JPH0745357B2 - Superconducting fibrous single crystal and method for producing the same - Google Patents

Superconducting fibrous single crystal and method for producing the same

Info

Publication number
JPH0745357B2
JPH0745357B2 JP2177123A JP17712390A JPH0745357B2 JP H0745357 B2 JPH0745357 B2 JP H0745357B2 JP 2177123 A JP2177123 A JP 2177123A JP 17712390 A JP17712390 A JP 17712390A JP H0745357 B2 JPH0745357 B2 JP H0745357B2
Authority
JP
Japan
Prior art keywords
single crystal
phase
fibrous single
fibrous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2177123A
Other languages
Japanese (ja)
Other versions
JPH0465395A (en
Inventor
一郎 松原
秀夫 谷川
博志 山下
透 小倉
実 木下
知二 川合
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2177123A priority Critical patent/JPH0745357B2/en
Priority to US07/777,055 priority patent/US5242896A/en
Publication of JPH0465395A publication Critical patent/JPH0465395A/en
Publication of JPH0745357B2 publication Critical patent/JPH0745357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導繊維状単結晶およびその製造方法に関
する。
TECHNICAL FIELD The present invention relates to a superconducting fibrous single crystal and a method for producing the same.

従来技術とその問題点 近年酸化物高温超電導体が発見されて以来、種々の応用
分野において、その実用化への開発研究が盛んに行なわ
れている。
2. Description of the Related Art Since the discovery of high-temperature oxide superconductors in recent years, research and development for practical application have been actively conducted in various application fields.

より具体的には、例えば、SQUID(Superconducting Qua
ntum Interference Device)或いはジョセフソン素子を
使用するコンピューターなどのディバイス、素子類にお
いては、酸化物超電導材料の薄膜化技術が必要である。
この薄膜化に関しては、スパッタリング法、蒸着法、CV
D法などにより、臨界電流密度が106A/cm2を超える程度
の十分実用化に供し得る特性を備えた粒界の存在しない
単結晶薄膜が製造可能であると報告されている。
More specifically, for example, SQUID (Superconducting Qua
For devices and devices such as computers using ntum interference devices) or Josephson devices, technology for thinning oxide superconducting materials is required.
Regarding this thinning, sputtering method, vapor deposition method, CV
It is reported that by the method D or the like, it is possible to manufacture a single crystal thin film having no grain boundary and having a characteristic that the critical current density exceeds 10 6 A / cm 2 and can be sufficiently put to practical use.

一方、酸化物超電導体の特性を利用する電力貯蔵、電力
輸送、強力な磁場発生などへの応用のためには、その線
材化を行なう必要があり、酸化物超電導体の仮焼粉末を
銀シースに詰めて再熱処理を行なう方法、ゾルゲル法、
酸化物超電導体の粉末を高分子溶液に懸濁させて線引き
する方法、酸化物超電導体の融液から線引きする方法な
どが試みらている。しかしながら、これらの方法により
得られた線材は、いずれも多結晶体であって、低密度で
且つ粒界を有しているため、実用化レベルの特性を有す
るものは得られていない。また、この様な線材は、多結
晶体としての特性でもある脆さ、加工性の悪さ、曲げ強
度の低さなどの欠点を有している。
On the other hand, in order to apply it to electric power storage, electric power transportation, generation of strong magnetic field, etc., which takes advantage of the characteristics of oxide superconductor, it is necessary to convert it into a wire material. Method of filling in and re-heat treatment, sol-gel method,
Attempts have been made to suspend a powder of an oxide superconductor in a polymer solution and draw the wire, or to draw a wire from a melt of the oxide superconductor. However, since the wire rods obtained by these methods are all polycrystalline and have a low density and have grain boundaries, a wire rod having a practical level of properties has not been obtained. Further, such a wire has drawbacks such as brittleness, poor workability, and low bending strength, which are also characteristics of a polycrystalline body.

また、酸化物超電導体のある種のものの臨界温度が液体
窒素温度を越えることが報告されているが、このこと
は、冷却コストと関連して大きな意義を有している。こ
の様な臨界温度が液体窒素温度よりも高い酸化物超電導
体としては、Bi系、Y系、Tl系などが挙げられる。
In addition, it has been reported that the critical temperature of some oxide superconductors exceeds the liquid nitrogen temperature, which has great significance in connection with cooling cost. Examples of such oxide superconductors having a critical temperature higher than the liquid nitrogen temperature include Bi type, Y type, and Tl type.

Bi系としては、Bi2Sr2Cu1O6相(2201相)、Bi2Sr2CaCu2
O8相(2212相)およびBi2Sr2Ca2Cu3O10相(2223相)の
3種の相が存在しており、それぞれの臨界温度から、20
K相、80K相および110K相とも呼ばれている。特に、臨界
温度の最も高い2223相は、液体窒素温度との間で大きな
温度マージンがとれることなどの点で、実用化に最も適
した材料と考えられているが、現実には、その単相化が
困難であり、2212相または2201相との混合相になりやす
いという問題点がある。固体反応法によれば、厳密な組
成制御および焼成雰囲気制御下に2223相の単相化が一応
達成されるものの、得られるのは、粉末或いは多結晶性
の焼結体であり、低密度で、多くの結晶粒界を有してい
る。従って、すでに大型の単結晶、単結晶性の繊維状結
晶などが得られている2201相および2212相の場合と同様
に、2223相の大型の単結晶、単結晶性の繊維状結晶など
が得られれば、極めて有用である。
Bi system includes Bi 2 Sr 2 Cu 1 O 6 phase (2201 phase), Bi 2 Sr 2 CaCu 2
There are three kinds of phases, O 8 phase (2212 phase) and Bi 2 Sr 2 Ca 2 Cu 3 O 10 phase (2223 phase).
Also known as K phase, 80K phase and 110K phase. In particular, the 2223 phase, which has the highest critical temperature, is considered to be the most suitable material for practical use because it has a large temperature margin with the liquid nitrogen temperature. However, there is a problem in that it is difficult to convert it into a mixed phase with the 2212 phase or 2201 phase. According to the solid reaction method, although a single phase of 2223 phase is achieved under strict composition control and firing atmosphere control, what is obtained is a powder or a polycrystalline sintered body, which has a low density. , Has many grain boundaries. Therefore, as in the case of 2201 phase and 2212 phase where large single crystals and single crystalline fibrous crystals have already been obtained, large single crystals of 2223 phase, single crystalline fibrous crystals, etc. are obtained. If so, it is extremely useful.

問題点を解決するための手段 本発明者は、この様な技術の現状に鑑みて種々研究を重
ねた結果、Si2Sr2Cu1O6構造またはBi2Sr2Ca1Cu2O8構造
を有する繊維状単結晶を、Bi、Sr、Ca、CuおよびPbを含
む特定組成の酸化物粉末中で特定の条件下に熱処理する
場合には、当初の繊維状結晶形態を保持した状態で、そ
の結晶構造がBi2Sr2Ca2Cu3O10構造に変化し、臨界温度
が液体酸素温度以上に上昇することを見出した。
Means for Solving Problems As a result of various studies in view of the current state of the art, the present inventors have found that the Si 2 Sr 2 Cu 1 O 6 structure or the Bi 2 Sr 2 Ca 1 Cu 2 O 8 structure is obtained. When fibrous single crystal having, Bi, Sr, Ca, when heat-treated under specific conditions in an oxide powder of a specific composition containing Cu and Pb, in the state of maintaining the initial fibrous crystal morphology, It was found that the crystal structure changed to Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure and the critical temperature rose above the liquid oxygen temperature.

即ち、本発明は、下記の超電導繊維状単結晶およびその
製造方法を提供するものである。
That is, the present invention provides the following superconducting fibrous single crystal and a method for producing the same.

(1)Bi、Sr、Ca、Cu、PbおよびOからなり、その原子
の組成比が、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) であり、Bi2Sr2Ca2Cu3O10構造(2223相)を有する超電
導繊維状単結晶。
(1) Bi, becomes Sr, Ca, Cu, Pb, and O, the composition ratio of the atoms, Bi 2-x Pb x Sr 1.9~2.1 Ca 1.9~2.1 Cu 3 O y (0 <x <0.4,10.0 <Y <11.0) and a superconducting fibrous single crystal having a Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).

(2)Bi、Sr、Ca、CuおよびOからなり、Bi2Sr2Ca1Cu2
O8構造(2212相)を有する繊維状単結晶、または、 Bi、Sr、CuおよびOからなり、Bi2Sr2Cu1O6構造(2201
相)を有する繊維状単結晶を、原子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 である酸化物粉末中に埋め込み、830〜860℃で熱処理す
ることを特徴とする、原子の組成比が、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) であり、Bi2Sr2Ca2Cu3O10構造(2223相)を有する超電
導繊維状単結晶の製造方法。
(2) Bi 2 Sr 2 Ca 1 Cu 2 consisting of Bi, Sr, Ca, Cu and O
A fibrous single crystal having an O 8 structure (2212 phase), or composed of Bi, Sr, Cu and O, and having a Bi 2 Sr 2 Cu 1 O 6 structure (2201
A fibrous single crystal having a phase) is embedded in an oxide powder having an atomic composition ratio of Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3.0 Cu = 1.0 to 5.0 Pb = 0.2 to 1.0, 830 to 860 The atomic composition ratio is characterized by being heat-treated at ℃, Bi 2−x Pb x Sr 1.9 to 2.1 Ca 1.9 to 2.1 Cu 3 O y (0 <x <0.4, 10.0 <y <11.0), A method for producing a superconducting fibrous single crystal having a Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).

本発明で熱処理の対象となる材料は、(イ)Bi、Sr、C
a、CuおよびOからなり、Bi2Sr2Ca1Cu2O8構造(2212
相)を有する繊維状単結晶、および(ロ)Bi、Sr、Cuお
よびOからなり、Bi2Sr2CuO6構造(2201相)を有する繊
維状単結晶を含む材料である。これら(イ)および
(ロ)の繊維状単結晶においては、2212相および2201相
のBiサイトがPbにより一部置換されていても良い。これ
ら(イ)および(ロ)の繊維状単結晶は、いずれも公知
のものであり、(イ)のBi2Sr2Ca1Cu2O8構造(2212相)
を有する繊維状単結晶は、本発明者により、Japanese J
ournal of Applied Physics Vol.28(1989)L1121に開
示されている。また、(ロ)のBi2Sr2Cu1O6構造(2201
相)を有する繊維状単結晶は、本発明者により、日本セ
ラミックス協会1990年会講演予稿集443頁に開示されて
いる。
The materials to be heat treated in the present invention are (a) Bi, Sr, C
a, Cu and O, and has a Bi 2 Sr 2 Ca 1 Cu 2 O 8 structure (2212
(B) a fibrous single crystal having a phase) and (b) a fibrous single crystal composed of Bi, Sr, Cu and O and having a Bi 2 Sr 2 CuO 6 structure (2201 phase). In the fibrous single crystals of (a) and (b), the Bi sites of the 2212 phase and 2201 phase may be partially replaced with Pb. These fibrous single crystals of (a) and (b) are both known and have a Bi 2 Sr 2 Ca 1 Cu 2 O 8 structure (2212 phase) of (a).
The fibrous single crystal having
Ournal of Applied Physics Vol.28 (1989) L1121. The ( 2 ) Bi 2 Sr 2 Cu 1 O 6 structure (2201
A fibrous single crystal having a phase) is disclosed by the present inventor on page 443 of the proceedings of the 1990 meeting of the Ceramic Society of Japan.

本発明の超電導繊維状単結晶の製造に際しては、まず、
原子組成比で、Bi=1.00として、Sr=0.5〜1.5、Ca=1.
0〜3.0、Cu=1.0〜5.0、Pb=0.2〜1.0となる様に原料物
質を混合した後、焼成する。原料物質は、焼成により酸
化物を形成し得るものであれば、特に限定されず、金属
単体、酸化物、各種の化合物(炭酸塩など)が使用でき
る。原料物質としては、上記の原子を2種以上含む化合
物を使用しても良い。溶融を大気中などの酸素雰囲気下
で行なう場合および原料物質自体が十分量の酸素を含ん
でいる場合には、酸素源となる原料物質を使用する必要
はない。焼成温度および時間は、使用する原料物質の種
類、組成比などにより異なるが、通常800〜860℃程度
で、5〜100時間程度の範囲内にあり、一例として、840
℃程度で20時間程度である。焼成手段も特に限定され
ず、電気加熱炉、ガス加熱炉など任意の手段を採用し得
る。次いで、形成された焼成物を十分に粉砕し、粉末化
する。
In producing the superconducting fibrous single crystal of the present invention, first,
As for atomic composition ratio, Bi = 1.00, Sr = 0.5 to 1.5, Ca = 1.
The raw materials are mixed so that 0 to 3.0, Cu = 1.0 to 5.0, and Pb = 0.2 to 1.0, and then baked. The raw material is not particularly limited as long as it can form an oxide by firing, and simple metals, oxides, various compounds (carbonates, etc.) can be used. As the raw material, a compound containing two or more of the above atoms may be used. When the melting is carried out in an oxygen atmosphere such as in the air, or when the raw material itself contains a sufficient amount of oxygen, it is not necessary to use the raw material as the oxygen source. The firing temperature and time vary depending on the type of raw material used, composition ratio, etc., but are usually in the range of about 800 to 860 ° C. and in the range of about 5 to 100 hours.
It is about 20 hours at ℃. The firing means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted. Next, the formed fired product is sufficiently crushed and pulverized.

次いで、前記(イ)または(ロ)の繊維状単結晶を上記
で得られた酸化物粉末(以下埋込み粉末ということがあ
る)中に埋め込み、熱処理する。熱処理温度および時間
は、使用する埋込み粉末の組成比、熱処理される繊維状
単結晶の大きさなどにより異なるが、通常830〜860℃程
度で50〜200時間程度の範囲内にあり、一例として、840
℃程度で120時間程度である。熱処理手段も特に限定さ
れず、電気加熱炉、ガス加熱炉、光加熱炉などの任意の
ものを採用し得る。
Then, the fibrous single crystal of (a) or (b) is embedded in the oxide powder (hereinafter sometimes referred to as an embedding powder) obtained above and heat-treated. The heat treatment temperature and time vary depending on the composition ratio of the embedding powder used, the size of the fibrous single crystal to be heat treated, etc., but are usually within the range of about 830 to 860 ° C. for about 50 to 200 hours, and as an example, 840
It is about 120 hours at ℃. The heat treatment means is also not particularly limited, and an arbitrary one such as an electric heating furnace, a gas heating furnace, a light heating furnace or the like can be adopted.

熱処理終了後、埋込み粉末から被加熱物を取り出すこと
により、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) なる組成比を有し、Bi2Sr2Ca2Cu3O10構造(2223相)を
有する超電導繊維状単結晶を得る。この繊維状単結晶の
長さ、形状などは、熱処理前のそれらと変わりない。
After the heat treatment is completed, the composition to be Bi 2-x Pb x Sr 1.9 to 2.1 Ca 1.9 to 2.1 Cu 3 O y (0 <x <0.4, 10.0 <y <11.0) is obtained by taking out the object to be heated from the embedded powder. A superconducting fibrous single crystal having a Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase) is obtained. The length and shape of this fibrous single crystal are the same as those before the heat treatment.

本発明方法においては、下記の(a)乃至(b)の条件
を充足することを必須とする。
In the method of the present invention, it is essential to satisfy the following conditions (a) and (b).

(a)特定組成範囲の成分比を有する埋込み粉末を使用
すること;埋込みに使用する酸化物粉末の組成が、仮に
一種でも規定範囲外となった場合には、繊維状単結晶の
2223相化は、困難乃至不可能となる。
(A) Use an embedding powder having a component ratio in a specific composition range; if the composition of the oxide powder used for embedding is out of the specified range, even if one kind of oxide powder is used, a fibrous single crystal
2223 phase conversion becomes difficult or impossible.

(b)特定の温度範囲で熱処理すること;繊維状単結晶
および埋込み粉末の全ての組成が、規定範囲内であって
も、熱処理温度が規定範囲外となる場合には、繊維状単
結晶の2223相化は、やはり困難乃至不可能となる。
(B) heat treatment within a specific temperature range; even if all the compositions of the fibrous single crystal and the embedding powder are within the specified range, if the heat treatment temperature is outside the specified range, the fibrous single crystal Phase conversion of 2223 is still difficult or impossible.

本発明方法において、2201相繊維状単結晶或いは2212相
繊維状単結晶が2223相化する機構は、未だ十分に解明さ
れていないが、以下のようなものであろうと推考され
る。2201相繊維状単結晶或いは2212相繊維状単結晶の22
23相化には、CaおよびCu(これらの繊維状単結晶がPbを
含まない場合には、さらにPb)の供給が必要である。本
発明方法において、埋込み使用する酸化物粉末中での繊
維状単結晶の熱処理温度(830〜860℃)は、粉末の部分
溶融温度に対応している。熱処理温度が高すぎる場合に
は、酸化物粉末の液相部分が多くなり、繊維状単結晶と
酸化物粉末とが融着するので、繊維状単結晶を酸化物粉
末から分離して、取り出すことが困難となる。一方、熱
処理温度が酸化物粉末の部分溶融温度よりも低い場合に
は、繊維状単結晶と酸化物粉末との間で相互作用が生じ
ないので、2223相化は達成されない。しかるに、上記の
温度範囲で熱処理を行なう場合には、繊維状単結晶の近
辺に適度な液相が存在し、この液相を介して埋込み用の
酸化物粉末から繊維状単結晶にCaおよびCuが供給され、
2223相化が達成されるものと考えられる。
In the method of the present invention, the mechanism by which the 2201 phase fibrous single crystal or the 2212 phase fibrous single crystal becomes the 2223 phase has not been fully clarified yet, but it is presumed to be as follows. 2201 phase fibrous single crystal or 2212 phase fibrous single crystal 22
The 23-phase formation requires the supply of Ca and Cu (and Pb when these fibrous single crystals do not contain Pb). In the method of the present invention, the heat treatment temperature (830 to 860 ° C.) of the fibrous single crystal in the oxide powder used for embedding corresponds to the partial melting temperature of the powder. If the heat treatment temperature is too high, the liquid phase portion of the oxide powder increases and the fibrous single crystal and the oxide powder are fused, so the fibrous single crystal should be separated from the oxide powder and taken out. Will be difficult. On the other hand, when the heat treatment temperature is lower than the partial melting temperature of the oxide powder, the interaction between the fibrous single crystal and the oxide powder does not occur, and thus the 2223 phase conversion is not achieved. However, when performing heat treatment in the above temperature range, a suitable liquid phase exists in the vicinity of the fibrous single crystal, and Ca and Cu from the oxide powder for embedding to the fibrous single crystal through this liquid phase. Is supplied,
It is thought that 2223 phase conversion will be achieved.

発明の効果 本発明によれば、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) なる組成を有し、Bi2Sr2Ca2Cu3O10構造(2223相)を有
する超電導繊維状単結晶が得られる。
EFFECTS OF THE INVENTION According to the present invention, the composition is Bi 2−x Pb x Sr 1.9 to 2.1 Ca 1.9 to 2.1 Cu 3 O y (0 <x <0.4, 10.0 <y <11.0), and Bi 2 Sr 2 A superconducting fibrous single crystal having a Ca 2 Cu 3 O 10 structure (2223 phase) is obtained.

本発明の超電導繊維状単結晶は、100Kを超える臨界温度
を有するので、液体窒素中で使用可能である。また、曲
げることが可能であるという特性をも有している。従っ
て、レーザー光などを使用するスポット溶接で線材化す
ることにより、液体窒素中で使用できる高温超電導材料
として、磁場発生用マグネット材料、電力貯蔵用および
電力輸送用の線材製造材料への応用、さらには先端形状
を利用したポイントコンタクトのジョセフソン素子用材
料などの広範囲の分野での利用が期待される。
Since the superconducting fibrous single crystal of the present invention has a critical temperature of more than 100K, it can be used in liquid nitrogen. It also has the characteristic of being bendable. Therefore, by forming a wire by spot welding using laser light, etc., as a high-temperature superconducting material that can be used in liquid nitrogen, it is applied to a magnetic material generating magnetic material, a wire storage material for power storage and power transportation, and Is expected to be used in a wide range of fields such as point contact Josephson device materials using the tip shape.

実 施 例 以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。
Examples Examples will be shown below to further clarify the characteristics of the present invention.

実施例1 下記第1表に示す原子組成比となる様に出発原料を十分
に混合した後、その15gをアルミナルツボに入れ、電気
炉中で840℃で20時間焼成し、得られた焼成物を十分に
粉砕して、埋込み用酸化物粉末を得た。
Example 1 After sufficiently mixing the starting materials so that the atomic composition ratios shown in Table 1 below were obtained, 15 g of the starting materials were placed in an alumina crucible and fired at 840 ° C. for 20 hours in an electric furnace to obtain a fired product. Was sufficiently pulverized to obtain an oxide powder for embedding.

次いで、第1図に模式的な断面図として示す様に、アル
ミナボート(3)上に置かれた上記埋込み用酸化物粉末
(2)中に予め調製しておいたBi2Sr2Ca1Cu2O8構造(22
12相)を有する繊維状単結晶(1)50本を埋込み、電気
炉中840℃で120時間熱処理した。
Then, as shown as a schematic cross-sectional view in FIG. 1, Bi 2 Sr 2 Ca 1 Cu prepared in advance in the oxide powder for embedding (2) placed on an alumina boat (3). 2 O 8 structure (22
50 fibrous single crystals (1) having 12 phases) were embedded and heat-treated in an electric furnace at 840 ° C for 120 hours.

熱処理終了後、繊維状単結晶と埋込み粉末とを分離し
た。
After the heat treatment was completed, the fibrous single crystal and the embedded powder were separated.

第2図に回収した繊維状単結晶のX線回折パターンを示
す。このX線回折パターンから、熱処理後の繊維状単結
晶が、Bi2Sr2Ca2Cu3O10構造(2223相)を有しているこ
とが確認された。
The X-ray diffraction pattern of the recovered fibrous single crystal is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the fibrous single crystal after the heat treatment had the Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).

また、直流四端子法で測定したこの繊維状単結晶の電気
抵抗と絶対温度との関係は、第3図に示す通りであっ
た。また、電気抵抗がゼロとなる温度は、107Kであっ
た。
Further, the relationship between the electric resistance and the absolute temperature of this fibrous single crystal measured by the DC four-terminal method was as shown in FIG. The temperature at which the electric resistance became zero was 107K.

なお、本実施例および以下の実施例において使用した埋
込み用酸化物粉末の製造原料は、下記のものであった。
The raw materials for manufacturing the oxide powder for embedding used in this example and the following examples were as follows.

*Bi源…酸化ビスマス(Bi2O3) *Sr源…炭酸ストロンチウム(SrCO3) *Ca源…炭酸カルシウム(CaCO3) *Cu源…酸化胴(CuO) *Pb源…酸化鉛(PbO) 実施例2〜6 実施例1の手法に準じて、第1表に示す2212相構造また
は2201相構造の繊維状単結晶を酸化物粉末に埋込み、電
気炉中所定の温度で120時間熱処理した。
* Bi source ... bismuth oxide (Bi 2 O 3) * Sr source ... strontium carbonate (SrCO 3) * Ca source ... calcium carbonate (CaCO 3) * Cu source ... oxide cylinder (CuO) * Pb source ... lead oxide (PbO) Examples 2 to 6 According to the method of Example 1, fibrous single crystals having a 2212 phase structure or a 2201 phase structure shown in Table 1 were embedded in oxide powder and heat-treated at a predetermined temperature for 120 hours in an electric furnace.

これら熱処理後の繊維状単結晶は、いずれも実施例1の
ものと同様の結晶構造および超電導性を有していること
が確認された。
It was confirmed that each of these fibrous single crystals after the heat treatment had the same crystal structure and superconductivity as those of Example 1.

実施例1〜6に関して、第1表に熱処理前の繊維状単結
晶の相構造および酸化物粉末の組成を示し、第2表に熱
処理温度、熱処理後の繊維状単結晶の構造および臨界温
度を示す。
Regarding Examples 1 to 6, Table 1 shows the phase structure of the fibrous single crystal before the heat treatment and the composition of the oxide powder, and Table 2 shows the heat treatment temperature, the structure of the fibrous single crystal after the heat treatment, and the critical temperature. Show.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明における繊維状単結晶の熱処理の概要
を示す模式断面図である。 第2図は、本発明により得られた繊維状単結晶のX線回
折パターンの一例を示す図面である。 第3図は、本発明により得られた繊維状単結晶の絶対温
度と電気抵抗との関係を示す図面である。
FIG. 1 is a schematic sectional view showing an outline of heat treatment of a fibrous single crystal in the present invention. FIG. 2 is a drawing showing an example of the X-ray diffraction pattern of the fibrous single crystal obtained by the present invention. FIG. 3 is a drawing showing the relationship between the absolute temperature and the electric resistance of the fibrous single crystal obtained by the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川合 知二 大阪府箕面市小野原東5―26―15―615 (56)参考文献 特開 平4−46050(JP,A) 特開 平3−150208(JP,A) 特開 平3−12313(JP,A) 特開 昭63−307115(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomoji Kawai 5-26-15-615 Onohara East, Minoh City, Osaka Prefecture (56) References JP-A-4-46050 (JP, A) JP-A-3-150208 (JP, A) JP-A-3-12313 (JP, A) JP-A-63-307115 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Bi、Sr、Ca、Cu、PbおよびOからなり、そ
の原子の組成比が、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) であり、Bi2Sr2Ca2Cu3O10構造(2223相)を有する超電
導繊維状単結晶。
1. Composition of Bi, Sr, Ca, Cu, Pb and O, the atomic composition ratio of which is Bi 2-x Pb x Sr 1.9 to 2.1 Ca 1.9 to 2.1 Cu 3 O y (0 <x <0.4. , 10.0 <y <11.0), and a superconducting fibrous single crystal having a Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).
【請求項2】Bi、Sr、Ca、CuおよびOからなり、Bi2Sr2
Ca1Cu2O8構造(2212相)を有する繊維状単結晶、また
は、 Bi、Sr、CuおよびOからなり、Bi2Sr2Cu1O6構造(2201
相)を有する繊維状単結晶を、原子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 である酸化物粉末中に埋め込み、830〜860℃で熱処理す
ることを特徴とする、原子の組成比が、 Bi2-xPbxSr1.9〜2.1Ca1.9〜2.1Cu3Oy (0<x<0.4、10.0<y<11.0) であり、Bi2Sr2Ca2Cu3O10構造(2223相)を有する超電
導繊維状単結晶の製造方法。
2. Bi 2 Sr 2 consisting of Bi, Sr, Ca, Cu and O.
A fibrous single crystal having a Ca 1 Cu 2 O 8 structure (2212 phase) or composed of Bi, Sr, Cu and O, and having a Bi 2 Sr 2 Cu 1 O 6 structure (2201
A fibrous single crystal having a phase) is embedded in an oxide powder having an atomic composition ratio of Bi = 1.0 Sr = 0.5 to 1.5 Ca = 1.0 to 3.0 Cu = 1.0 to 5.0 Pb = 0.2 to 1.0, 830 to 860 characterized by a heat treatment at ° C., the composition ratio of atoms, a Bi 2-x Pb x Sr 1.9~2.1 Ca 1.9~2.1 Cu 3 O y (0 <x <0.4,10.0 <y <11.0), A method for producing a superconducting fibrous single crystal having a Bi 2 Sr 2 Ca 2 Cu 3 O 10 structure (2223 phase).
JP2177123A 1990-03-07 1990-07-03 Superconducting fibrous single crystal and method for producing the same Expired - Lifetime JPH0745357B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2177123A JPH0745357B2 (en) 1990-07-03 1990-07-03 Superconducting fibrous single crystal and method for producing the same
US07/777,055 US5242896A (en) 1990-03-07 1991-10-16 Superconductor crystal and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177123A JPH0745357B2 (en) 1990-07-03 1990-07-03 Superconducting fibrous single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0465395A JPH0465395A (en) 1992-03-02
JPH0745357B2 true JPH0745357B2 (en) 1995-05-17

Family

ID=16025571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177123A Expired - Lifetime JPH0745357B2 (en) 1990-03-07 1990-07-03 Superconducting fibrous single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0745357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02001863A (en) 1999-08-24 2003-07-14 Toyo Boseki Polymerization catalysts for polyesters, polyesters produced with the same and process for production of polyesters.
JP4141666B2 (en) * 2001-07-25 2008-08-27 独立行政法人科学技術振興機構 Method for producing oxide high temperature superconductor needle crystal
KR20180106846A (en) * 2016-01-29 2018-10-01 가부시키가이샤 미스즈 코우쿄우 A heater, a fixing device having the same, an image forming apparatus and a heating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307115A (en) * 1987-06-08 1988-12-14 Agency Of Ind Science & Technol Production of oxide superconductor
JPH0312313A (en) * 1989-06-09 1991-01-21 Sumitomo Electric Ind Ltd Production of superconducting ceramic fiber
JPH03150208A (en) * 1989-11-02 1991-06-26 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Preparation of oxide superconductive fiber
JPH0446050A (en) * 1990-01-25 1992-02-17 Osaka Prefecture Production of bismuth-containing superconducting ceramics

Also Published As

Publication number Publication date
JPH0465395A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
US4921834A (en) Flux method of growing oxide superconductors
US5999833A (en) Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
US5242896A (en) Superconductor crystal and process for preparing the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
US5126321A (en) Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
US5354921A (en) Single crystalline fibrous superconductive composition and process for preparing the same
JPH0745358B2 (en) Method for producing superconducting single crystal
JPH04214027A (en) Oxide superconductor and production thereof
US5145834A (en) Processes for making Tl-Ca-Ba-Cu-O, Tl-Sr-Ba-Cu-O and Tl-Sr-Cu-O superconductors by solid state synthesis
HU217018B (en) Super conducting composition contain bismuth, strontium, copper and oxygen, process for producing this composition, and process for conducting an electrical current within a conductor material without electrical resistive losses and josephson-effect ...
JPH0238359A (en) Production of superconductor
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH02120234A (en) Production of oxide superconductor
JPH02243519A (en) Oxide superconductor and production thereof
JPH0725639B2 (en) Superconducting fibrous crystal, single crystal and method for producing the same
JP2821568B2 (en) Method for producing superconducting whisker composite
EP0441903A4 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH0465346A (en) Superconducting composition
Hakuraku et al. Reaction and Intermixing at the Bi2Sr2Ca4Cu6Ox/PbO Interfaces
JPH01278449A (en) Production of oxide superconductor
JPH0230618A (en) Oxide high-temperature superconductor
JPH0251420A (en) Production of superconducting material
Abd-Shukor et al. Formation and superconductivity of Pr and Nd-substituted Tl-1212 phase Tl
JPH05279038A (en) High-temp. thallium-based oxide superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term