxygen supply ability and shape maintaining ability.

このようにして熱間で伸線加工を施すことにより、酸
化物超電導体の加工性が増し、緻密性が向上するととも
に、この酸化物超電導体の緻密化の進行により空隙の発
生を防止することも可能となる。また、伸線時に酸化物
超電導体が塑性変形を起こし、結晶粒を金属管の長手方
向に配向させることが可能となる。
By performing the hot wire drawing in this manner, the workability of the oxide superconductor is increased, the compactness is improved, and the generation of voids is prevented by the progress of the compaction of the oxide superconductor. Is also possible. In addition, the plastic deformation of the oxide superconductor occurs at the time of wire drawing, and the crystal grains can be oriented in the longitudinal direction of the metal tube.

この伸線加工時の温度条件を500℃〜900℃の範囲と限
定した理由は、500℃未満では酸化物超電導体の塑性変
形が不十分であるとともに、加工性向上効果が充分に得
られず、900℃を超えると銀の融点に近くなるため、逆
に加工性に悪影響をおよぼす恐れがあるからである。
The reason for limiting the temperature condition at the time of this wire drawing to a range of 500 ° C to 900 ° C is that at less than 500 ° C, the plastic deformation of the oxide superconductor is insufficient, and the effect of improving the workability is not sufficiently obtained. If the temperature exceeds 900 ° C., the melting point of silver becomes close to that of silver, which may adversely affect the processability.

なお、この熱間加工の後に冷間で加工を行ってもよい
が、あまり冷間加工を施すと酸化物超電導体にクラック
が生じる危険性が増すため、整面加工程度がよい。
Note that cold working may be performed after this hot working. However, if the cold working is performed too much, the risk of cracks occurring in the oxide superconductor increases, so that the surface smoothing is preferably performed.

次に、この伸線加工により最終形状まで加工された条
状を充分に酸素を供給することが可能な酸素含有雰囲気
中で熱処理し、超電導特性を向上させる。この熱処理
は、850℃〜950℃程度の温度で、1時間〜50時間程度の
条件により行うことが適当である。そして、この後にさ
らに300℃程度まで酸素を充分に供給しながら徐冷した
り、酸素を充分に供給しながら300℃〜700℃程度の温度
で数時間程度保持することによりさらに超電導特性が向
上する。
Next, the strip shape processed to the final shape by the wire drawing is subjected to a heat treatment in an oxygen-containing atmosphere where oxygen can be sufficiently supplied to improve the superconductivity. This heat treatment is suitably performed at a temperature of about 850 ° C. to 950 ° C. for about 1 hour to 50 hours. Then, after this, the superconducting properties are further improved by gradually cooling while sufficiently supplying oxygen to about 300 ° C. or maintaining the temperature at about 300 ° C. to 700 ° C. for several hours while sufficiently supplying oxygen. .

(作 用) 本発明の超電導体線材の製造方法においては、熱間で
伸線加工を施しているので、酸化物超電導体の加工性が
増し、この加工によって酸化物超電導体の緻密性が低下
する恐れが減少するとともに、この伸線加工時にある程
度酸化物超電導体の緻密化が進行するので、最終熱処理
においても金属管と酸化物超電導体間の空隙の発生が防
止される。また、伸線加工時に酸化物超電導体が塑性変
形を起こしつつ線材の長手方向へ引き伸ばされるため、
結晶粒のc面が金属管の長手方向に配向される。そし
て、最終熱処理時にはさらにこの配向状態に沿って結晶
粒の成長が起こり、したがって得られる超電導体線材は
線材の長手方向に結晶のc面が配向したものとなり、臨
界電流密度に優れたものとなる。
(Operation) In the method for producing a superconductor wire of the present invention, since the hot wire drawing is performed, the workability of the oxide superconductor is increased, and the processing reduces the denseness of the oxide superconductor. In addition, since the density of the oxide superconductor advances to some extent during the wire drawing, the generation of voids between the metal tube and the oxide superconductor is prevented even in the final heat treatment. Also, at the time of wire drawing, the oxide superconductor is stretched in the longitudinal direction of the wire while causing plastic deformation,
The c-plane of the crystal grain is oriented in the longitudinal direction of the metal tube. Then, at the time of the final heat treatment, crystal grains grow further along this orientation state, so that the resulting superconductor wire has the c-plane of the crystal oriented in the longitudinal direction of the wire, and has an excellent critical current density. .

(実施例) 次に、本発明の実施例について説明する。(Example) Next, an example of the present invention is described.

実施例 粒径1〜5μmのY2O3粉末、BaCO3粉末およびCuO粉末
を、Y2O30.5mol、BaCO32mol、CuO3molとなるように所定
量評量し、これを充分混合した後大気中900℃で48時間
焼成して反応させ、次いでこの焼成物をさらに酸素雰囲
気中で800℃で24時間焼成して反応させて酸素空席に酸
素を導入した後、ボールミルを用いて粉砕し、平均粒径
0.5μmのペロブスカイト型の酸化物超電導体粉末を得
た。
Example Y 2 O 3 powder having a particle size of 1 to 5 μm, BaCO 3 powder and CuO powder were weighed in a predetermined amount so as to be 0.5 mol of Y 2 O 3 , 2 mol of BaCO 3 and 3 mol of CuO, and after sufficient mixing, After firing at 900 ° C. in the air for 48 hours and reacting, then firing this product at 800 ° C. for 24 hours in an oxygen atmosphere and reacting to introduce oxygen into the oxygen vacant space, then pulverizing using a ball mill, Average particle size
A 0.5 μm perovskite oxide superconductor powder was obtained.

次に、この酸化物超電導体粉末を外径20mm×内径16mm
×長さ70mmの一端を銀材により封止されたた銀管中に入
れ、プレス圧1ton/cm2でつきかためた後、他端に銀栓を
して通気孔を残して溶接した。
Next, this oxide superconductor powder was prepared for an outer diameter of 20 mm and an inner diameter of 16 mm.
× One end of a length of 70 mm was placed in a silver tube sealed with a silver material, and after being pressed with a press pressure of 1 ton / cm 2 , a silver stopper was attached to the other end, and welding was performed while leaving a vent hole.

次いで、この金属管を加熱炉で700℃に加熱しつつ伸
線加工し、外径1mmの条材を作製した。
Subsequently, the metal tube was drawn while being heated to 700 ° C. in a heating furnace, thereby producing a strip having an outer diameter of 1 mm.

この後、この線状体を酸素雰囲気中において、900℃
×24時間、400℃×48時間の条件により熱処理を施し、
目的とする超電導体線材を得た。
Thereafter, the linear body is heated at 900 ° C. in an oxygen atmosphere.
Heat treatment under the conditions of × 24 hours, 400 ° C × 48 hours,
The target superconductor wire was obtained.

このようにして得た超電導体線材の超電導特性を測定
したところ、臨界温度90K、線材の長手方向における臨
界電流密度2000A/cm2とそれぞれ良好な結果が得られ
た。
When the superconducting properties of the superconducting wire thus obtained were measured, good results were obtained with a critical temperature of 90 K and a critical current density of 2000 A / cm 2 in the longitudinal direction of the wire.

また、この超電導体線材の密度を断面組織から求めた
ところ、98%と良好なものであった。さらに、酸化物超
電導体の配向度をX線回折により調べたところ、結晶の
c面が線の長手方向に70%配向していた。
When the density of the superconductor wire was determined from the cross-sectional structure, it was as good as 98%. Further, when the degree of orientation of the oxide superconductor was examined by X-ray diffraction, it was found that the c-plane of the crystal was oriented 70% in the longitudinal direction of the line.

一方、本発明との比較のために、上記実施例における
伸線加工を冷間で行う以外は同一条件により超電導体線
材を作製し、この超電導体線材についても同様にその特
性を測定したところ、臨界温度90K、臨界電流密度1000A
/cm2、密度85%であり、また結晶のc面配向は認められ
なかった。
On the other hand, for comparison with the present invention, except that the wire drawing in the above example was performed cold, a superconductor wire was produced under the same conditions, and the characteristics of the superconductor wire were similarly measured. Critical temperature 90K, critical current density 1000A
/ cm 2 , density 85%, and no c-plane orientation of the crystal was observed.

[発明の効果] 以上の実施例からも明らかなように、本発明の超電導
体線材の製造方法によれば、伸線加工を500℃〜900℃の
温度状による熱間で行っているので、酸化物超電導体の
緻密性が向上するとともに金属管と酸化物超電導体間の
空隙の発生が防止され、また熱間加工により酸化物超電
導体が塑性変形を起こすため、線材の長手方向に結晶の
c面を配向させることが可能となる。よって、臨界電流
密度が大幅に向上し、実用的な超電導体線材が得られ
る。
[Effects of the Invention] As is clear from the above examples, according to the method for manufacturing a superconductor wire of the present invention, the wire drawing is performed hot at a temperature of 500 ° C to 900 ° C. The denseness of the oxide superconductor is improved, the generation of voids between the metal tube and the oxide superconductor is prevented, and the oxide superconductor undergoes plastic deformation by hot working. It becomes possible to orient the c-plane. Therefore, the critical current density is greatly improved, and a practical superconductor wire can be obtained.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体粉末あるいは焼結体を、銀
を主成分とする金属管内に充填し、この金属管をそのま
ま、あるいは一旦熱処理を施した後に、500℃〜900℃の
温度条件による熱間で伸線加工し、さらに酸素含有雰囲
気中で300℃〜700℃の温度域で数時間保持することを特
徴とする超電導体線材の製造方法。
An oxide superconductor powder or a sintered body is filled in a metal tube containing silver as a main component, and the metal tube is subjected to a temperature condition of 500 ° C. to 900 ° C. as it is or once subjected to a heat treatment. A method for producing a superconducting wire, comprising: performing wire drawing by hot working under a temperature of 300 ° C. to 700 ° C. in an oxygen-containing atmosphere for several hours.
【請求項2】前記酸化物超電導体は、希土類元素を含有
するペロブスカイト型の酸化物超電導体であることを特
徴とする特許請求の範囲第1項記載の超電導体線材の製
造方法。
2. The method according to claim 1, wherein said oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
【請求項3】前記酸化物超電導体は、希土類元素、Baお
よびCuを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項記載の超電導体線材
の製造方法。
3. The superconductor according to claim 1, wherein said oxide superconductor contains a rare earth element, Ba and Cu in an atomic ratio of substantially 1: 2: 3. Manufacturing method of body wire.
【請求項4】前記酸化物超電導体は、LnBa2Cu3O7−δ
(Lnは希土類元素から選ばれた少なくとも1種を、δは
酸素欠陥を表す)で示される酸素欠陥型ペロブスカイト
構造を有することを特徴とする特許請求の範囲第1項記
載の超電導体線材の製造方法。
4. The oxide superconductor comprises LnBa 2 Cu 3 O 7-δ.
2. The superconducting wire according to claim 1, wherein the superconducting wire has an oxygen-defective perovskite structure represented by (Ln represents at least one selected from rare earth elements, and δ represents oxygen vacancy). Method.
【請求項5】酸化物超電導体粉末あるいは焼結体を、銀
を主成分とする金属管内に充填し、この金属管をそのま
ま、あるいは一旦熱処理を施した後に、500℃〜900℃の
温度条件による熱間で伸線加工し、さらに酸素含有雰囲
気中で300℃まで徐冷することを特徴とする超電導体線
材の製造方法。
5. An oxide superconductor powder or a sintered body is filled in a metal tube containing silver as a main component, and the metal tube is subjected to a temperature condition of 500 ° C. to 900 ° C. as it is or once subjected to a heat treatment. A method for producing a superconducting wire, comprising: drawing a wire by hot working according to (1), and gradually cooling to 300 ° C. in an oxygen-containing atmosphere.
JP62312891A 1987-12-10 1987-12-10 Manufacturing method of superconductor wire Expired - Lifetime JP2590157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312891A JP2590157B2 (en) 1987-12-10 1987-12-10 Manufacturing method of superconductor wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312891A JP2590157B2 (en) 1987-12-10 1987-12-10 Manufacturing method of superconductor wire

Publications (2)

Publication Number Publication Date
JPH01154409A JPH01154409A (en) 1989-06-16
JP2590157B2 true JP2590157B2 (en) 1997-03-12

Family

ID=18034689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312891A Expired - Lifetime JP2590157B2 (en) 1987-12-10 1987-12-10 Manufacturing method of superconductor wire

Country Status (1)

Country Link
JP (1) JP2590157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151358A1 (en) * 2018-01-31 2019-08-08 Koa株式会社 Oxygen sensor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457525A (en) * 1987-08-26 1989-03-03 Mitsubishi Metal Corp Manufacture of working member for superconducting ceramics

Also Published As

Publication number Publication date
JPH01154409A (en) 1989-06-16

Similar Documents

Publication Publication Date Title
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JP2590157B2 (en) Manufacturing method of superconductor wire
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JP2554659B2 (en) Composite oxide superconductor wire connection
JP2565954B2 (en) Method for manufacturing superconductor coil
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2644245B2 (en) Oxide superconducting wire
JP2597579B2 (en) Superconductor manufacturing method
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2554658B2 (en) How to connect complex oxide superconductors
JPH01160876A (en) Production of superconductor parts
JPH01241713A (en) Manufacture of oxide superconductor wire
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2574173B2 (en) Superconducting wire manufacturing method
JP2597578B2 (en) Superconductor manufacturing method
JPH01128317A (en) Manufacture of superconductive wire material
JPH01115015A (en) Manufacture of superconductor wire material
JPH07115872B2 (en) Oxide superconductor and method for manufacturing the same
JPH01163915A (en) Manufacture of oxide superconductive wire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12