JPH04182394A - Production of single crystal superconductor - Google Patents

Production of single crystal superconductor

Info

Publication number
JPH04182394A
JPH04182394A JP2311912A JP31191290A JPH04182394A JP H04182394 A JPH04182394 A JP H04182394A JP 2311912 A JP2311912 A JP 2311912A JP 31191290 A JP31191290 A JP 31191290A JP H04182394 A JPH04182394 A JP H04182394A
Authority
JP
Japan
Prior art keywords
superconductor
single crystal
raw material
crystal
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2311912A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shimaoka
島岡 一博
Maruo Jinno
丸男 神野
Kazuhiko Takahashi
和彦 高橋
Masanobu Yoshisato
善里 順信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2311912A priority Critical patent/JPH04182394A/en
Publication of JPH04182394A publication Critical patent/JPH04182394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single crystal superconductor in a large size which can be used as a substrate for superconductive device by mixing and pulverizing the source powder of oxide superconductor, adding a seed crystal thereto, melting the material at the temp. near the precipitation temp. of single crystal and crystallizing. CONSTITUTION:Each source powder of >=99.99% purity for oxide superconductor (e.g. Bi2SrCaCu2Ox) of one compsn. is weighed according to the compsn. proportion in the compsn. and mixed. An org. solvent is added to this mixture and stirred, from which the solvent is then removed. The mixture is ground in a mortar to obtain the source powder. To this source powder, a seed crystal of the oxide superconductor having the objective compsn. is mixed by the proportion of 1 to 10g of the seed crystal to 50g of the source powder. Then, this mixture is molten at the temp. near the precipitation temp. of the single crystal and then cooled slowly to obtain a single crystal superconductor having at least a 5mm square size which can be used as a substrate for superconductive device.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、超電導デバイスにおける超電導基板として使
用することができる単結晶超電導体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a single crystal superconductor that can be used as a superconducting substrate in a superconducting device.

(ロ)従来の技術 超電導デバイスにおける超電導基板としては、単結晶基
板が望まれ、現在のところ、超電・淳焼結体のバルクを
スライスしたり、蒸着等による薄膜を形成することによ
り基板としている。
(b) Conventional technology A single-crystal substrate is desired as a superconducting substrate in a superconducting device, and at present, the bulk of the superconductor Jun sintered body is sliced or a thin film is formed by vapor deposition. There is.

しかし、超電導焼結体のバルクをスライスしたものは、
空孔が多く緻密のものが得られないので超電導基板とし
ては好ましくなく、また、薄膜により基板を形成するに
は時間を要し、量産には不向きである。
However, when the bulk of superconducting sintered body is sliced,
It is not preferred as a superconducting substrate because it has many pores and cannot be dense, and it takes time to form a substrate from a thin film, making it unsuitable for mass production.

一方、酸化物超電導体の単結晶化において、半導体製造
に用いられているブリッジマン法及びチョコラルスキー
法による単結晶作成法は、酸化物超電導材料の性質、E
極めて困難であるとされている。そこで、超電導単結晶
体を得る技術としてフラックス法が開発されている。こ
れは、まず、ある1つの組成系(例えばBi 2src
acu20* )の酸化物超電導体の原料粉末(例えば
Bi、O,、SrCO3、CaC01及びCuO)をそ
の組成系の組成比(例えばB1:Sr:Ca:Cu=2
 : 1 : ] : 2)に秤量してアルミナのルツ
ボに入れて混合する。その後、適当な温度条件で熱処理
する。例えば室温から1時間で1000℃に昇温しでそ
の温度を24時間保持して原料粉末を溶融し、その後7
50℃まで徐冷することにより、その系の超電導単結晶
を得る方法である。
On the other hand, in the single crystallization of oxide superconductors, the Bridgman method and Czochralski method, which are used in semiconductor manufacturing, are used to create single crystals based on the properties of the oxide superconductor material, E
It is said to be extremely difficult. Therefore, a flux method has been developed as a technique for obtaining superconducting single crystals. This starts with a certain composition system (for example, Bi 2src
acu20*) raw material powder (e.g., Bi, O, SrCO3, CaC01, and CuO) in a compositional ratio (e.g., B1:Sr:Ca:Cu=2).
: 1 : ] : 2) Weigh and mix in an alumina crucible. Thereafter, heat treatment is performed under appropriate temperature conditions. For example, the temperature is raised from room temperature to 1000°C in 1 hour, the temperature is maintained for 24 hours to melt the raw material powder, and then 7
This is a method of obtaining a superconducting single crystal of the system by slowly cooling it to 50°C.

(ハ)発明が解決しようとする課題 前述のフラックス法により得られる単結晶の大きさは高
々0.1〜3mm角程度のものしか得られないので、超
電導デバイス用基板として使用することができなく、利
用分野が大きく制限されるという問題がある。
(c) Problems to be solved by the invention Since the single crystal obtained by the above-mentioned flux method is only about 0.1 to 3 mm square at most, it cannot be used as a substrate for superconducting devices. However, there is a problem in that the field of use is greatly restricted.

本発明は、かかる点に鑑み発明さitたものにして、超
電導デバイス用基板として使用することができる少なく
とも5mm角以−にの大きさの超電導基板を形成するこ
とができる単結晶超電導体の製造方法を提案しようとす
るものである。
The present invention has been devised in view of the above points, and the present invention has been devised to produce a single crystal superconductor capable of forming a superconducting substrate having a size of at least 5 mm square that can be used as a substrate for a superconducting device. This is an attempt to propose a method.

(ニ)課題を解決するための手段 かかる課題を解決するために、本発明による単結晶超電
導体の製造方法は、1つの組成系の酸化物超電導体の原
料粉末をその組成系の組成比に応じて秤量し、この秤量
した原料粉末50g当り、その組成系の酸化物超電導体
の種結晶を1〜]Ogの割合で混合し、その組成系の単
結晶析出温度1iii後の温度で溶融した後、用結晶超
、し導体を形成するものである。
(d) Means for Solving the Problems In order to solve the problems, the method for manufacturing a single crystal superconductor according to the present invention includes changing the raw material powder of an oxide superconductor of one composition system to the composition ratio of that composition system. The seed crystals of the oxide superconductor of the composition were mixed at a ratio of 1 to 10 g per 50 g of the weighed raw material powder, and the mixture was melted at a temperature after the single crystal precipitation temperature of the composition. After that, a crystalline conductor is formed.

(ホ)作用 ある1つの組成系の酸化O1超X1:i、専体の原料粉
末をその組成系の組成比に応じて秤量し、この秤量した
原料粉末50gに対して、その組成系の酸化物超電導体
の種結晶を1〜10gの割合で混合し、その組成系の単
結晶析出温度01j後の温lyで溶融した後、単結晶超
電導体を形成するので、前述の従来例で得らhるものよ
り大きい単結晶超電導1本が得られる。
(e) Oxidation of one compositional system with an effect exceeding O1 A single crystal superconductor is formed by mixing 1 to 10 g of seed crystals of a physical superconductor and melting the mixture at a temperature after the single crystal precipitation temperature 01j of the composition system. One single-crystal superconductor that is larger than that of 1 h is obtained.

前記秤量した原料粉末50 g !=、kt して、そ
のイ11成系の酸化物超電導体の種結晶を1gより少な
い割合で混合する場合には、この種結晶を混合しないと
きと同様に、高々3mi角以ドの大きさの6のしか得ら
れない。
50 g of the weighed raw material powder! =, kt, and when the seed crystal of the oxide superconductor of the A11 system is mixed in a proportion less than 1 g, the size of the oxide superconductor of at most 3 mi square is the same as when this seed crystal is not mixed. I can only get 6 of these.

一方、d11記種結晶を10gより多く混合するときに
は、種結晶が多いため結晶数が多くなり、単結晶にはな
らない。
On the other hand, when more than 10 g of d11 seed crystals are mixed, the number of crystals increases because there are many seed crystals, and a single crystal does not form.

くべ)実施例 本発明の一実施例として、1つの組成系がBi25rC
aCu、O,である単結晶超電導体の製造方法を説明す
る。
Example) As an example of the present invention, one composition system is Bi25rC.
A method for manufacturing a single crystal superconductor of aCu, O, will be described.

まず、この組成系の酸化物超電導体の原料粉末を、その
組成比に応じて秤量する。
First, raw material powder for an oxide superconductor having this composition is weighed according to its composition ratio.

即ち、原料粉末として例えばBi、O,、S rco 
s、CaCO5及びCuOを用い、これらの原料粉末を
その組成系の組成比Bi:Sr:Ca:Cu=2 : 
1°1:2に秤量してアルミナのルツボに入れて混合す
る。
That is, as raw material powder, for example, Bi, O, S rco
s, CaCO5 and CuO, and the composition ratio of these raw material powders is Bi:Sr:Ca:Cu=2:
Weigh the ingredients at a ratio of 1°1:2 and mix them in an alumina crucible.

具体的には、純度99.999%のBitO,を35.
 Og、純度99.99%の5rCOsを22.1 g
、純度99.99%のCaC01を15.Og、純度9
9.99%のCuOを23.9 g、それぞれ秤量し、
これらの原料粉末を混合する。この混合物にエタノール
、メタノールなどの有機溶媒を加えてスタークにて撹拌
した後、有機溶媒を蒸発させ、乳鉢にてすりつぶして粉
末状とし、原料粉末を得る。
Specifically, 35% of BitO with a purity of 99.999% was used.
22.1 g of 5rCOs with 99.99% purity
, 99.99% purity CaC01. Og, purity 9
Weighed 23.9 g of 9.99% CuO,
These raw material powders are mixed. After adding an organic solvent such as ethanol or methanol to this mixture and stirring in a Stark machine, the organic solvent is evaporated and the mixture is ground in a mortar to form a powder to obtain a raw material powder.

次に、この原料粉末50g当り、従来の方法で得たBi
25rCaCut帆の種結晶を1−10gの割合でアル
ミナのルツボに入れて混合するっ具体的には原料粉末5
0g当り種結晶を5gの割合で、即ち前述の原料粉末の
量96gに対して種結晶を9.6g混合した。
Next, per 50 g of this raw material powder, Bi obtained by the conventional method
25rCaCut sail seed crystals are mixed in an alumina crucible at a ratio of 1-10g.Specifically, raw material powder 5
Seed crystals were mixed at a ratio of 5 g per 0 g, that is, 9.6 g of seed crystals were mixed with 96 g of the aforementioned raw material powder.

続いて、このルツボを電気炉に入れて熱処理する。図面
に熱処理時間に対する熱処理温度特性を示す。この図面
から明らかなように、ます室温から単結晶超電導体の析
出温度Tまで1〜5時間かけて昇温する。この析出温度
Tは、各原料粉末の溶融温度925℃より高く、950
℃より低い温度にされる。
Next, this crucible is placed in an electric furnace and heat treated. The drawing shows the heat treatment temperature characteristics with respect to heat treatment time. As is clear from this drawing, the temperature is gradually increased from room temperature to the precipitation temperature T of the single crystal superconductor over a period of 1 to 5 hours. This precipitation temperature T is higher than the melting temperature of each raw material powder, 925°C, and is 950°C.
The temperature is lower than ℃.

この析出温度Tの状態を2〜2・1時間保持して原料粉
末を全て溶融するとともに溶融原料を種結晶になじませ
て析出可能状態にする。
This state of precipitation temperature T is maintained for 2 to 2.1 hours to melt all of the raw material powder and blend the molten raw material with the seed crystals to make it ready for precipitation.

その後、600〜800℃の温度まで30〜80時間か
けて徐冷する。この間に溶融していた原料が種結晶を核
として徐々に結晶化していき、結晶が成長する。この徐
冷の段階で温度の下げ方を2段階以−にに分けてもよい
。例えば、800℃まで40時間かけて降温し、その後
600℃まで5時間かけて降温を行うなどしてもよい。
Thereafter, it is slowly cooled to a temperature of 600 to 800°C over 30 to 80 hours. During this time, the molten raw material gradually crystallizes using the seed crystal as a core, and the crystal grows. The temperature may be lowered in two or more stages at this slow cooling stage. For example, the temperature may be lowered to 800°C over 40 hours, and then lowered to 600°C over 5 hours.

その後、室温まで降温して電気炉からルツボを取り出し
、ルツボを割って単結晶超電導体を取り出す。この単結
晶超電導体はその大きさが直径10mmのものであり、
単結晶超電導基板として少なくとも7mm角のらのが得
られる。従って、単結晶襞間面上・\の電子デバイスの
バターニングが容易になる。
Thereafter, the temperature is lowered to room temperature, the crucible is taken out from the electric furnace, the crucible is broken, and the single crystal superconductor is taken out. This single crystal superconductor has a diameter of 10 mm,
A square piece of at least 7 mm square can be obtained as a single-crystal superconducting substrate. Therefore, patterning of electronic devices on the interfold surfaces of the single crystal becomes easy.

次に、前述の秤量した原料粉末50gに対して種結晶を
1gの割合で混合して単結晶超電導体を形成したところ
、直径10mmのものが得られ、単結晶超電導基板とし
て少なくとも7mm角のものが得られる。
Next, when a single crystal superconductor was formed by mixing 1 g of seed crystals with 50 g of the weighed raw material powder, a single crystal superconductor with a diameter of 10 mm was obtained, and a single crystal superconducting substrate of at least 7 mm square was obtained. is obtained.

同様に、前述の秤量した原料粉末50gに対して種結晶
を10gの割合で混合して単結晶超電導体を形成したと
ころ、直径7mmの6のが得られ、単結晶超電導基板と
して少なくとも5m1ll角のものが得られる。
Similarly, when a single-crystal superconductor was formed by mixing 10 g of seed crystal with 50 g of the weighed raw material powder, a single crystal superconductor with a diameter of 7 mm was obtained. You can get something.

これに対して、前述の秤量した原料粉末50gに対して
種結晶を0.5gの割合で混合して単結晶超電導体を形
成したところ、直径5mmのものが得られ、単結晶超電
導基板としては大きくても;)野角のものが得られるに
過ぎず、用結晶基板として1−分な大きさのものか得ら
れない。
On the other hand, when a single crystal superconductor was formed by mixing 0.5 g of seed crystal with 50 g of the weighed raw material powder mentioned above, a single crystal superconductor with a diameter of 5 mm was obtained, which is suitable for use as a single crystal superconducting substrate. Even if it is large, it is only possible to obtain a crystal substrate with a size of 1-minute or less as a crystal substrate.

同様に、1tj述の秤量した原料粉末50g1:対して
種結晶をl1gの割合で混合シ、て超電導体を形成した
ところ、直径10mmのものが得られるが、種結晶が多
いため結晶数が多くなり、単結晶のものではなかった。
Similarly, when a superconductor was formed by mixing 50 g of the weighed raw material powder described above with 1 g of seed crystals, a superconductor with a diameter of 10 mm was obtained, but due to the large number of seed crystals, the number of crystals was large. It was not a single crystal.

以−ヒの結果から、秤量した原料粉末5(Igに対する
種結晶の混合割合は、1〜10gか適当である。
From the results shown below, the mixing ratio of the seed crystal to the weighed raw material powder 5 (Ig) is 1 to 10 g, which is appropriate.

また、前述のようにして得た単結晶超電導体を種結晶に
用いて、−1−述した製造方法を繰り返すことにより、
さらに30%の大型化が可能である。
In addition, by repeating the manufacturing method described in -1- using the single crystal superconductor obtained as described above as a seed crystal,
Furthermore, it is possible to increase the size by 30%.

以−Lの実施例においては、1つの組成系がB i 、
 5rcacuz帆である場合について説明したが、L
nBa、CU、帆系(Lnは、)、Yb、Er、Eu、
No、Sm、\dの一種又は複数種からなる) 、]’
1BaCaCuO系あるいは実施例とは異なるB15r
CaCu(1,系等の単結晶超電導体の形成に本発明を
適用することかできる。
In the following examples, one compositional system is B i ,
Although we have explained the case where the sail is 5 rcacuz, L
nBa, CU, sail system (Ln), Yb, Er, Eu,
Consisting of one or more of No, Sm, \d) ,]'
1BaCaCuO system or B15r different from the examples
The present invention can be applied to the formation of single crystal superconductors such as CaCu(1, system).

たとえば、LnBa+Cu5O,系に本発明を適用する
場合には、その原料粉末(例えばI2O3、BaC0,
、及びC110>を組成比Ln: Ba:Cu= 1 
: 2°3.5に秤量して混合すればよく、単結晶超電
導体の析出温度Tを各原料粉末の溶融温度1000℃よ
り高く、1050℃より低い温度に設定すればよい。
For example, when applying the present invention to LnBa+Cu5O, the raw material powder (for example, I2O3, BaC0,
, and C110> with a composition ratio Ln: Ba:Cu=1
: They may be weighed and mixed at a temperature of 2°3.5°C, and the precipitation temperature T of the single crystal superconductor may be set at a temperature higher than the melting temperature of each raw material powder, 1000°C, and lower than 1050°C.

(ト)発明の効果 本発明による単結晶超電導体の製造方法は、ある1つの
組成系の酸化物超電導体の原料粉末をその組成系の組成
比に応じて秤量し、この秤量した原料粉末50g当り、
その組成系の酸化物超電導体の種結晶を1〜10gの割
合で混合し、その組成系の単結晶析出温度前後の温度で
溶融した後、単結晶超電導体を形成するものであるから
、従来例で得られるものより大きい単結晶超電導体を得
ることができ、超電導デバイス用基板として使用するこ
とができる少なくとも5mm角以]、の大きさの超電導
基板として利用することができる。
(G) Effects of the Invention In the method for producing a single crystal superconductor according to the present invention, raw material powder of an oxide superconductor of a certain composition system is weighed according to the composition ratio of that composition system, and 50 g of the weighed raw material powder is Hit,
Conventionally, a single crystal superconductor is formed by mixing 1 to 10 g of seed crystals of an oxide superconductor having the composition and melting the mixture at a temperature around the single crystal precipitation temperature of the composition. A single crystal superconductor larger than that obtained in the example can be obtained, and can be used as a superconducting substrate with a size of at least 5 mm square that can be used as a substrate for a superconducting device.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例における単結晶超電導体を形成
する熱処理時間に対する熱処理温度特性を示す。
The drawing shows the heat treatment temperature characteristics with respect to the heat treatment time for forming a single crystal superconductor in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)1つの組成系の酸化物超電導体の原料粉末をその
組成系の組成比に応じて秤量し、この秤量した原料粉末
50g当り、その組成系の酸化物超電導体の種結晶を1
〜10gの割合で混合し、その組成系の単結晶析出温度
前後の温度で溶融した後、単結晶超電導体を形成する単
結晶超電導体の製造方法。
(1) Weigh the raw material powder of oxide superconductor of one composition system according to the composition ratio of that composition system, and add 1 seed crystal of oxide superconductor of that composition system per 50 g of weighed raw material powder.
A method for producing a single-crystal superconductor, which comprises mixing at a ratio of ~10 g and melting at a temperature around the single-crystal precipitation temperature of the composition system to form a single-crystal superconductor.
JP2311912A 1990-11-16 1990-11-16 Production of single crystal superconductor Pending JPH04182394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311912A JPH04182394A (en) 1990-11-16 1990-11-16 Production of single crystal superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311912A JPH04182394A (en) 1990-11-16 1990-11-16 Production of single crystal superconductor

Publications (1)

Publication Number Publication Date
JPH04182394A true JPH04182394A (en) 1992-06-29

Family

ID=18022917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311912A Pending JPH04182394A (en) 1990-11-16 1990-11-16 Production of single crystal superconductor

Country Status (1)

Country Link
JP (1) JPH04182394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system

Similar Documents

Publication Publication Date Title
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
JPH04182394A (en) Production of single crystal superconductor
US5314869A (en) Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy
JP3330962B2 (en) Manufacturing method of oxide superconductor
Huang et al. Primary crystallization field and crystal growth of Bi2Sr2CaCu2Ox
JPH0255298A (en) Method for growing oxide superconductor single crystal
JPH02275799A (en) Oxide superconductor and its production
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH0465395A (en) Superconducting fibrous crystal and its production
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JPH02243519A (en) Oxide superconductor and production thereof
JPH01278449A (en) Production of oxide superconductor
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH0264019A (en) Production of bi-sr-ca-cu-o-based superconducting oxide thick film
JPS5938197B2 (en) Melt for growth of barium lead bismuthate single crystals
JPH05254839A (en) Production of oxide superconductive material
JPH02133320A (en) Production of superconducting thin film
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPH01275493A (en) Method for growing oxide superconductor single crystal
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH03112810A (en) Production of oxide superconducting film
JPH01201060A (en) Production of superconductor
JPH05193950A (en) Production of oxide superconducting material
JPH02229787A (en) Production of oxide superconductor
JPH0442584A (en) Manufacture of superconducting wiring