JPH06321693A - Production of oxide superconducting material - Google Patents
Production of oxide superconducting materialInfo
- Publication number
- JPH06321693A JPH06321693A JP5117206A JP11720693A JPH06321693A JP H06321693 A JPH06321693 A JP H06321693A JP 5117206 A JP5117206 A JP 5117206A JP 11720693 A JP11720693 A JP 11720693A JP H06321693 A JPH06321693 A JP H06321693A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- crystal
- carbonates
- oxide superconducting
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は酸化物超電導材料の単結
晶を製造するための方法に関し、特にYBa 2 Cu3 O
Z (6≦Z≦7)の単結晶を製造するための方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal of oxide superconducting material.
A method for producing crystals, in particular YBa 2Cu3O
ZA method for producing a single crystal of (6 ≦ Z ≦ 7)
It
【0002】[0002]
【従来の技術および発明が解決しようとする課題】酸化
物超電導物質であるYBa2 Cu3 OZ (YBCO)
は、約90Kの高い臨界温度を有し、多くの技術分野で
の応用が期待されている。 2. Description of the Related Art YBa 2 Cu 3 O Z (YBCO) which is an oxide superconducting substance
Has a high critical temperature of about 90 K and is expected to be applied in many technical fields.
【0003】このYBCO単結晶を作製するため、高温
の融液を徐冷して結晶を析出させる方法が多く試みられ
ているが、薄片状の結晶が得られる一方で、良質の大型
結晶を得ることは困難であった。In order to produce this YBCO single crystal, many methods of gradually cooling a high-temperature melt to precipitate the crystal have been tried, but a flaky crystal can be obtained while a good quality large crystal is obtained. It was difficult.
【0004】本発明の目的は、結晶育成の制御が容易で
あり、良質かつ大型のYBCO単結晶を作製することが
できる方法を提供することにある。An object of the present invention is to provide a method in which the growth of crystals can be easily controlled and a large-sized YBCO single crystal of good quality can be produced.
【0005】[0005]
【課題を解決するための手段】本発明は、Y、Baおよ
びCuを含む一方、YBa2 Cu3 OZ (6≦Z≦7)
結晶およびY2 BaCuO5 結晶をともに含まない出発
原料を、YBa2 Cu 3 OZ 結晶およびY2 BaCuO
5 結晶を析出させないように加熱して溶湯を調製し、得
られた溶湯を冷却してYBCO単結晶を生成させること
を特徴とする。SUMMARY OF THE INVENTION The present invention is directed to Y, Ba and
And Cu, while YBa2Cu3OZ(6 ≦ Z ≦ 7)
Crystal and Y2BaCuOFiveDeparture without crystals
Raw material is YBa2Cu 3OZCrystal and Y2BaCuO
FivePrepare a molten metal by heating so that crystals do not precipitate, and obtain
Cooling the melt obtained to form a YBCO single crystal
Is characterized by.
【0006】本発明において、出発原料におけるY:B
a:Cuのモル組成比をx:y:wで表わせば、次に示
す条件を満足することが望ましい。In the present invention, Y: B in the starting material
If the molar composition ratio of a: Cu is represented by x: y: w, it is desirable that the following conditions be satisfied.
【0007】[0007]
【数1】1.0≦x≦2.5 20≦y≦40 および x+y+w=100 本発明において、出発原料は、Yの酸化物および炭酸化
物、Baの酸化物および炭酸化物、ならびにCuの酸化
物および炭酸化物からなる群から選択される原料の混合
物から好ましく調製することができる。これらの原料か
らの混合物であれば、YBCO結晶およびY2 BaCu
O5 結晶を含まない原料が容易に調製される。1.0 ≦ x ≦ 2.5 20 ≦ y ≦ 40 and x + y + w = 100 In the present invention, the starting materials are Y oxides and carbonates, Ba oxides and carbonates, and Cu oxidation. It can be preferably prepared from a mixture of raw materials selected from the group consisting of products and carbonates. If it is a mixture of these raw materials, YBCO crystal and Y 2 BaCu
A raw material containing no O 5 crystals is easily prepared.
【0008】本発明において、出発原料は、次式 YBa2 Cu3 OZ →Y2 BaCuO5 +液相 で表わされる包晶分解反応の反応温度未満であり、かつ
固液温度以上である溶解温度まで加熱されることが望ま
しい。このような溶解温度は、980℃以上1000℃
未満が望ましい。このような温度範囲の溶解温度は、1
時間以上保持されることが望ましい。In the present invention, the starting material has a melting temperature which is lower than the reaction temperature of the peritectic decomposition reaction represented by the following formula: YBa 2 Cu 3 O Z → Y 2 BaCuO 5 + liquid phase, and is higher than the solid-liquid temperature. It is desirable to heat up. Such melting temperature is 980 ° C or higher and 1000 ° C.
Less than is desirable. The melting temperature in such a temperature range is 1
It is desirable to hold for more than an hour.
【0009】また、溶解温度に達するまでの原料加熱に
おける昇温速度は、100℃/時以上とすることが望ま
しい。Further, it is desirable that the temperature rising rate in heating the raw material until reaching the melting temperature is 100 ° C./hour or more.
【0010】さらに、溶湯の組成を均一に保つため、本
発明において、溶解された原料を攪拌することが望まし
い。Further, in order to keep the composition of the molten metal uniform, in the present invention, it is desirable to stir the molten raw material.
【0011】[0011]
【作用】本発明の重要な特徴は、結晶を析出させるため
の融液を調製するにあたり、Y 2 BaCuO5 結晶の析
出を抑えたことにある。以下の実施例に示すとおり、Y
2 BaCuO5 結晶の析出を抑えることによって、大き
く成長したYBCO単結晶が得られることが明らかとな
った。[Function] An important feature of the present invention is to precipitate crystals.
In preparing the melt of 2BaCuOFiveCrystallization
It has been suppressed. As shown in the examples below, Y
2BaCuOFiveBy suppressing the precipitation of crystals,
It is clear that a well-grown YBCO single crystal can be obtained.
It was.
【0012】Y2 BaCuO5 結晶を排除するため、ま
ず出発原料にはこの結晶を含有させない。また、以下の
実施例で示すとおり、YBCO結晶を含む原料を加熱し
て溶湯を調製すると、Y2 BaCuO5 の析出が起こる
ため、YBCO結晶も出発原料に含有させないこととし
た。In order to exclude the Y 2 BaCuO 5 crystal, the starting material does not initially contain this crystal. In addition, as shown in the following examples, when a raw material containing a YBCO crystal is heated to prepare a molten metal, Y 2 BaCuO 5 is precipitated, so that the YBCO crystal was not included in the starting raw material.
【0013】これらの点から、実施例に示すとおり、Y
の酸化物および炭酸化物、Baの酸化物および炭酸化
物、ならびにCuの酸化物および炭酸化物からなる群か
ら選択される原料の混合物が出発原料として特に好まし
く用いられる。これらの原料を用いれば、Y2 BaCu
O5 およびBaCuO2 が存在しない均一な溶湯を得る
ことができる。From these points, as shown in the embodiment, Y
A mixture of raw materials selected from the group consisting of oxides and carbonates of Ba, oxides and carbonates of Ba, and oxides and carbonates of Cu is particularly preferably used as a starting material. If these raw materials are used, Y 2 BaCu
It is possible to obtain a uniform molten metal free of O 5 and BaCuO 2 .
【0014】また実施例に示すとおり、出発原料におけ
るY:Ba:Cuのモル組成比をx:y:wとすると、
上述した[数1]で示される範囲に組成比を設定するこ
とによって、Y2 BaCuO5 、BaCuO2 およびC
uOの析出を抑えつつ、c軸方向に大きく成長するYB
CO単結晶が得られることが明らかとなった。Further, as shown in the examples, when the molar composition ratio of Y: Ba: Cu in the starting material is x: y: w,
By setting the composition ratio in the range represented by the above [Formula 1], Y 2 BaCuO 5 , BaCuO 2 and C can be obtained.
YB that grows largely in the c-axis direction while suppressing the precipitation of uO
It became clear that a CO single crystal was obtained.
【0015】実施例に示すとおり、原料は加熱により完
全に溶解させ、均一な溶湯を調製することが望ましい。
また、原料溶解時の温度が、次の化学式で示される包晶
分解反応の反応温度を超える場合、As shown in the examples, it is desirable that the raw materials be completely melted by heating to prepare a uniform molten metal.
When the temperature at the time of melting the raw materials exceeds the reaction temperature of the peritectic decomposition reaction represented by the following chemical formula,
【0016】[0016]
【化1】YBa2 Cu3 OZ →Y2 BaCuO5 +液相 溶湯中に、Y2 BaCuO5 相が析出し、得られるYB
COの単結晶はc軸方向への成長が乏しくなる。結晶成
長にY2 BaCuO5 が関与した場合、YBCO単結晶
のc軸方向への成長速度は低下すると考えられた。よっ
て、溶解温度を包晶分解反応温度未満にすることが望ま
しかった。## STR1 ## YBa 2 Cu 3 O Z → Y 2 BaCuO 5 + Liquid phase Y 2 BaCuO 5 phase is precipitated in the molten metal to obtain YB
A CO single crystal grows poorly in the c-axis direction. When Y 2 BaCuO 5 was involved in the crystal growth, it was considered that the growth rate of the YBCO single crystal in the c-axis direction was reduced. Therefore, it has been desired to set the dissolution temperature below the peritectic decomposition reaction temperature.
【0017】このような溶解温度として、実施例に示す
とおり、980℃以上1000℃未満が望ましかった。
また、このような温度範囲での保持時間を1時間以上に
することによって、溶湯中でのBaCuO2 の析出をさ
らに抑え、均一な溶湯を得ることができた。このこと
は、大型のYBCO単結晶を製造することに効果があっ
た。As shown in the examples, it was desired that the melting temperature be 980 ° C. or higher and lower than 1000 ° C.
Further, by setting the holding time in such a temperature range to 1 hour or longer, precipitation of BaCuO 2 in the molten metal was further suppressed, and a uniform molten metal could be obtained. This was effective in producing a large YBCO single crystal.
【0018】さらに、溶解温度に達するまでの昇温温度
を100℃/時以上にすることによって、昇温時におけ
るBaCuO2 の生成を抑えることができた。BaCu
O2が存在しない均一な溶湯を調製することは、大型の
YBCO単結晶を製造することに対して効果があった。Further, by setting the temperature rising temperature up to the melting temperature to 100 ° C./hour or more, the generation of BaCuO 2 at the time of temperature rising could be suppressed. BaCu
The preparation of a uniform molten metal free of O 2 was effective for producing a large YBCO single crystal.
【0019】また、溶解温度において攪拌する工程を加
えることによって、溶湯中の上部と下部の組成における
Y濃度の差をなくすことができた。このようにして均一
な溶湯を得ることは、大型のYBCO単結晶を製造する
ことに効果があった。Further, by adding the step of stirring at the melting temperature, it was possible to eliminate the difference in Y concentration between the upper and lower compositions in the molten metal. Obtaining a uniform molten metal in this manner was effective in producing a large YBCO single crystal.
【0020】[0020]
実施例1 出発原料中のYBa2 Cu3 OZ 結晶の有無の効果を調
べるために、出発原料の形態を変え、以下の実験を行な
った。以下の実験ではY:Ba:Cuの組成比を2:3
1:67にした例を示す。Example 1 In order to investigate the effect of the presence or absence of YBa 2 Cu 3 O Z crystals in the starting material, the morphology of the starting material was changed and the following experiment was conducted. In the following experiment, the composition ratio of Y: Ba: Cu was set to 2: 3.
An example of 1:67 is shown.
【0021】混合粉末50gをアルミナるつぼまたはマ
グネシアるつぼに入れたものを2個用意し、電気炉内で
昇温速度300℃/時で900℃まで加熱し、その温度
で20時間保持した。1つのるつぼについては保持時間
終了直後に溶湯を急冷しその凝固体を観察した。もう一
方のるつぼは、保持時間終了後0.6℃/時間の速度で
950℃まで冷却し、炉より取出して凝固体中に析出し
ている結晶を観察した。Two pieces of 50 g of the mixed powder placed in an alumina crucible or a magnesia crucible were prepared and heated in an electric furnace at a temperature rising rate of 300 ° C./hour to 900 ° C. and held at that temperature for 20 hours. For one crucible, the melt was rapidly cooled immediately after the holding time and the solidified body was observed. After the holding time, the other crucible was cooled to 950 ° C. at a rate of 0.6 ° C./hour, taken out from the furnace, and crystals precipitated in the solidified body were observed.
【0022】加熱すべき混合粉末として、Y2 O3 、B
aCO3 、CuOを混合したもの(試料番号1)、YB
a2 Cu3 OZ の焼結体とBaCO3 、CuOを混合し
たもの(試料番号2)、およびY2 O3 、BaCO3 、
CuOを混合し900℃で50時間保持して混合粉中に
YBa2 Cu3 OZ 結晶を析出させたものをそれぞれ用
いて、上記実験を行なった。As the mixed powder to be heated, Y 2 O 3 , B
Mixture of aCO 3 and CuO (Sample No. 1), YB
a 2 Cu 3 O Z sintered body mixed with BaCO 3 and CuO (Sample No. 2), Y 2 O 3 , BaCO 3 ,
The above experiment was carried out using CuO mixed and held at 900 ° C. for 50 hours to precipitate YBa 2 Cu 3 O Z crystals in the mixed powder.
【0023】実験結果を表1に示す。表1からわかるよ
うに、溶解温度(990℃)に達するまでに、YBCO
結晶を多量に含む試料(試料2および3)では、溶解時
に上述した[化1]の反応が起こりやすく、溶湯中にY
2 BaCuO5 が発生する。したがって、出発原料は、
YBCO結晶を含まないものが適していることがわか
る。The experimental results are shown in Table 1. As can be seen from Table 1, until the melting temperature (990 ° C) is reached, YBCO
In the samples containing a large amount of crystals (Samples 2 and 3), the above-mentioned reaction of [Chemical formula 1] is likely to occur during dissolution, and Y
2 BaCuO 5 is generated. Therefore, the starting material is
It can be seen that those not containing YBCO crystals are suitable.
【0024】[0024]
【表1】 [Table 1]
【0025】実施例2 出発原料の最適組成を調べるためにY2 O3 、BaCO
3 、CuOを用い、Y:Ba:Cuのモル比が表2の試
料番号1〜9の組成にそれぞれなるよう原料を混合し
た。これら混合粉末約50gをアルミナるつぼまたはマ
グネシアるつぼに入れ、電気炉内において990℃まで
300℃/時の昇温速度で加熱し、990℃において2
0時間保持した後、950℃まで0.6℃/時の速度で
冷却した。Example 2 To investigate the optimum composition of the starting material, Y 2 O 3 , BaCO
3. Using CuO, the raw materials were mixed so that the molar ratio of Y: Ba: Cu would be the compositions of sample numbers 1 to 9 in Table 2. About 50 g of these mixed powders were placed in an alumina crucible or a magnesia crucible, and heated in an electric furnace up to 990 ° C. at a temperature rising rate of 300 ° C./hour, and then heated at 990 ° C.
After holding for 0 hour, it was cooled to 950 ° C. at a rate of 0.6 ° C./hour.
【0026】その後、るつぼを電気炉より取出し、るつ
ぼ内の凝固体を取出して析出している結晶を観察した。
凝固体より得られた単結晶の種類と、目的とするYBC
O単結晶の結晶サイズを表2に示す。また、図1に、試
料番号1〜9の組成をそれぞれ有する点を示す。表2の
結果から、図1に示す斜線の部分すなわち上述した[数
1]の条件を満たす部分の組成を用いれば、大型のYB
CO単結晶が得られることがわかる。Then, the crucible was taken out from the electric furnace, the solidified body in the crucible was taken out, and the precipitated crystals were observed.
The type of single crystal obtained from the solidified body and the target YBC
Table 2 shows the crystal size of the O single crystal. In addition, FIG. 1 shows the points having the compositions of sample numbers 1 to 9, respectively. From the results of Table 2, if the composition of the shaded portion shown in FIG. 1, that is, the portion satisfying the condition of [Equation 1] above is used, a large YB
It can be seen that a CO single crystal is obtained.
【0027】[0027]
【表2】 [Table 2]
【0028】実施例3 YBCO単結晶育成の元となる溶湯作製の最適溶解保持
温度を調べるために、溶解時の保持温度を変えて以下の
実験を行なった。以下の実験では、Y:Ba:Cuの組
成比x:y:wが上述した[数1]の条件を満足するよ
うY2 O3 、BaCO3 、CuOを混合し、混合粉末約
50gをアルミナるつぼまたはマグネシアるつぼに入れ
たものを2個用意して電気炉内で加熱した。Example 3 In order to examine the optimum melting and holding temperature for preparing a molten metal which is the basis of YBCO single crystal growth, the following experiment was carried out while changing the holding temperature during melting. In the following experiment, Y 2 O 3 , BaCO 3 , and CuO were mixed so that the composition ratio of Y: Ba: Cu x: y: w satisfies the above-mentioned condition of [Equation 1], and about 50 g of the mixed powder is mixed with alumina. Two pieces placed in a crucible or a magnesia crucible were prepared and heated in an electric furnace.
【0029】1つのるつぼは保持時間終了直後に溶湯を
急冷し、その凝固体を観察した。もう1つのるつぼは保
持時間終了後0.6℃/時間の速度で950℃まで冷却
し、炉より取出し凝固体中に析出している結晶を観察し
た。In one crucible, the molten metal was rapidly cooled immediately after the holding time and the solidified body was observed. After the holding time, the other crucible was cooled to 950 ° C. at a rate of 0.6 ° C./hour, taken out from the furnace, and crystals precipitated in the solidified body were observed.
【0030】表3にY:Ba:Cuの組成比が2:3
1:67の場合の結果を示す。In Table 3, the composition ratio of Y: Ba: Cu is 2: 3.
The results in the case of 1:67 are shown.
【0031】[0031]
【表3】 [Table 3]
【0032】保持温度が960℃以下(試料番号1)で
は試料が完全に溶解しなかった。また[化1]の包晶分
解反応温度である1000℃を超える試料(試料番号
5、6)では溶湯中にY2 BaCuO5 相が析出してい
た。これらの温度から徐冷された試料中にはYBCOの
単結晶が得られたが、そのc軸方向のサイズは小さかっ
た。結晶成長にY2 BaCuO5 が関与した場合、結晶
のc軸方向への成長速度が低下すると考えられた。When the holding temperature was 960 ° C. or lower (Sample No. 1), the sample was not completely dissolved. Further, in the samples (Sample Nos. 5 and 6) having a peritectic decomposition reaction temperature of [Chemical Formula 1] above 1000 ° C., the Y 2 BaCuO 5 phase was precipitated in the molten metal. A YBCO single crystal was obtained in the sample gradually cooled from these temperatures, but its size in the c-axis direction was small. It was considered that when Y 2 BaCuO 5 participated in the crystal growth, the growth rate of the crystal in the c-axis direction decreased.
【0033】保持温度が980、990℃である試料
は、溶湯中に析出物が存在せず、かつc軸方向にも大き
く成長したYBCO単結晶が得られた。以上の結果よ
り、YBCO単結晶を得る際に、Y2 BaCuO5 の析
出しない溶湯を得るため、溶解保持温度は包晶分解反応
温度未満でかつ固液温度以上がよく、特に980℃以上
1000℃未満の温度において析出物のない均一な溶湯
が得られ、かつ大型のYBCO単結晶が得られることが
わかった。With respect to the samples having the holding temperatures of 980 and 990 ° C., YBCO single crystals were obtained in which no precipitate was present in the molten metal and which also grew greatly in the c-axis direction. From the above results, when a YBCO single crystal is obtained, in order to obtain a molten metal in which Y 2 BaCuO 5 does not precipitate, the melting holding temperature is preferably less than the peritectic decomposition reaction temperature and the solid-liquid temperature or more, particularly 980 ° C. or more and 1000 ° C. or more. It was found that a uniform molten metal having no precipitate was obtained at a temperature of less than and a large YBCO single crystal was obtained.
【0034】実施例4 YBCO単結晶育成の元となる溶湯作製の最適出発原料
の形態を調べるため、表4に示すとおり、出発原料の形
態を変えて以下の実験を行なった。以下の実験ではY:
Ba:Cuの組成比を2:31:67にした例を示す。
混合粉末約50gをアルミナるつぼまたはマグネシアる
つぼに入れたものを2個用意して電気炉内で昇温速度3
00℃/時で990℃まで加熱し、その温度で20時間
保持した。1つのるつぼは保持時間終了直後に溶湯を急
冷しその凝固体を観察した。もう一方のるつぼは、保持
時間終了後0.6℃/時間の速度で950℃まで冷却
し、炉より取出して凝固体中に析出している結晶を観察
した。Example 4 As shown in Table 4, the following experiment was carried out by changing the morphology of the starting material, as shown in Table 4, in order to investigate the optimum morphology of the starting material for producing the molten metal which is the basis of YBCO single crystal growth. In the following experiment Y:
An example in which the composition ratio of Ba: Cu is set to 2:31:67 is shown.
Approximately 50 g of mixed powder was placed in an alumina crucible or a magnesia crucible, and two were prepared.
It was heated to 990 ° C. at 00 ° C./hour and kept at that temperature for 20 hours. In one crucible, the melt was rapidly cooled immediately after the holding time and the solidified body was observed. After the holding time, the other crucible was cooled to 950 ° C. at a rate of 0.6 ° C./hour, taken out from the furnace, and crystals precipitated in the solidified body were observed.
【0035】加熱するための混合粉末として、Y
2 O3 、BaCO3 、CuOを混合したもの(試料番号
1)、Y2 O3 、BaO、CuOを混合したもの(試料
番号2)、YBa2 Cu3 OZ の焼結体とBa−Cu−
Oの焼結体を混合したもの(試料番号3)、およびY2
O3 、BaCO3 、CuOを混合しYBa2 Cu3 OZ
を発生させないように900℃で10時間焼結したもの
(試料番号4)を用意した。As a mixed powder for heating, Y
A mixture of 2 O 3 , BaCO 3 and CuO (Sample No. 1), a mixture of Y 2 O 3 , BaO and CuO (Sample No. 2), a sintered body of YBa 2 Cu 3 O Z and Ba-Cu −
A mixture of O sintered bodies (Sample No. 3) and Y 2
O 3, BaCO 3, CuO mixed YBa 2 Cu 3 O Z
A sample (Sample No. 4) was prepared by sintering at 900 ° C. for 10 hours so as to prevent the occurrence of heat.
【0036】[0036]
【表4】 [Table 4]
【0037】YBCO焼結体を用いた試料3が良くない
ことは実施例1からもわかる。また、原料をYBCOが
発生しない程度に焼結した試料4でも焼結時に多量にB
aCuO2 が生成し、それらが溶解温度に達しても溶解
せず溶湯中に残存して均一な溶湯が得られなかった。It can be seen from Example 1 that the sample 3 using the YBCO sintered body is not good. In addition, even in the case of sample 4 in which the raw material was sintered to the extent that YBCO was not generated, a large amount of B
aCuO 2 was generated, and even if they reached the melting temperature, they were not melted and remained in the melt, and a uniform melt could not be obtained.
【0038】これらに対して酸化物あるいは炭酸化物を
混合しただけの試料1および2は、ほとんどBaCuO
2 が生成せず、かつ溶解温度において保持することによ
って分解し、析出物のない均一な溶湯が得られた。以上
の結果より、出発原料の形態は、Y、Ba、Cuの酸化
物あるいは炭酸化物の混合体が適していることがわか
る。Samples 1 and 2 in which oxides or carbonates were simply mixed were mostly BaCuO.
No 2 was formed, and it decomposed by holding it at the melting temperature, and a uniform molten metal without precipitates was obtained. From the above results, it is found that a suitable starting material is a mixture of oxides or carbonates of Y, Ba, Cu.
【0039】実施例5 次に溶解温度における最適保持時間を知るために以下の
実験を行なった。Y:Ba:Cuの組成比x:y:wが
上述した[数1]の条件を満たすよう出発原料であるY
2 O3 、BaCO3 、CuOを混合し、混合粉末約50
gをアルミナるつぼまたはマグネシアるつぼに入れたも
のを2個用意した。次に、電気炉内で昇温速度300℃
/時で990℃まで加熱し、その温度で0.5、1、2
0、100時間保持した。1つのるつぼは保持時間終了
直後に溶湯を急冷しその凝固体を観察した。もう一方の
るつぼは保持時間終了後0.6℃/時間の速度で950
℃まで冷却し、炉より取出して凝固体中に析出している
結晶を観察した。組成比x:y:wが2:31:67の
混合粉末を用いた場合の結果を表5に示す。Example 5 Next, the following experiment was conducted in order to know the optimum holding time at the melting temperature. Y is a starting material so that the composition ratio x: y: w of Y: Ba: Cu satisfies the condition of [Equation 1] described above.
2 O 3 , BaCO 3 , CuO are mixed to obtain a mixed powder of about 50
Two pieces of which g was placed in an alumina crucible or a magnesia crucible were prepared. Next, the heating rate is 300 ° C in the electric furnace.
Heated up to 990 ° C./h and at that temperature 0.5, 1, 2
Hold for 0, 100 hours. In one crucible, the melt was rapidly cooled immediately after the holding time and the solidified body was observed. The other crucible is 950 at a rate of 0.6 ° C / hour after the end of the holding time.
The mixture was cooled to 0 ° C., taken out of the furnace, and crystals precipitated in the solidified body were observed. Table 5 shows the results when the mixed powder having the composition ratio x: y: w of 2:31:67 was used.
【0040】[0040]
【表5】 [Table 5]
【0041】これらの試料を比較すると、保持時間が1
時間より短い場合(試料番号1)、昇温時に生成するB
aCuO2 が十分分解せずに溶湯中に残存する。これよ
り、保持時間は1時間以上であることが望ましい。Comparing these samples, the retention time was 1
If it is shorter than the time (Sample No. 1), B generated at the time of temperature rise
aCuO 2 remains in the molten metal without being sufficiently decomposed. Therefore, the holding time is preferably 1 hour or more.
【0042】実施例6 次に溶解温度に達するまでの昇温速度の影響を知るため
に、Y:Ba:Cuの組成比x:y:wが上述した[数
1]の条件を満たすよう、出発原料Y2 O3 、BaCO
3 、CuOを混合し、混合粉末約50gをアルミナるつ
ぼまたはマグネシアるつぼに入れて種々の昇温速度で加
熱した。それぞれの試料について混合粉末を入れたるつ
ぼを2個用意し、電気炉内で、表6に示すそれぞれの昇
温速度1、10、100、300℃/時において、99
0℃まで加熱し、その温度で20時間保持した。1つの
るつぼは、保持時間終了直後に溶湯を急冷しその凝固体
を観察した。もう一方のるつぼは保持時間終了後、0.
6℃/時間の速度で950℃まで冷却し、炉より取出し
て凝固体中に析出している結晶を観察した。Example 6 Next, in order to know the influence of the temperature rising rate until reaching the melting temperature, the composition ratio x: y: w of Y: Ba: Cu should satisfy the condition of [Equation 1] described above. Starting materials Y 2 O 3 , BaCO
3 , CuO were mixed, and about 50 g of the mixed powder was placed in an alumina crucible or a magnesia crucible and heated at various heating rates. Two crucibles containing the mixed powder were prepared for each sample, and the temperature was 99 at the heating rates of 1, 10, 100, and 300 ° C./hour shown in Table 6 in the electric furnace.
Heat to 0 ° C. and hold at that temperature for 20 hours. In one crucible, the molten metal was rapidly cooled immediately after the holding time and the solidified body was observed. The other crucible has a 0.
It was cooled to 950 ° C. at a rate of 6 ° C./hour, taken out from the furnace, and crystals precipitated in the solidified body were observed.
【0043】[0043]
【表6】 [Table 6]
【0044】その結果、昇温速度が100℃/時間未満
の試料(試料番号1および2)では、溶湯中にY2 Ba
CuO5 、BaCuO2 が残存していた。これは昇温速
度が遅いため、昇温中にYBa2 Cu3 OZ 、BaCu
O2 が試料中に多量に生成するためである。これを防ぐ
ためには、昇温速度が100℃/時以上が望ましいこと
がわかる。As a result, in the samples (sample numbers 1 and 2) whose temperature rising rate was less than 100 ° C./hour, Y 2 Ba was contained in the molten metal.
CuO 5 and BaCuO 2 remained. Since the rate of temperature rise is slow, YBa 2 Cu 3 O Z , BaCu
This is because a large amount of O 2 is produced in the sample. In order to prevent this, it can be seen that the temperature rising rate is preferably 100 ° C./hour or more.
【0045】実施例7 攪拌の効果を調べるため以下の実験を行なった。Y:B
a:Cuの組成比x:y:wが[数1]の条件を満足す
るように、Y2 O3 、BaCO3 、CuOを混合した。
混合粉末約50gをアルミナるつぼに充填したものを2
個用意した。それらを電気炉中で昇温速度300℃/時
で990℃まで昇温し、その温度で20時間保持した。Example 7 The following experiment was conducted to examine the effect of stirring. Y: B
a: the composition ratio of Cu x: y: w is to satisfy the condition of Equation 1, was mixed with Y 2 O 3, BaCO 3, CuO.
2 about 50g of mixed powder packed in alumina crucible
I prepared one. They were heated to 990 ° C. at a temperature rising rate of 300 ° C./hour in an electric furnace and kept at that temperature for 20 hours.
【0046】[0046]
【表7】 [Table 7]
【0047】表7に示す試料番号1は、上述したプロセ
スにおいて保持時間中静置しておいたものである。一方
試料番号2は、保持時間中アルミナ棒で攪拌したもので
ある。保持時間終了後、液相上部(液面から約1mmの
ところ)および液相下部(るつぼ底から約1mmのとこ
ろ)から溶湯を採取してその組成を調べた。また残りの
試料は、990℃から950℃まで0.6℃/時の速度
で冷却し、電気炉より取出して凝固体中に析出した結晶
を観察した。結果を表7に併せて示す。Sample No. 1 shown in Table 7 was left to stand during the holding time in the above-mentioned process. On the other hand, Sample No. 2 was stirred with an alumina rod during the holding time. After the end of the holding time, the molten metal was sampled from the upper part of the liquid phase (about 1 mm from the liquid surface) and the lower part of the liquid phase (about 1 mm from the bottom of the crucible), and its composition was investigated. The remaining samples were cooled from 990 ° C. to 950 ° C. at a rate of 0.6 ° C./hour, taken out from the electric furnace, and crystals precipitated in the solidified body were observed. The results are also shown in Table 7.
【0048】表7からわかるように、攪拌を加えない試
料では、液相上部と下部においてY濃度に差がついてい
る。一方攪拌を加えた試料では、液相上部と下部におい
てY濃度に差がなくなり、均一な溶湯になっていた。ま
た、徐冷して得られたYBCO単結晶の大きさも、攪拌
を加えた試料の方が大きかった。これより、溶解保持温
度における攪拌工程が、均一な溶湯を得るために効果が
あり、かつ大型のYBCO単結晶育成にも効果があるこ
とがわかる。As can be seen from Table 7, in the sample without stirring, the Y concentration is different between the upper part and the lower part of the liquid phase. On the other hand, in the sample with stirring, there was no difference in Y concentration between the upper part and the lower part of the liquid phase, and the molten metal was uniform. Further, the size of the YBCO single crystal obtained by slow cooling was also larger in the sample with stirring. From this, it can be seen that the stirring step at the melting holding temperature is effective for obtaining a uniform molten metal and is also effective for growing a large YBCO single crystal.
【0049】[0049]
【発明の効果】以上説明したように、本発明によれば、
Y2 BaCuO5 の析出、さらにはBaCuO2 等の析
出を抑えながら溶湯を調製し、得られた均一な溶湯を冷
却することによって、良質で大型のYBCO単結晶を製
造することが可能になった。As described above, according to the present invention,
By preparing a molten metal while suppressing precipitation of Y 2 BaCuO 5 and further precipitation of BaCuO 2, etc., and cooling the obtained homogeneous molten metal, it became possible to produce a large YBCO single crystal of good quality. .
【0050】また実施例で示したとおり、本発明の製造
方法は、製造条件の制御が容易であり、原料、溶解温
度、溶解保持時間、昇温速度等において条件を適宜選択
することによって、容易に大型のYBCO単結晶を調製
することができる。Further, as shown in the examples, the production method of the present invention is easy to control the production conditions, and can be easily prepared by appropriately selecting the conditions such as the raw material, the dissolution temperature, the dissolution holding time, and the heating rate. A large YBCO single crystal can be prepared.
【図1】出発原料におけるY:Ba:Cuのモル組成比
を表わすとともに、YBCO単結晶の製造のために望ま
しい組成範囲を示す図である。FIG. 1 is a diagram showing a molar composition ratio of Y: Ba: Cu in a starting material and a desirable composition range for producing a YBCO single crystal.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 7244−5G (72)発明者 藤原 伸介 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 入倉 正登 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01B 13/00 565 D 7244-5G (72) Inventor Shinsuke Fujiwara 1-chome, Shimaya, Konohana-ku, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Masato Irikura 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Denki Industries Co., Ltd. Osaka Works
Claims (7)
2 Cu3 OZ (6≦Z≦7)結晶およびY2 BaCuO
5 結晶をともに含まない出発原料を、前記YBa2 Cu
3 OZ 結晶および前記Y2 BaCuO5 結晶を析出させ
ないように加熱して溶湯を調製し、得られた溶湯を冷却
してYBa2 Cu3 OZ の単結晶を生成させることを特
徴とする、酸化物超電導材料の製造方法。1. Including Y, Ba and Cu, while YBa
2 Cu 3 O Z (6 ≦ Z ≦ 7) crystal and Y 2 BaCuO
The starting material which does not contain both 5 crystals is the above YBa 2 Cu
Characterized in that the 3 O Z crystal and the Y 2 BaCuO 5 crystal are heated so as not to precipitate to prepare a molten metal, and the obtained molten metal is cooled to form a YBa 2 Cu 3 O Z single crystal. Manufacturing method of oxide superconducting material.
モル組成比をx:y:wで表わすとき、 1.0≦x≦2.5、20≦y≦40およびx+y+w
=100 を満たすことを特徴とする、請求項1に記載の酸化物超
電導材料の製造方法。2. When the molar composition ratio of Y: Ba: Cu in the starting material is represented by x: y: w, 1.0 ≦ x ≦ 2.5, 20 ≦ y ≦ 40 and x + y + w.
= 100 is satisfied, The manufacturing method of the oxide superconducting material of Claim 1 characterized by the above-mentioned.
化物、Baの酸化物および炭酸化物、ならびにCuの酸
化物および炭酸化物からなる群から選択される原料の混
合物であることを特徴とする、請求項1に記載の酸化物
超電導材料の製造方法。3. The starting material is a mixture of materials selected from the group consisting of Y oxides and carbonates, Ba oxides and carbonates, and Cu oxides and carbonates. The method for producing an oxide superconducting material according to claim 1.
固液温度以上である溶解温度まで加熱されることを特徴
とする、請求項1に記載の酸化物超電導材料の製造方
法。4. The melting temperature of the starting material is lower than the reaction temperature of the peritectic decomposition reaction represented by the following formula: YBa 2 Cu 3 O Z → Y 2 BaCuO 5 + liquid phase, and higher than the solid-liquid temperature. It heats, The manufacturing method of the oxide superconducting material of Claim 1 characterized by the above-mentioned.
未満であり、前記溶解温度が1時間以上保持されること
を特徴とする、請求項4に記載の酸化物超電導材料の製
造方法。5. The melting temperature is 980 ° C. or higher and 1000 ° C.
5. The method for producing an oxide superconducting material according to claim 4, wherein the melting temperature is maintained for 1 hour or more.
100℃/時以上であることを特徴とする、請求項5に
記載の酸化物超電導材料の製造方法。6. The method for producing an oxide superconducting material according to claim 5, wherein the temperature rising rate until reaching the melting temperature is 100 ° C./hour or more.
ことを特徴とする、請求項1に記載の酸化物超電導材料
の製造方法。7. The method for producing an oxide superconducting material according to claim 1, further comprising the step of stirring the molten metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5117206A JPH06321693A (en) | 1993-05-19 | 1993-05-19 | Production of oxide superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5117206A JPH06321693A (en) | 1993-05-19 | 1993-05-19 | Production of oxide superconducting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06321693A true JPH06321693A (en) | 1994-11-22 |
Family
ID=14706020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5117206A Withdrawn JPH06321693A (en) | 1993-05-19 | 1993-05-19 | Production of oxide superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06321693A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039502A1 (en) * | 1997-03-04 | 1998-09-11 | Forschungszentrum Karlsruhe Gmbh | METHOD FOR GROWING MONOCRYSTALS OF HIGH-TEMPERATURE SUPRACONDUCTORS MADE OF RARE EARTH-CUPRATES OF FORM SE1+xBa2-xCu3O¿7-δ? |
CN102173777A (en) * | 2011-02-28 | 2011-09-07 | 西北有色金属研究院 | Method for preparing yttrium barium copper oxide (YBCO) superconducting film from nitrate |
-
1993
- 1993-05-19 JP JP5117206A patent/JPH06321693A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039502A1 (en) * | 1997-03-04 | 1998-09-11 | Forschungszentrum Karlsruhe Gmbh | METHOD FOR GROWING MONOCRYSTALS OF HIGH-TEMPERATURE SUPRACONDUCTORS MADE OF RARE EARTH-CUPRATES OF FORM SE1+xBa2-xCu3O¿7-δ? |
CN102173777A (en) * | 2011-02-28 | 2011-09-07 | 西北有色金属研究院 | Method for preparing yttrium barium copper oxide (YBCO) superconducting film from nitrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5817172A (en) | Preparation of oxide crystals | |
Erb et al. | BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7− δ; RE= Y, Pr | |
Vanderah et al. | Growth of near-free-standing YBa2Cu3O7-type crystals using a self-decanting flux method | |
JP2740427B2 (en) | Preparation method of oxide crystal | |
Mason | Growth and characterization of transition metal silicides | |
JP2822451B2 (en) | Superconductor manufacturing method | |
JPH06321693A (en) | Production of oxide superconducting material | |
Soboleva et al. | Y 2 O 3-Al 2 O 3-Nd 2 O 3 phase diagram and the growth of (Y, Nd) 3 Al 5 O 12 single crystals | |
US5962374A (en) | Preparation of oxide crystals | |
JP2557882B2 (en) | Method for growing superconducting oxide single crystal | |
Chowdhury et al. | Growth of doped and undoped BSCCO 2212 crystals in platinum crucibles by repeated remelting and recrystallisation | |
RU2051210C1 (en) | High-temperature super-conducting material and method for production thereof | |
JP2733197B2 (en) | Method for producing rare earth element-containing single crystal | |
JP2647052B2 (en) | Method for producing rare earth vanadate single crystal | |
Wong-Ng et al. | Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review | |
RU2434081C2 (en) | Method of production of mono crystals of high temperature superconducting compounds of "123" type | |
JPH02243519A (en) | Oxide superconductor and production thereof | |
JP3205646B2 (en) | Method for producing Sm-based 123 crystal | |
JPH04182394A (en) | Production of single crystal superconductor | |
Changkang et al. | Preparation of superconducting Y-Ba-Cu-O from a stoichiometric melt by the thermogravimetric method | |
JPS63265812A (en) | Manufacture of ba2ycu3o7-x compound | |
JPH05254839A (en) | Production of oxide superconductive material | |
JPH0471876B2 (en) | ||
Kotru | 28 High Temperature Solution Growth | |
JPH0725699A (en) | Production of oxide superconductive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000801 |