JPH01278449A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01278449A
JPH01278449A JP63105907A JP10590788A JPH01278449A JP H01278449 A JPH01278449 A JP H01278449A JP 63105907 A JP63105907 A JP 63105907A JP 10590788 A JP10590788 A JP 10590788A JP H01278449 A JPH01278449 A JP H01278449A
Authority
JP
Japan
Prior art keywords
oxide superconductor
based oxide
phase
critical temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63105907A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63105907A priority Critical patent/JPH01278449A/en
Publication of JPH01278449A publication Critical patent/JPH01278449A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the subject superconductor having a high volume ratio in the superconducting phase at the high critical temperature and critical current density by thermally melting a raw material for a Bi-Sr-Ca-Cu based oxide superconductor, quenching the melt and heat-treating the resultant quenched substance under specific conditions. CONSTITUTION:A raw material for a Bi-Sr-Ca-Cu based oxide superconductor (e.g. simple substance or compound, such as oxide or carbonate, of the respective constituent elements) is calcined, mixed so as to provide a composition satisfying the formula Bi2Sr2Ca2Cu3Ox and melted while being heated, quenched at a quenching rate within the range of, e.g., 1X10<2>-1X10<7> deg.C/sec, to provide a quenched substance having partially disordered orientation of crystal lattices. The resultant quenched substance is then rapidly heated to temperature conditions of 400-800 deg.C at, e.g. about 10-1,000 deg.C/min heating rate, in an O2- containing atmosphere, then heat-treated under the same temperature conditions for a long period and crystallized to produce a phase of the high critical temperature.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、Bi−Sr−Ca−Cu−0系酸化物超電
導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a Bi-Sr-Ca-Cu-0 based oxide superconductor.

(従来の技術) 1986年に40に以上の高い臨界温度を有するLa−
Ba−Cu−0系の層状ペロブスカイト型の酸化物超電
導体が発表されて以来、酸化物系の超電導材料が注目を
集めた。また、1987年にはY−Ba−Cu−0系で
代表される酸素欠陥を有する欠陥ペロブスカイト型の酸
化物超電導体の臨界温度が液体窒素温度(−77K)よ
り高い、約90にであることが確認された。この発見に
より冷媒として高価な液体ヘリウムに代えて、より安価
な液体窒素を用いた超電導体の応用が可能となり、各所
で盛んに研究が行われている。
(Prior art) In 1986, La-
Since the Ba-Cu-0-based layered perovskite-type oxide superconductor was announced, oxide-based superconducting materials have attracted attention. Furthermore, in 1987, it was discovered that the critical temperature of a defective perovskite-type oxide superconductor with oxygen defects, represented by the Y-Ba-Cu-0 system, is about 90°C, higher than the liquid nitrogen temperature (-77K). was confirmed. This discovery has made it possible to apply superconductors using cheaper liquid nitrogen instead of expensive liquid helium as a refrigerant, and research is being actively conducted in various places.

さらに、1988年には零抵抗を示す臨界温度が約10
5にのBi−Sr−Ca−Cu−0系の酸化物超電導体
が発見されるに至った(日本経済新聞昭和63年1月2
2日など)。
Furthermore, in 1988, the critical temperature at which zero resistance occurs was approximately 10
5, the Bi-Sr-Ca-Cu-0 based oxide superconductor was discovered (Nihon Keizai Shimbun, January 2, 1988).
2 days, etc.).

このBi−Sr−Ca−Cu系の酸化物超電導体は、L
a−Ba−Cu−0系やY−Ba−Cu−0系の酸化物
超電導体に比ベて臨界温度が高く、たとえば液体窒素に
よって冷却を行う際に実用上充分な熱的マージンがとれ
るばかりでなく、高価な希土類元素が不要であること、
水分に対する化学的安定性が高いこと、酸素が抜けにく
いことなどの利点があり、より優れた酸化物超電導体と
して注目を集めている。
This Bi-Sr-Ca-Cu based oxide superconductor is
It has a higher critical temperature than the a-Ba-Cu-0 and Y-Ba-Cu-0 oxide superconductors, and can provide a practically sufficient thermal margin when cooling with liquid nitrogen, for example. In addition, expensive rare earth elements are not required.
It has advantages such as high chemical stability against moisture and resistance to oxygen escape, and is attracting attention as a superior oxide superconductor.

この旧−Sr−Ca−Cu系酸化物超電導体は、Y−B
a−Cu−0系酸化物超電導体と同様に通常の乾式法に
よって合成することができる。すなわち、原料粉末とし
てたとえば旧203 、SrCO3、CaCO3、Cu
Oなどの粉末を用い、充分に混合した後に適当な温度で
保持して焼成し、焼結体やその粉末として得ることがで
きる。このBi−Sr−Ca−Cu系酸化物超電導体の
焼成温度は、融点近傍の890℃程度が最適であるとい
う報告が多い。
This old-Sr-Ca-Cu based oxide superconductor is Y-B
Like the a-Cu-0 based oxide superconductor, it can be synthesized by a normal dry method. That is, raw material powders such as old 203, SrCO3, CaCO3, Cu
A sintered body or its powder can be obtained by thoroughly mixing powders such as O and then holding and firing them at an appropriate temperature. There are many reports that the optimal firing temperature for this Bi-Sr-Ca-Cu based oxide superconductor is about 890°C, which is near the melting point.

ところで、上述したような通常の焼成法によって得た旧
−Sr−Ca−Cu系酸化物超電導体の焼結体では電気
抵抗が急激に減少しはじめる臨界温度、すなわち抵抗の
オンセット温度(以下Tconと示す)が約120にと
高く、この抵抗の急激な減少グラフ上に外挿すると零抵
抗を示す臨界温度(以下Teorrと示す)が110に
程度となるにも拘らず、実際のTco[’[’は75X
〜85に前後と低いという性質がある。
By the way, in the sintered body of the former -Sr-Ca-Cu based oxide superconductor obtained by the above-mentioned normal sintering method, the critical temperature at which the electrical resistance begins to rapidly decrease, that is, the resistance onset temperature (hereinafter referred to as Tcon) The actual Tco ['[' is 75X
There is a property that it is low around ~85.

これは、臨界温度の異なる2種類の超電導相がBi−S
r−Ca−Cu系酸化物超電導体には存在しているため
に生じる性質であると、現在のところほぼ解明されてい
る。
This is because two types of superconducting phases with different critical temperatures are Bi-S.
At present, it has been largely clarified that this property is caused by the presence of r-Ca-Cu-based oxide superconductors.

また、最近の研究で高臨界温度相および低臨界温度相は
、それぞれほぼ下記の結晶構造を有していることが確認
されつつある。
Furthermore, recent research has confirmed that the high critical temperature phase and the low critical temperature phase each have approximately the following crystal structures.

高臨界温度相: Bi2 Sr2 Ca2 Cu30 
x(結晶格子のC軸の長さが約36人) 低臨界温度相: Bi2 Sr2 Ca1Cu20 x
(結晶格子のC軸の長さが約30人) (発明が解決しようとする課題) 上述したように、Bi−Sr−Ca−Cu系酸化物超電
導体は、高臨界温度相と低臨界温度相の28類の超電導
相を有しているため、Tcoff’を高めるためには高
臨界温度相の比率を高めることが必要となるが、現在の
ところ高臨界温度相単相のBi−Sr−Ca−Cu系酸
化物超電導体の製造方法は見出されていないのが現状で
ある。
High critical temperature phase: Bi2 Sr2 Ca2 Cu30
x (The length of the C axis of the crystal lattice is approximately 36 people) Low critical temperature phase: Bi2 Sr2 Ca1Cu20 x
(The length of the C axis of the crystal lattice is about 30.) (Problem to be solved by the invention) As mentioned above, Bi-Sr-Ca-Cu based oxide superconductors have a high critical temperature phase and a low critical temperature phase. Since it has 28 class superconducting phases, it is necessary to increase the ratio of high critical temperature phase in order to increase Tcoff', but at present, Bi-Sr- At present, no method for producing a Ca-Cu-based oxide superconductor has been found.

そこで、高臨界温度相を単相で取出す研究が各所で行わ
れているが、今だ有効な方法は見出されていない。
Therefore, research is being conducted in various places to extract the high critical temperature phase as a single phase, but no effective method has yet been found.

この発明は、このような従来技術の課題に対処するため
になされたもので、Teonが120に前後の高臨界温
度相の比率の高いBi−Sr−Ca−Cu系酸化物超電
導体、さらには高臨界温度相単相のBi−Sr−Ca−
Cu系酸化物超電導体を得ることを可能にする酸化物超
電導体の製造方法を提供することを目的としている。
This invention was made in order to address the problems of the prior art, and includes a Bi-Sr-Ca-Cu based oxide superconductor having a high ratio of high critical temperature phase with a Teon of around 120, and furthermore, High critical temperature single phase Bi-Sr-Ca-
It is an object of the present invention to provide a method for producing an oxide superconductor that makes it possible to obtain a Cu-based oxide superconductor.

[発明の構成] (課題を解決するための手段) この発明の酸化物超電導体の製造方法は、まず第1にB
i−Sr−Ca−Cu系酸化物超電導体原料を加熱溶融
する工程と、この溶融物を急冷する工程と、この急冷体
を酸素含有雰囲気中において400”0〜800℃の温
度条件下で熱処理し高臨界温度相を生じせしめる工程と
を有することを特徴としており、第2に非晶質あるいは
完全な結晶を構成していない旧−9r−Ca−Cu系酸
化物超電導体薄膜を気相形成する工程と、このBi−S
r−Ca−Cu系酸化物超電導体薄膜を酸素含有雰囲気
中において400℃〜800℃の温度条件下で熱処理し
高臨界温度相を生じせしめる工程とを有することを特徴
としている。
[Structure of the Invention] (Means for Solving the Problems) The method for producing an oxide superconductor of the present invention first includes B.
A process of heating and melting the i-Sr-Ca-Cu based oxide superconductor raw material, a process of rapidly cooling this melt, and a heat treatment of this rapidly cooled body in an oxygen-containing atmosphere at a temperature of 400°C to 800°C. and a step of generating a high critical temperature phase.Secondly, the process involves vapor phase formation of a prior-9r-Ca-Cu based oxide superconductor thin film that is amorphous or does not constitute a perfect crystal. This process and this Bi-S
The method is characterized by a step of heat-treating an r-Ca-Cu based oxide superconductor thin film under a temperature condition of 400° C. to 800° C. in an oxygen-containing atmosphere to generate a high critical temperature phase.

この発明の第1の酸化物超電導体の製造方法における溶
融物の出発原料は、たとえば以下のようにして作製され
る。
The starting material for the melt in the first method for producing an oxide superconductor of the present invention is produced, for example, as follows.

Bi、Srs Cas CuなどのBi−9r−Ca−
Cu系酸化物超電導体の構成元素の単体または化合物を
充分に混合する。この構成元素の化合物としては、炭酸
塩、酸化物を用いることができるほか、炭酸塩以外の加
熱により酸化物に転化する硝酸塩、水酸化物など、さら
に有機酸塩や有機金属などを用いてもよい。
Bi-9r-Ca- such as Bi, Srs Cas Cu
The constituent elements or compounds of the Cu-based oxide superconductor are sufficiently mixed. As compounds of this constituent element, carbonates and oxides can be used, as well as nitrates and hydroxides that are converted to oxides by heating other than carbonates, and organic acid salts and organic metals. good.

このBi−Sr−Ca−Cu系酸化物超電導体を構成す
る元素は、基本的に高臨界温度の超電導相として解明さ
れた、 一般式: Bl2 Sr2 Ca2 Cu30 x(結
晶格子のC軸長さが約36人) の原子比を満足する組成となるように混合するが、たと
えば蒸気圧の比較的低いBlを多少多めに配合するなど
、溶融温度や溶融時間などの製造条件との関係で多少、
たとえばlO%程度ずれていても差支えず、これらに応
じて適宜設定する。
The elements constituting this Bi-Sr-Ca-Cu-based oxide superconductor are basically elucidated as a superconducting phase with a high critical temperature, and have the general formula: Bl2 Sr2 Ca2 Cu30 x (the C-axis length of the crystal lattice is However, depending on manufacturing conditions such as melting temperature and melting time, for example, blending a slightly larger amount of Bl, which has a relatively low vapor pressure,
For example, there is no problem even if there is a difference of about 10%, and the setting is made appropriately according to this.

このようにして得た各構成元素を所定の比率で含有する
混合物を出発原料として用いてもよいし、あるいは80
0℃以上、融点以下の温度で仮焼して、予め結晶化させ
た酸化物超電導体を用いてもよい。
A mixture containing each constituent element in a predetermined ratio obtained in this way may be used as a starting material, or
An oxide superconductor that has been pre-crystallized by calcining at a temperature of 0° C. or higher and lower than the melting point may be used.

次に、これら出発原料を融点以上に加熱して溶融させた
後、所定の速度で急冷して酸化物超電導体の急冷体を作
製する。
Next, these starting materials are heated to a temperature higher than their melting point to melt them, and then rapidly cooled at a predetermined rate to produce a rapidly cooled body of an oxide superconductor.

この急冷工程は、非晶質体あるいは結晶性の悪い状態、
すなわち部分的に結晶格子の配列が乱れているような状
態の急冷体を作製するものである。
This rapid cooling process removes the amorphous or poorly crystalline state.
In other words, a rapidly cooled body is produced in which the crystal lattice arrangement is partially disordered.

このため、急冷速度の制御が重要であり、■×102℃
/秒〜IXIQ’℃/秒の範囲、望ましくはlXl0’
℃/秒〜lXl0’℃/秒の範囲が好適している。
For this reason, it is important to control the rapid cooling rate, and
/sec to IXIQ'°C/sec, preferably lXl0'
A range of 1X10'C/sec to 1X10'C/sec is suitable.

また、この急冷工程によって作製する酸化物超電導体の
急冷体は、ブロック状のものに限らず、たとえば下部に
ノズルを有するるつぼなどによって溶融し、ノズルから
溶融物を噴出させることによって条体、長尺な板状体を
作製することも可能である。
In addition, the quenched oxide superconductor produced by this quenching process is not limited to a block shape; for example, it is melted in a crucible with a nozzle at the bottom, and the molten material is jetted from the nozzle to form a strip or a long body. It is also possible to produce a long plate-like body.

また、この発明の第2の酸化物超電導体の製造方法にお
ける薄膜の形成方法としては、スパッタ法、蒸着法、C
VD法など、各種公知の気相における薄膜形成方法を用
いることが可能であるが、上述した溶融急冷後の急冷体
と同様に、非晶質体あるいは結晶性の悪い状態の薄膜を
作製する。これは、たとえば着膜時の飛翔粒子の形態、
薄膜作製時の基板温度、着膜時にエピタキシャル成長を
起こさせないような基板の使用など、適用する形成方法
に合せて適宜条件を設定することによって容品に達成で
きる。
In addition, as a method for forming a thin film in the second method for manufacturing an oxide superconductor of the present invention, sputtering method, vapor deposition method, C
Although it is possible to use various known methods for forming a thin film in the gas phase, such as the VD method, a thin film in an amorphous state or with poor crystallinity is produced, similar to the quenched body after melting and quenching described above. For example, the shape of flying particles during film deposition,
This can be achieved by appropriately setting conditions according to the applied forming method, such as the substrate temperature during thin film production and the use of a substrate that does not allow epitaxial growth during film deposition.

使用する基板としては、MgO1Zr02  (安定化
剤としてYを含む。以下YSzと示す。)など、各種セ
ラミックス基板が例示される。
Examples of the substrate used include various ceramic substrates such as MgO1Zr02 (contains Y as a stabilizer, hereinafter referred to as YSz).

そして、このようにして作製した結晶性の悪い酸化物超
電導体の急冷体および薄膜に、所定の条件下で長時間熱
処理を施すことによって、上述した結晶のC軸長さが約
36人である高臨界温度相の体積比が60%以上、さら
には上記C軸が約36人のBi2 Sr2 Ca2 C
u30 x単相のBi−Sr−Ca−Cu系酸化物超電
導体が得られる。
Then, by subjecting the quenched body and thin film of the oxide superconductor with poor crystallinity produced in this manner to heat treatment for a long time under predetermined conditions, the C-axis length of the crystal described above is approximately 36 mm. The volume ratio of the high critical temperature phase is 60% or more, and furthermore, the C axis is about 36 Bi2 Sr2 Ca2 C
A u30 x single-phase Bi-Sr-Ca-Cu based oxide superconductor is obtained.

この熱処理は、空気中、好ましくは酸素を含有するガス
雰囲気中において400℃〜800℃の温度条件下で長
時間かけて行う。熱処理時の温度が400℃未満である
と結晶化が不十分であり、また800℃を超えるとC軸
長さが約30人である低臨界温度の超電導相が安定して
、高臨界温度の超電導相の出現率が低下する。好ましく
は600℃〜800℃の範囲である。熱処理時間は、充
分に結晶化させるために長時間行う必要があり、温度条
件によっても異なるが、40時間以上行うことが好まし
い。
This heat treatment is performed in air, preferably in a gas atmosphere containing oxygen, at a temperature of 400°C to 800°C over a long period of time. If the temperature during heat treatment is less than 400°C, crystallization will be insufficient, and if it exceeds 800°C, the low critical temperature superconducting phase with a C-axis length of approximately 30 mm will become stable, and the high critical temperature superconducting phase will become stable. The appearance rate of superconducting phase decreases. Preferably it is in the range of 600°C to 800°C. The heat treatment needs to be carried out for a long time in order to achieve sufficient crystallization, and although it varies depending on the temperature conditions, it is preferable to carry out the heat treatment for 40 hours or more.

あまり長時間かけても飽和してしまい、それ以上の効果
が得られないため、120時間以下が実用的である。
If it is applied for too long, it will become saturated and no further effect can be obtained, so 120 hours or less is practical.

また、この熱処理の際の昇温は、たとえば所定の温度に
加熱された炉内に直接投入するなど、急熱することによ
って低臨界温度の超電導相を経ずに直接高臨界温度の超
電導相を結晶化することができ、おおよそ10℃/分〜
1000℃/分程度の昇温速度となるように設定するこ
とが好ましい。
In addition, the temperature increase during this heat treatment can be done by rapid heating, for example, by directly placing it in a furnace heated to a predetermined temperature, so that the high critical temperature superconducting phase is directly generated without passing through the low critical temperature superconducting phase. Can be crystallized, approximately 10℃/min~
It is preferable to set the temperature increase rate to about 1000° C./min.

(作 用) この発明の酸化物超電導体の製造方法においては、溶融
物を急冷することによって、あるいは原子やイオン状態
での飛翔によって着膜させることにより、結晶性の悪い
状態、すなわち部分的に結晶格子の配列が乱れているよ
うな状態の旧−Sr−Ca−Cu系酸化物超電導体をま
ず作製する。そして、この状態から熱処理を施すことに
よって、結晶格子のC軸長さが約30人の低臨界温度の
超電導相の形成が防止され、結晶格子のC軸長さが約3
6人の高臨界温度の超電導相として結晶化させることが
可能となる。したがって、得られる酸化物超電導体焼結
体あるいは薄膜は、高臨界温度の超電導相の体積比率が
高いものとなり、さらには単一相となる。
(Function) In the method for producing an oxide superconductor of the present invention, by rapidly cooling a molten material or depositing a film by flying in an atomic or ionic state, a film with poor crystallinity, that is, a partially First, a prior-Sr-Ca-Cu based oxide superconductor with a disordered crystal lattice arrangement is produced. Then, by applying heat treatment from this state, the formation of a low critical temperature superconducting phase with a crystal lattice C-axis length of about 30 is prevented, and the crystal lattice C-axis length is about 3
It becomes possible to crystallize it as a superconducting phase with a high critical temperature. Therefore, the obtained oxide superconductor sintered body or thin film has a high volume ratio of the high critical temperature superconducting phase, and furthermore, has a single phase.

また、得られる酸化物超電導体焼結体あるいは薄膜は、
非晶質状態に近い状態から長時間かけて熱処理して結晶
化させているため、高密度化して臨界電流密度も向上す
る。
In addition, the obtained oxide superconductor sintered body or thin film is
Since it is heat-treated for a long time from a state close to an amorphous state to crystallize it, the density is increased and the critical current density is also improved.

(実施例) 次に、この発明の実施例について説明する。(Example) Next, embodiments of the invention will be described.

実施例l Bi203 、SrCO3、CaCO3、CuOの各粉
末を原子比でBa:Sr:Ca:Cu=2:2:2:3
の比率となるように所定量計量し、これを充分に混合し
て原料粉末とした。
Example 1 Each powder of Bi203, SrCO3, CaCO3, and CuO was prepared in an atomic ratio of Ba:Sr:Ca:Cu=2:2:2:3
A predetermined amount was weighed so as to have a ratio of 1, and the mixture was thoroughly mixed to obtain a raw material powder.

この原料粉末をるつぼに収容し、1100℃〜1200
℃で約30分間溶融した後、この溶融物を鉄板上に流出
させて急冷した。この際の冷却速度は、約lXl0’℃
/秒であった。
This raw material powder was placed in a crucible and heated to 1100°C to 1200°C.
After melting at .degree. C. for about 30 minutes, the melt was poured onto a steel plate and quenched. The cooling rate at this time is approximately 1X10'℃
/second.

次に、この急冷体を600℃に昇温した加熱炉内に直接
投入し、この温度で100時間保持して熱処理した後、
炉冷してBi−Sr−Ca−Cu系酸化物超電導体を得
た。
Next, this rapidly cooled body was directly put into a heating furnace heated to 600°C, and after being heat-treated by holding it at this temperature for 100 hours,
The mixture was cooled in a furnace to obtain a Bi-Sr-Ca-Cu based oxide superconductor.

このようにして得たBi−Sr−Ca−Cu系酸化物超
電導体に銀ペーストで電流、電圧端子を形成した後、4
端子法で室温から液体窒素温度までの電気抵抗をn1定
したところ、Tc on 115K 、 Te o(’
r ll0Kと良好な結果が得られた。また、このB[
−!Sr−Ca−Cu−Cu系酸化物超電導体の結晶相
をX線回折とEMPAにより同定したところ、結晶格子
のC軸長さが約38人の、 一般式: Bi25r2Ca2Cua Oto−6で表
される高臨界温度の超電導相が体積比で約80%存在し
ていた。
After forming current and voltage terminals on the thus obtained Bi-Sr-Ca-Cu based oxide superconductor using silver paste,
When the electrical resistance from room temperature to liquid nitrogen temperature was determined as n1 using the terminal method, Tc on 115K, Te o('
A good result was obtained. Also, this B[
-! When the crystal phase of the Sr-Ca-Cu-Cu-based oxide superconductor was identified by X-ray diffraction and EMPA, it was found that the C-axis length of the crystal lattice was approximately 38 mm, and was expressed by the general formula: Bi25r2Ca2Cua Oto-6. A superconducting phase with a high critical temperature existed in an amount of about 80% by volume.

また、77Kにおける臨界電流密度を測定したところ、
IX 10’ A/cjであった。
In addition, when we measured the critical current density at 77K,
IX 10' A/cj.

一方、この発明との比較のために、上記実施例で作製し
た原料粉末を空気中、800℃、10時間の条件で仮焼
し、この焼成物を粉砕、分級した後、プレス加工により
ペレット化し、酸素雰囲気中、870℃、24時間の条
件で焼結させてBi−Sr−Ca−Cu系酸化物超電導
体を得た。この酸化物超電導体についても上記実施例と
同様にして電気抵抗を測定したところ、ll0Kから急
激に電気抵抗が減少したが、TcoN’は75K テあ
ツタ。
On the other hand, for comparison with the present invention, the raw material powder produced in the above example was calcined in air at 800°C for 10 hours, and the calcined product was crushed and classified, and then pelletized by pressing. A Bi-Sr-Ca-Cu based oxide superconductor was obtained by sintering in an oxygen atmosphere at 870°C for 24 hours. When the electrical resistance of this oxide superconductor was measured in the same manner as in the above example, the electrical resistance decreased rapidly from 110K, but TcoN' was only 75K.

実施例2 実施例1で作製した原料粉末をプレス加工により円板状
に成形した後、酸素雰囲気中、870℃、・24時間の
条件で焼結させてスパッタターゲットを作製した。
Example 2 The raw material powder produced in Example 1 was formed into a disk shape by press working, and then sintered in an oxygen atmosphere at 870° C. for 24 hours to produce a sputter target.

このスパッタターゲットを用い、また着膜基板としてY
SZ基板を使用して、lX10°’ Torrのアルゴ
ン雰囲気中、印加電圧200vの条件で高周波スパッタ
を行い、YSZ基板上に厚さ1000人の結晶性の悪い
状態のBi−9r−Ca−Cu系酸化物超電導体薄膜を
形成した。なお、基板温度は100℃に設定した。
Using this sputter target, Y
Using an SZ substrate, high frequency sputtering was performed under the conditions of an applied voltage of 200 V in an argon atmosphere of 1 x 10°' Torr, and a Bi-9r-Ca-Cu system with poor crystallinity was deposited on the YSZ substrate to a thickness of 1000 mm. An oxide superconductor thin film was formed. Note that the substrate temperature was set at 100°C.

次に、この薄膜が形成されたYSz基板を、実施例1と
同一条件で熱処理し、結晶化させた。
Next, the YSz substrate on which this thin film was formed was heat-treated under the same conditions as in Example 1 to crystallize it.

このようにして得たBi−Sr−Ca−Cu系酸化物超
電導体薄膜の電気抵抗を実施例1と同様にして測定した
ところ、Tc on 115K STc off ll
0Kと良好な結果が得られた。また、このBi−Sr−
Ca−Cu系酸化物超電導体の結晶相を実施例1と同様
に同定したところ、高臨界温度の超電導相が体積比で約
80%存在していた。また、77Kにおける臨界電流密
度を測定したところ、LX 10’ Addであった。
The electrical resistance of the Bi-Sr-Ca-Cu based oxide superconductor thin film thus obtained was measured in the same manner as in Example 1, and it was found that Tc on 115K STc off ll
A good result of 0K was obtained. Moreover, this Bi-Sr-
When the crystalline phase of the Ca-Cu-based oxide superconductor was identified in the same manner as in Example 1, it was found that a high critical temperature superconducting phase existed in a volume ratio of about 80%. Further, when the critical current density at 77K was measured, it was LX 10' Add.

[発明の効果] 以上の実施例からも明らかなように、この発明の酸化物
超電導体の製造方法によれば、零抵抗を示す臨界温度・
Tcorf’の高い超電導相の比率が高いBi−Sr−
Ca−Cu系酸化物超電導体が得られ、安定して高臨界
温度の酸化物超電導体を得ることが可能となる。
[Effects of the Invention] As is clear from the above examples, according to the method for producing an oxide superconductor of the present invention,
Bi-Sr- with a high proportion of superconducting phase with high Tcorf'
A Ca-Cu-based oxide superconductor is obtained, and it becomes possible to stably obtain an oxide superconductor with a high critical temperature.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (2)

【特許請求の範囲】[Claims] (1)Bi−Sr−Ca−Cu系酸化物超電導体原料を
加熱溶融する工程と、この溶融物を急冷する工程と、こ
の急冷体を酸素含有雰囲気中において400℃〜800
℃の温度条件下で熱処理し高臨界温度相を生じせしめる
工程とを有することを特徴とする酸化物超電導体の製造
方法。
(1) A process of heating and melting the Bi-Sr-Ca-Cu based oxide superconductor raw material, a process of rapidly cooling this melt, and a process of heating this rapidly cooled body at 400°C to 800°C in an oxygen-containing atmosphere.
1. A method for producing an oxide superconductor, comprising the step of heat-treating under a temperature condition of °C to generate a high critical temperature phase.
(2)非晶質あるいは完全な結晶を構成していないBi
−Sr−Ca−Cu系酸化物超電導体薄膜を気相形成す
る工程と、このBi−Sr−Ca−Cu系酸化物超電導
体薄膜を酸素含有雰囲気中において400℃〜800℃
の温度条件下で熱処理し高臨界温度相を生じせしめる工
程とを有することを特徴とする酸化物超電導体の製造方
法。
(2) Bi that is amorphous or does not form a complete crystal
- A step of forming a Sr-Ca-Cu based oxide superconductor thin film in a vapor phase, and a step of forming the Bi-Sr-Ca-Cu based oxide superconducting thin film at 400°C to 800°C in an oxygen-containing atmosphere.
1. A method for producing an oxide superconductor, comprising the step of heat-treating under temperature conditions to generate a high critical temperature phase.
JP63105907A 1988-04-28 1988-04-28 Production of oxide superconductor Pending JPH01278449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105907A JPH01278449A (en) 1988-04-28 1988-04-28 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105907A JPH01278449A (en) 1988-04-28 1988-04-28 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01278449A true JPH01278449A (en) 1989-11-08

Family

ID=14419942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105907A Pending JPH01278449A (en) 1988-04-28 1988-04-28 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01278449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129009A (en) * 1988-11-04 1990-05-17 Mitsubishi Metal Corp Production of oxide superconductor
US6216333B1 (en) 1997-02-28 2001-04-17 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129009A (en) * 1988-11-04 1990-05-17 Mitsubishi Metal Corp Production of oxide superconductor
US6216333B1 (en) 1997-02-28 2001-04-17 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR910002310B1 (en) Superconductor of oxidation material and the manufacturing method
US5999833A (en) Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
JPH04500061A (en) Epitaxial Ba-Y-Cu-O superconductor film on perovski structure support
JPH01278449A (en) Production of oxide superconductor
JP2516251B2 (en) Manufacturing method of oxide superconducting film
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JPH02120234A (en) Production of oxide superconductor
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JPH059059A (en) Production of oxide superconductor
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH0238359A (en) Production of superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JP3607940B2 (en) Manufacturing method of oxide superconductor
JPH03112810A (en) Production of oxide superconducting film
JPS63315572A (en) Production of superconductor
JPH0982153A (en) Manufacture of oxide superconducting wire
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH0725700A (en) Production of superconductor and thin film superconductor
JPH03290315A (en) Production of bi-based oxide superconductor thin film
JPH0264003A (en) Production of oxide superconductor thin film
JPH04182394A (en) Production of single crystal superconductor
JPH03199159A (en) Production of bismuth-based superconductor
JPH0264019A (en) Production of bi-sr-ca-cu-o-based superconducting oxide thick film