JPH03271156A - Production of oxide superconductor bulk - Google Patents

Production of oxide superconductor bulk

Info

Publication number
JPH03271156A
JPH03271156A JP2071181A JP7118190A JPH03271156A JP H03271156 A JPH03271156 A JP H03271156A JP 2071181 A JP2071181 A JP 2071181A JP 7118190 A JP7118190 A JP 7118190A JP H03271156 A JPH03271156 A JP H03271156A
Authority
JP
Japan
Prior art keywords
oxide superconductor
boat
sintered material
bulk
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071181A
Other languages
Japanese (ja)
Inventor
Yuichi Ishikawa
雄一 石川
Junichi Ishiai
石合 淳一
Masahiro Kojima
正大 小嶋
Hideji Yoshizawa
吉澤 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2071181A priority Critical patent/JPH03271156A/en
Publication of JPH03271156A publication Critical patent/JPH03271156A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a large-sized oxide superconductor having crystal orientation and exhibiting high critical current density at a high temperature by sintering raw material powder of an oxide superconductor and crystallizing the sintered material by high-frequency heat-treatment with a zone-melting apparatus. CONSTITUTION:A sintered material is produced by sintering, in a refractory boat, a powdery raw material for an oxide superconductor or a plurality of powdery raw materials for oxide superconductor compounded in such a manner as to get a specific molar ratios of metallic elements to constitute the oxide superconductor. The boat containing the sintered product is placed in a quartz tube of a zone-melting apparatus, the atmosphere in the apparatus is substituted with an inert gas and the sintered material is crystallized by high-frequency heating using a carbon support. The crystals are oriented by moving the heating part to successively shift the crystallizing part of the sintered material. The oriented sintered material is taken out of the apparatus together with the boat and slowly cooled from a high temperature to room temperature in oxygen atmosphere to stabilize the crystal orientation in the crystallized product.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物超伝導体バルクの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing bulk oxide superconductors.

[従来の技術] 酸化物超伝導体バルクの製造方法としては、下記に示す
ように焼結法と溶融法とが知られている。
[Prior Art] As methods for producing bulk oxide superconductors, the sintering method and the melting method are known as shown below.

(1)焼結法 焼結法には2つの方法があり、その1つは、Yt Os
 、BaCO3及びCu0xの各粉末、またはYt O
s −Ba0x (+≦X≦2)及びCu0y(1/2
≦y≦1)の各粉末を所定量ずつよく混合した後に、9
00〜950℃で焼成し、Y+ BagCu−0−□の
バルクを形成する方法である。他の1つは、Yt Os
 、BaCO3及びCuOの各粉末を所定量硝酸で溶か
した後、(COOH)z(シュウ酸)で共沈させてY:
Ba:Cu=l:2:3の組成の共沈物を作成し、これ
を850〜950℃で焼成してY + B a t C
u s Ot−*の微粉を作り、この粉末を用いてY+
BaxCusOチー8のバルクな形成する方法である。
(1) Sintering method There are two methods for sintering, one of which is Yt Os
, BaCO3 and CuOx powder, or YtO
s - Ba0x (+≦X≦2) and Cu0y (1/2
After thoroughly mixing a predetermined amount of each powder of ≦y≦1), 9
In this method, the bulk of Y+ BagCu-0-□ is formed by firing at a temperature of 00 to 950°C. The other one is Yt Os
, BaCO3 and CuO powders were dissolved in a predetermined amount of nitric acid, and then co-precipitated with (COOH)z (oxalic acid) to yield Y:
A coprecipitate with a composition of Ba:Cu=l:2:3 is created, and this is fired at 850 to 950°C to yield Y + B at C
Make a fine powder of u s Ot-* and use this powder to make Y+
This is a method for forming BaxCusO in bulk.

(2)溶融法 溶融法は、先ず酸化物超伝導体材料の原料であるYz 
Os 、BaCO3及びCu0xの混合物、またはY+
 Bag Cua 07−11のバルク材を1’、40
0〜1.500℃で溶融して型に流し込み、急冷してデ
ィスク状成形体を形成する。こうして形成されたディス
ク状成形体を1.200〜l、 000℃付近で焼成し
て、Y2BaCuO5の微結晶を作り、次いでl、 0
00℃以下でこれに、BaCu0z及びCuOを包晶反
応させてY + B at Cus 07−Xの超伝導
体を形成する方法である。超伝導体Y。
(2) Melting method In the melting method, first Yz, which is the raw material of the oxide superconductor material, is
Os, a mixture of BaCO3 and Cu0x, or Y+
Bag Cua 07-11 bulk material 1', 40
It is melted at 0 to 1.500°C, poured into a mold, and rapidly cooled to form a disk-shaped molded body. The disc-shaped molded body thus formed was fired at around 1.200 to 1,000°C to form microcrystals of Y2BaCuO5, and then heated to 1,000 to 1,000°C.
In this method, a superconductor of Y + Bat Cus 07-X is formed by subjecting BaCuOz and CuO to a peritectic reaction at a temperature of 00° C. or lower. Superconductor Y.

Bat Cus 0t−8と共存できる結晶として、上
記Yz BaCu0z 、B a Cu Ox及びCu
Oが選ばれ包晶反応に供されている。
As crystals that can coexist with Bat Cus 0t-8, the above-mentioned Yz BaCu0z, B a Cu Ox and Cu
O is selected and subjected to the peritectic reaction.

[発明が解決しようとする課題] しかしながら、上記従来の焼結法で得られるバルクは、
結晶粒間に空隙が生じ易い上に、結晶粒間で未反応のも
のが残り易いため、高密度で、高い臨界電流密度(Jc
)のバルクを製造することは非常に困難である。
[Problem to be solved by the invention] However, the bulk obtained by the above conventional sintering method is
In addition to easily forming voids between crystal grains, unreacted substances tend to remain between crystal grains, resulting in high density and high critical current density (Jc
) is very difficult to produce in bulk.

さらに、Y系、Bi系、T2系等の酸化物超伝導材料で
は、結晶軸の方向によって異方性を強く持ち、磁場に対
する電流密度の安定性やキャリア密度が異なるため、結
晶配向させる技術の確立が望まれていた。
Furthermore, oxide superconducting materials such as Y-based, Bi-based, and T2-based materials have strong anisotropy depending on the direction of their crystal axes, and the stability of current density and carrier density with respect to magnetic fields differ, so crystal orientation technology is difficult. It was hoped that it would be established.

一方、従来の溶融法では臨界電流密度(Jc)の比較的
高い超伝導体が得られるが、前記型に流し込んで急冷す
る際にクラックが発生し易く、また前記焼成は、前記デ
ィスク状成形体を敷き、板に載置して行われるが、この
ときディスク状成形体の一部が溶けて敷き板に融着する
ことがあるため、焼成後これをはがすときに成形体の一
部が破壊されるおそれがある。そのため、この溶融法で
は、大きな形状の超伝導体を得ることが困難であった・ なお、溶融法で作成されるバルクについても、焼結法の
場合と同様に、結晶配向させる新たな技術の確立が望ま
れていた。
On the other hand, although a superconductor with a relatively high critical current density (Jc) can be obtained by the conventional melting method, cracks are likely to occur when poured into the mold and rapidly cooled, and the sintering method This is done by placing a disc-shaped molded body on a plate and placing it on a plate. At this time, a part of the disc-shaped molded body may melt and adhere to the plate, so when it is peeled off after firing, a part of the molded body may be destroyed. There is a risk that Therefore, it was difficult to obtain large-sized superconductors using this melting method.As with the sintering method, new technology for crystal orientation is required for the bulk produced by the melting method. It was hoped that it would be established.

本発明の目的は、上記課題を解決して、高密度で高い臨
界を濃密度(Jc)を有し、かつ従来の焼結法ならびに
溶融法における共通の課題であった結晶軸の配向性を持
つ酸化物超伝導体バルクの製造方法を提供することにあ
る。
The purpose of the present invention is to solve the above problems, to have high density and high critical density (Jc), and to improve crystal axis orientation, which is a common problem in conventional sintering and melting methods. It is an object of the present invention to provide a method for producing a bulk oxide superconductor having the following properties.

[課題を解決するための手段] 本発明者らは、上記目的を達成すべく研究の結果、酸化
物超伝導体原料粉末の焼結と加熱処理との組み合わせ、
すなわち、上記原料粉末を焼結し、得られた焼結体を高
周波加熱処理する際、加熱部を順次移動して行うゾーン
メルティングの手法により、結晶における結晶軸の配向
を行えば、配向性を持ち、かつ高密度で高い臨界電流密
度を有するバルクが得られることを見出し、本発明に到
達した。
[Means for Solving the Problem] As a result of research to achieve the above object, the present inventors have developed a combination of sintering and heat treatment of oxide superconductor raw material powder,
In other words, when the raw material powder is sintered and the resulting sintered body is subjected to high-frequency heat treatment, the orientation of the crystal axes in the crystal can be improved by a zone melting method in which the heating section is sequentially moved. The inventors have discovered that it is possible to obtain a bulk having a high density and a high critical current density, and have arrived at the present invention.

すなわち、本発明は、酸化物超伝導体粉末または酸化物
超伝導体を構成すべき金属元素のモル比が所定の比率と
なるように配合した複数の酸化物超伝導体原料粉末を、
耐熱性ボート内に保持して焼結後、該焼結体を徐冷する
第1工程、次いで得られた焼結体を、不活性雰囲気下で
、高周波加熱処理により結晶化する第2工程、及び得ら
れた結晶体を酸素雰囲気炉において徐冷することにより
、該結晶体における結晶配向性の安定化を図る第3工程
からなることを特徴とする酸化物超伝導体バルクの製造
方法を提供するものである。
That is, the present invention provides oxide superconductor powder or a plurality of oxide superconductor raw material powders blended so that the molar ratio of the metal elements to constitute the oxide superconductor is a predetermined ratio,
A first step of slowly cooling the sintered body after sintering while holding it in a heat-resistant boat, and a second step of crystallizing the obtained sintered body by high-frequency heating treatment in an inert atmosphere. and a third step of stabilizing the crystal orientation in the crystal by slowly cooling the obtained crystal in an oxygen atmosphere furnace. It is something to do.

[作  用  ] 本発明の製造方法では、酸化物超伝導体原料粉末を収納
する耐熱性ボートとして、白金るつぼ、アルミするつぼ
またはマグネシャるつぼ等が使用される。また使用する
酸化物超伝導体粉末としてはY系やBi系粉末などがあ
り、これらを所定比率で混合して上記ボートに収納し1
.000〜1,200℃でlO〜2■時間焼結する(以
上第1工程)。
[Function] In the production method of the present invention, a platinum crucible, an aluminum crucible, a magnesia crucible, or the like is used as a heat-resistant boat for storing the oxide superconductor raw material powder. The oxide superconductor powders used include Y-based and Bi-based powders, which are mixed at a predetermined ratio and stored in the boat.
.. Sintering is performed at 000 to 1,200° C. for 10 to 2 hours (first step).

次いで得られた焼結体をボートとともにゾーンメルティ
ング装置の石英管にセットし、装置内を例えばArガス
を用いて不活性ガス雰囲気とし、ボートの下に設置しで
あるカーボンの台座を用いて高周波加熱を行う(以上第
2工程)、この場合、カーボンの台座からボートに熱が
伝わり、ボート内の酸化物超伝導体原料ち加熱されると
同時に結晶化が進行する。次いで加熱部の移動をl m
m/hr程度の速度で行って、焼結体の結晶化部分を順
次ずらすことによって結晶に配向性を持たせる。 配向
化された結晶体をボートとともにゾーンメルティング装
置から取り出した後、酸素雰囲気炉で600℃程度の高
温から室温まで50時間はどかけて徐冷し、結晶配向の
安定化を図る(以上第3工程)。
Next, the obtained sintered body and the boat were set in a quartz tube of a zone melting device, the inside of the device was made into an inert gas atmosphere using, for example, Ar gas, and a carbon pedestal placed under the boat was used. High frequency heating is performed (second step). In this case, heat is transmitted from the carbon pedestal to the boat, and the oxide superconductor raw material in the boat is heated and crystallization progresses at the same time. Next, move the heating part by l m
The crystallization is performed at a speed of approximately m/hr, and by sequentially shifting the crystallized portion of the sintered body, the crystals are given orientation. After taking out the oriented crystals together with the boat from the zone melting apparatus, they are slowly cooled in an oxygen atmosphere furnace from a high temperature of about 600°C to room temperature for 50 hours to stabilize the crystal orientation (see above). 3 steps).

したがって、本発明の製造方法では、上記の第1工程及
び第2工程によって原料の焼結、次いで加熱結晶化が進
行し5配同性が与えられ、さらに第3工程によって結晶
配向の安定化が図られているので、結晶の配向性を具備
し、かつ高密度で高い臨界電流密度を有する酸化物超伝
導体バルクが得られるのである。
Therefore, in the manufacturing method of the present invention, the raw material is sintered and then heated to crystallize in the first and second steps to give 5-isomerism, and the crystal orientation is further stabilized in the third step. As a result, an oxide superconductor bulk with crystal orientation, high density, and high critical current density can be obtained.

以下、実施例及び比較例により本発明をさらに説明する
The present invention will be further explained below with reference to Examples and Comparative Examples.

[実施例1] 平均粒径3μmのYz Ba+ Cut Osの粉末と
、平均粒径10μmのBaO及びCuOの粉末とをモル
比がY:Ba:Cu=l :2:3の割合になるように
混合して、長さ15cm、深さ2cm、幅2cmなる寸
法のマグネシア製ボートに入れ、これを加熱炉中で1.
100℃にて10時間保持し、冷却した(第1工程)。
[Example 1] Yz Ba + Cut Os powder with an average particle size of 3 μm and BaO and CuO powder with an average particle size of 10 μm were mixed in a molar ratio of Y:Ba:Cu=l:2:3. The mixture was placed in a magnesia boat measuring 15 cm long, 2 cm deep, and 2 cm wide, and heated in a heating furnace for 1.
It was held at 100° C. for 10 hours and cooled (first step).

次いで得られた焼結体をボートと共にカーボンの台座に
設置した後、台座をゾーンメルティング装置の中の6芙
管内に入れ、管内をArガス雰囲気とし、ガス圧は大気
圧の条件下で、高周波加熱を行い、加熱部を順次1 m
m/hrの速度でボートの長さに沿って移動させたく第
2工程)。
Next, the obtained sintered body was placed on a carbon pedestal together with the boat, and then the pedestal was placed in a six-hole tube in a zone melting device, and the inside of the tube was made into an Ar gas atmosphere, and the gas pressure was atmospheric pressure. High-frequency heating is performed, and the heating section is successively 1 m long.
2nd step) where we want to move it along the length of the boat at a speed of m/hr.

次いで加熱処理後、ボートを取り出して酸素雰囲気炉に
移し、600℃から室温まで50時間かけて徐冷するこ
とによりバルク中の結晶配向の安定化を図った(第3工
程)。
Next, after the heat treatment, the boat was taken out, transferred to an oxygen atmosphere furnace, and slowly cooled from 600° C. to room temperature over 50 hours to stabilize the crystal orientation in the bulk (third step).

得られたバルクの臨界温度Tcは90にで、JcはIO
’A/c−以上であった。また、X線分析により調べた
ところ、バルクの長平方向の断面では、C軸のピークが
強く、結晶が配向していることが判明した。
The critical temperature Tc of the obtained bulk is 90, and Jc is IO
'A/c- or higher. Further, when investigated by X-ray analysis, it was found that in the cross section of the bulk in the longitudinal direction, the C-axis peak was strong, indicating that the crystals were oriented.

[実施例2] 平均粒径3μmの、Yz Os 、BaO及びCuOの
粉末をモル比でY:Ba:Cu=l:2:3の割合とな
るように混合して、実施例1と同様のマグネシア製ボー
トに入れ、これを加熱炉中で1、200℃にて21時間
保持した後、さらに1.000”Cにて20時間保持し
て徐冷した(第1工程)。
[Example 2] Powders of YzOs, BaO and CuO with an average particle size of 3 μm were mixed in a molar ratio of Y:Ba:Cu=l:2:3, and the same procedure as in Example 1 was carried out. The mixture was placed in a magnesia boat, held in a heating furnace at 1,200°C for 21 hours, and then further held at 1,000''C for 20 hours for slow cooling (first step).

次いで得られたボートに実施例1に示した第2工程及び
第3工程の処理を施して所望のバルクを得た。
The obtained boat was then subjected to the second and third steps shown in Example 1 to obtain a desired bulk.

得られたバルクのTcは90にで、Jcは103A/C
−以上であった。また、X線分析により調べたところ、
実施例1と同様に、長平方向の断面ではC軸のピークが
強く、結晶が配向していることが判明した。
The resulting bulk Tc was 90 and Jc was 103A/C.
-That's all. In addition, when investigated by X-ray analysis,
As in Example 1, the C-axis peak was strong in the longitudinal cross-section, indicating that the crystals were oriented.

[実施例3] 平均粒径10μmのY+ Bat Cus O?−0の
粉末を実施例1と同様のマグネシア製ボートに入れ、こ
れを加熱炉中で1.100”Cにて20時間保持してか
ら徐冷した(第1工程)。
[Example 3] Y+ Bat Cus O? with an average particle size of 10 μm. -0 powder was placed in the same magnesia boat as in Example 1, held in a heating furnace at 1.100''C for 20 hours, and then slowly cooled (first step).

次いで得られた焼結体に実施例1に示した第2工程及び
第3工程の処理を施して所望のバルクを得た。
The obtained sintered body was then subjected to the second and third steps shown in Example 1 to obtain a desired bulk.

得られたバルクのTcは90にで、JcはIO″A/c
n+”以上であった。また、X線分析により調べたとこ
ろ、長手方向の断面ではC軸のピークが強く、結晶が配
向していることが判明した。
The resulting bulk Tc is 90 and Jc is IO″A/c
n+'' or more. Further, when examined by X-ray analysis, it was found that the C-axis peak was strong in the cross section in the longitudinal direction, indicating that the crystals were oriented.

[実施例4] 平均粒径3μm (7)B it Os 、 SrO,
CaO及びCuOの粉末を、モル比でBi:Sr:Ca
:Cu=2:2:l:lの割合になるように混合して前
記のマグネシア製ボートに入れ、これを加熱炉中で1.
100℃にてIn時間保持して徐冷した(第1工程)。
[Example 4] Average particle size 3 μm (7) B it Os , SrO,
CaO and CuO powders were mixed in a molar ratio of Bi:Sr:Ca
:Cu = 2:2:l:l and put into the above-mentioned magnesia boat, and heated in a heating furnace for 1.
It was kept at 100° C. for an hour and slowly cooled (first step).

次いで得られた焼結体に実施例1に示した第2工程及び
第3工程の処理を施して所望のバルクを得た。
The obtained sintered body was then subjected to the second and third steps shown in Example 1 to obtain a desired bulk.

1与られたバルクのTcは85にでJcはIO″A/C
11”以上であった。また、X線分析により調べたとこ
ろ、長手方向の断面ではC軸のピークが強く、結晶が配
向していることが判明した。
1 Given bulk Tc is 85 and Jc is IO″A/C
It was 11" or more. Further, when examined by X-ray analysis, it was found that the C-axis peak was strong in the cross section in the longitudinal direction, indicating that the crystals were oriented.

[比較例] 実施例に用いた平均粒径10ALmのY+ BatCu
 s O7−wの粉末をマグネシア製ボートに入れ、こ
れを酸素雰囲気炉中で1,100℃にて20時間保持し
た後、徐冷した(第1工程)。
[Comparative example] Y+ BatCu with an average particle size of 10 ALm used in the example
The powder of sO7-w was placed in a magnesia boat, held at 1,100°C for 20 hours in an oxygen atmosphere furnace, and then slowly cooled (first step).

次いで得られた焼結体を、前記実施例1〜4に示した如
きゾーンメルティング装置を用いることなく、加熱炉内
で980℃から900℃まで0.5”C/hrの割合で
温度を下げながら結晶化を図った後、冷却してバルクを
得た。
Next, the obtained sintered body was heated at a rate of 0.5"C/hr from 980°C to 900°C in a heating furnace without using the zone melting apparatus as shown in Examples 1 to 4. After crystallization while lowering the temperature, a bulk product was obtained by cooling.

得られたバルクのTcは90にで、Jcは200A/C
−であった、またX線分析で調べたところ、長平方向の
断面ではC軸以外のピークも強く、結晶の配向は見られ
なかった。
The obtained bulk Tc was 90 and Jc was 200A/C.
-, and when examined by X-ray analysis, peaks other than the C-axis were also strong in the longitudinal cross-section, and no crystal orientation was observed.

[発明の効果〕 以上説明したように、本発明の製造方法によれば、先ず
酸化物超伝導体原料粉末を焼結し、次いでゾーンメルテ
ィング装置で高周波加熱処理することによって、焼結体
を結晶化し、かつ結晶に配向性を持たせることができる
ので、高密度で高い臨界を流密度を有する大きなバルク
を、比較的簡易な手段で製造することができる。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, the oxide superconductor raw material powder is first sintered, and then the sintered body is produced by high-frequency heat treatment using a zone melting device. Since it can be crystallized and the crystals can be oriented, a large bulk having high density and high critical flow density can be produced by relatively simple means.

Claims (1)

【特許請求の範囲】[Claims] (イ)酸化物超伝導体粉末または、(ロ)酸化物超伝導
体を構成すべき金属元素のモル比が所定の比率となるよ
うに配合した複数の酸化物超伝導体原料粉末を、耐熱性
ボート内に保持して焼結後、該焼結体を徐冷する第1工
程、次いで得られた焼結体を、不活性ガス雰囲気下で、
高周波加熱処理により結晶化する第2工程、及び得られ
た結晶体を酸素雰囲気炉において徐冷することにより、
該結晶体における結晶配向性の安定化を図る第3工程か
らなることを特徴とする酸化物超伝導体バルクの製造方
法。
(a) Oxide superconductor powder or (b) A plurality of oxide superconductor raw material powders blended so that the molar ratio of the metal elements that should constitute the oxide superconductor is a predetermined ratio is heat-resistant. The first step is to slowly cool the sintered body after sintering it by holding it in a temperature boat, and then the obtained sintered body is heated under an inert gas atmosphere.
A second step of crystallizing by high-frequency heating treatment, and slow cooling of the obtained crystal in an oxygen atmosphere furnace,
A method for producing an oxide superconductor bulk, comprising a third step of stabilizing crystal orientation in the crystalline body.
JP2071181A 1990-03-20 1990-03-20 Production of oxide superconductor bulk Pending JPH03271156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071181A JPH03271156A (en) 1990-03-20 1990-03-20 Production of oxide superconductor bulk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071181A JPH03271156A (en) 1990-03-20 1990-03-20 Production of oxide superconductor bulk

Publications (1)

Publication Number Publication Date
JPH03271156A true JPH03271156A (en) 1991-12-03

Family

ID=13453231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071181A Pending JPH03271156A (en) 1990-03-20 1990-03-20 Production of oxide superconductor bulk

Country Status (1)

Country Link
JP (1) JPH03271156A (en)

Similar Documents

Publication Publication Date Title
JPH0440289B2 (en)
JP2822451B2 (en) Superconductor manufacturing method
JPH05193938A (en) Oxide superconductor and production thereof
JPH03271156A (en) Production of oxide superconductor bulk
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP2782594B2 (en) Method for producing superconducting fibrous crystal
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH01179790A (en) Production of single crystal of high temperature superconductor
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JPH01226735A (en) Production of superconducting material
JPH02153891A (en) Production of crystal having decomposed and molten composition
JP3158255B2 (en) Method for producing crystal-oriented oxide superconductor
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JPH01183494A (en) Production of high-temperature superconductor bulk single crystal
JPH02229787A (en) Production of oxide superconductor
JPS63315572A (en) Production of superconductor
JPH03137083A (en) Production of oxide superconducting material
JPH01301590A (en) Process for producing oxide superconductive single crystal
JPH06321693A (en) Production of oxide superconducting material
JPH04182394A (en) Production of single crystal superconductor